
COMPUTER SYSTEMS
A Programmer’s Perspective

Bryant •O’Hallaron

Computer Systems
A Programmer’s Perspective

This page intentionally left blank

Computer Systems
A Programmer’s Perspective

Randal E. Bryant
Carnegie Mellon University

David R. O’Hallaron
Carnegie Mellon University and Intel Labs

Prentice Hall

Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton
Editor-in-Chief: Michael Hirsch
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Chelsea Bell
Director of Marketing: Margaret Waples
Marketing Coordinator: Kathryn Ferranti
Managing Editor: Jeff Holcomb
Senior Manufacturing Buyer: Carol Melville
Art Director: Linda Knowles
Cover Designer: Elena Sidorova
Image Interior Permission Coordinator: Richard Rodrigues
Cover Art: © Randal E. Bryant and David R. O’Hallaron
Media Producer: Katelyn Boller
Project Management and Interior Design: Paul C. Anagnostopoulos, Windfall Software
Composition: Joe Snowden, Coventry Composition
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix Color/Hagerstown

Copyright © 2011, 2003 by Randal E. Bryant and David R. O’Hallaron. All rights reserved.
Manufactured in the United States of America. This publication is protected by Copyright,
and permission should be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material
from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and seller to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed in initial caps or all
caps.

Library of Congress Cataloging-in-Publication Data

Bryant, Randal.
Computer systems : a programmer’s perspective / Randal E. Bryant, David R.

O’Hallaron.—2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-13-610804-7 (alk. paper)
ISBN-10: 0-13-610804-0 (alk. paper)
1. Computer systems. 2. Computers. 3. Telecommunication. 4. User interfaces

(Computer systems) I. O’Hallaron, David Richard. II. Title.
QA76.5.B795 2010
004—dc22

2009053083

10 9 8 7 6 5 4 3 2 1—EB—14 13 12 11 10

ISBN 10: 0-13-610804-0
ISBN 13: 978-0-13-610804-7

To the students and instructors of the 15-213

course at Carnegie Mellon University, for inspiring

us to develop and refine the material for this book.

This page intentionally left blank

Contents

Preface xix

About the Authors xxxiii

1
A Tour of Computer Systems 1
1.1 Information Is Bits + Context 3
1.2 Programs Are Translated by Other Programs into Different Forms 4
1.3 It Pays to Understand How Compilation Systems Work 6
1.4 Processors Read and Interpret Instructions Stored in Memory 7

1.4.1 Hardware Organization of a System 7
1.4.2 Running the hello Program 10

1.5 Caches Matter 12
1.6 Storage Devices Form a Hierarchy 13
1.7 The Operating System Manages the Hardware 14

1.7.1 Processes 16
1.7.2 Threads 17
1.7.3 Virtual Memory 17
1.7.4 Files 19

1.8 Systems Communicate with Other Systems Using Networks 20
1.9 Important Themes 21

1.9.1 Concurrency and Parallelism 21
1.9.2 The Importance of Abstractions in Computer Systems 24

1.10 Summary 25
Bibliographic Notes 26

Part I Program Structure and Execution

2
Representing and Manipulating Information 29
2.1 Information Storage 33

2.1.1 Hexadecimal Notation 34
2.1.2 Words 38
2.1.3 Data Sizes 38

vii

viii Contents

2.1.4 Addressing and Byte Ordering 39
2.1.5 Representing Strings 46
2.1.6 Representing Code 47
2.1.7 Introduction to Boolean Algebra 48
2.1.8 Bit-Level Operations in C 51
2.1.9 Logical Operations in C 54
2.1.10 Shift Operations in C 54

2.2 Integer Representations 56
2.2.1 Integral Data Types 57
2.2.2 Unsigned Encodings 58
2.2.3 Two’s-Complement Encodings 60
2.2.4 Conversions Between Signed and Unsigned 65
2.2.5 Signed vs. Unsigned in C 69
2.2.6 Expanding the Bit Representation of a Number 71
2.2.7 Truncating Numbers 75
2.2.8 Advice on Signed vs. Unsigned 76

2.3 Integer Arithmetic 79
2.3.1 Unsigned Addition 79
2.3.2 Two’s-Complement Addition 83
2.3.3 Two’s-Complement Negation 87
2.3.4 Unsigned Multiplication 88
2.3.5 Two’s-Complement Multiplication 89
2.3.6 Multiplying by Constants 92
2.3.7 Dividing by Powers of Two 95
2.3.8 Final Thoughts on Integer Arithmetic 98

2.4 Floating Point 99
2.4.1 Fractional Binary Numbers 100
2.4.2 IEEE Floating-Point Representation 103
2.4.3 Example Numbers 105
2.4.4 Rounding 110
2.4.5 Floating-Point Operations 113
2.4.6 Floating Point in C 114

2.5 Summary 118
Bibliographic Notes 119
Homework Problems 119
Solutions to Practice Problems 134

3
Machine-Level Representation of Programs 153
3.1 A Historical Perspective 156
3.2 Program Encodings 159

Contents ix

3.2.1 Machine-Level Code 160
3.2.2 Code Examples 162
3.2.3 Notes on Formatting 165

3.3 Data Formats 167
3.4 Accessing Information 168

3.4.1 Operand Specifiers 169
3.4.2 Data Movement Instructions 171
3.4.3 Data Movement Example 174

3.5 Arithmetic and Logical Operations 177
3.5.1 Load Effective Address 177
3.5.2 Unary and Binary Operations 178
3.5.3 Shift Operations 179
3.5.4 Discussion 180
3.5.5 Special Arithmetic Operations 182

3.6 Control 185
3.6.1 Condition Codes 185
3.6.2 Accessing the Condition Codes 187
3.6.3 Jump Instructions and Their Encodings 189
3.6.4 Translating Conditional Branches 193
3.6.5 Loops 197
3.6.6 Conditional Move Instructions 206
3.6.7 Switch Statements 213

3.7 Procedures 219
3.7.1 Stack Frame Structure 219
3.7.2 Transferring Control 221
3.7.3 Register Usage Conventions 223
3.7.4 Procedure Example 224
3.7.5 Recursive Procedures 229

3.8 Array Allocation and Access 232
3.8.1 Basic Principles 232
3.8.2 Pointer Arithmetic 233
3.8.3 Nested Arrays 235
3.8.4 Fixed-Size Arrays 237
3.8.5 Variable-Size Arrays 238

3.9 Heterogeneous Data Structures 241
3.9.1 Structures 241
3.9.2 Unions 244
3.9.3 Data Alignment 248

3.10 Putting It Together: Understanding Pointers 252
3.11 Life in the Real World: Using the gdb Debugger 254
3.12 Out-of-Bounds Memory References and Buffer Overflow 256

3.12.1 Thwarting Buffer Overflow Attacks 261

x Contents

3.13 x86-64: Extending IA32 to 64 Bits 267
3.13.1 History and Motivation for x86-64 268
3.13.2 An Overview of x86-64 270
3.13.3 Accessing Information 273
3.13.4 Control 279
3.13.5 Data Structures 290
3.13.6 Concluding Observations about x86-64 291

3.14 Machine-Level Representations of Floating-Point Programs 292
3.15 Summary 293

Bibliographic Notes 294
Homework Problems 294
Solutions to Practice Problems 308

4
Processor Architecture 333
4.1 The Y86 Instruction Set Architecture 336

4.1.1 Programmer-Visible State 336
4.1.2 Y86 Instructions 337
4.1.3 Instruction Encoding 339
4.1.4 Y86 Exceptions 344
4.1.5 Y86 Programs 345
4.1.6 Some Y86 Instruction Details 350

4.2 Logic Design and the Hardware Control Language HCL 352
4.2.1 Logic Gates 353
4.2.2 Combinational Circuits and HCL Boolean Expressions 354
4.2.3 Word-Level Combinational Circuits and HCL Integer

Expressions 355
4.2.4 Set Membership 360
4.2.5 Memory and Clocking 361

4.3 Sequential Y86 Implementations 364
4.3.1 Organizing Processing into Stages 364
4.3.2 SEQ Hardware Structure 375
4.3.3 SEQ Timing 379
4.3.4 SEQ Stage Implementations 383

4.4 General Principles of Pipelining 391
4.4.1 Computational Pipelines 392
4.4.2 A Detailed Look at Pipeline Operation 393
4.4.3 Limitations of Pipelining 394
4.4.4 Pipelining a System with Feedback 398

4.5 Pipelined Y86 Implementations 400
4.5.1 SEQ+: Rearranging the Computation Stages 400

Contents xi

4.5.2 Inserting Pipeline Registers 401
4.5.3 Rearranging and Relabeling Signals 405
4.5.4 Next PC Prediction 406
4.5.5 Pipeline Hazards 408
4.5.6 Avoiding Data Hazards by Stalling 413
4.5.7 Avoiding Data Hazards by Forwarding 415
4.5.8 Load/Use Data Hazards 418
4.5.9 Exception Handling 420
4.5.10 PIPE Stage Implementations 423
4.5.11 Pipeline Control Logic 431
4.5.12 Performance Analysis 444
4.5.13 Unfinished Business 446

4.6 Summary 449
4.6.1 Y86 Simulators 450
Bibliographic Notes 451
Homework Problems 451
Solutions to Practice Problems 457

5
Optimizing Program Performance 473
5.1 Capabilities and Limitations of Optimizing Compilers 476
5.2 Expressing Program Performance 480
5.3 Program Example 482
5.4 Eliminating Loop Inefficiencies 486
5.5 Reducing Procedure Calls 490
5.6 Eliminating Unneeded Memory References 491
5.7 Understanding Modern Processors 496

5.7.1 Overall Operation 497
5.7.2 Functional Unit Performance 500
5.7.3 An Abstract Model of Processor Operation 502

5.8 Loop Unrolling 509
5.9 Enhancing Parallelism 513

5.9.1 Multiple Accumulators 514
5.9.2 Reassociation Transformation 518

5.10 Summary of Results for Optimizing Combining Code 524
5.11 Some Limiting Factors 525

5.11.1 Register Spilling 525
5.11.2 Branch Prediction and Misprediction Penalties 526

5.12 Understanding Memory Performance 531
5.12.1 Load Performance 531
5.12.2 Store Performance 532

xii Contents

5.13 Life in the Real World: Performance Improvement Techniques 539
5.14 Identifying and Eliminating Performance Bottlenecks 540

5.14.1 Program Profiling 540
5.14.2 Using a Profiler to Guide Optimization 542
5.14.3 Amdahl’s Law 545

5.15 Summary 547
Bibliographic Notes 548
Homework Problems 549
Solutions to Practice Problems 552

6
The Memory Hierarchy 559
6.1 Storage Technologies 561

6.1.1 Random-Access Memory 561
6.1.2 Disk Storage 570
6.1.3 Solid State Disks 581
6.1.4 Storage Technology Trends 583

6.2 Locality 586
6.2.1 Locality of References to Program Data 587
6.2.2 Locality of Instruction Fetches 588
6.2.3 Summary of Locality 589

6.3 The Memory Hierarchy 591
6.3.1 Caching in the Memory Hierarchy 592
6.3.2 Summary of Memory Hierarchy Concepts 595

6.4 Cache Memories 596
6.4.1 Generic Cache Memory Organization 597
6.4.2 Direct-Mapped Caches 599
6.4.3 Set Associative Caches 606
6.4.4 Fully Associative Caches 608
6.4.5 Issues with Writes 611
6.4.6 Anatomy of a Real Cache Hierarchy 612
6.4.7 Performance Impact of Cache Parameters 614

6.5 Writing Cache-friendly Code 615
6.6 Putting It Together: The Impact of Caches on Program Performance 620

6.6.1 The Memory Mountain 621
6.6.2 Rearranging Loops to Increase Spatial Locality 625
6.6.3 Exploiting Locality in Your Programs 629

6.7 Summary 629
Bibliographic Notes 630
Homework Problems 631
Solutions to Practice Problems 642

Contents xiii

Part II Running Programs on a System

7
Linking 653
7.1 Compiler Drivers 655
7.2 Static Linking 657
7.3 Object Files 657
7.4 Relocatable Object Files 658
7.5 Symbols and Symbol Tables 660
7.6 Symbol Resolution 663

7.6.1 How Linkers Resolve Multiply Defined Global Symbols 664
7.6.2 Linking with Static Libraries 667
7.6.3 How Linkers Use Static Libraries to Resolve References 670

7.7 Relocation 672
7.7.1 Relocation Entries 672
7.7.2 Relocating Symbol References 673

7.8 Executable Object Files 678
7.9 Loading Executable Object Files 679
7.10 Dynamic Linking with Shared Libraries 681
7.11 Loading and Linking Shared Libraries from Applications 683
7.12 Position-Independent Code (PIC) 687
7.13 Tools for Manipulating Object Files 690
7.14 Summary 691

Bibliographic Notes 691
Homework Problems 692
Solutions to Practice Problems 698

8
Exceptional Control Flow 701
8.1 Exceptions 703

8.1.1 Exception Handling 704
8.1.2 Classes of Exceptions 706
8.1.3 Exceptions in Linux/IA32 Systems 708

8.2 Processes 712
8.2.1 Logical Control Flow 712
8.2.2 Concurrent Flows 713
8.2.3 Private Address Space 714
8.2.4 User and Kernel Modes 714
8.2.5 Context Switches 716

xiv Contents

8.3 System Call Error Handling 717
8.4 Process Control 718

8.4.1 Obtaining Process IDs 719
8.4.2 Creating and Terminating Processes 719
8.4.3 Reaping Child Processes 723
8.4.4 Putting Processes to Sleep 729
8.4.5 Loading and Running Programs 730
8.4.6 Using fork and execve to Run Programs 733

8.5 Signals 736
8.5.1 Signal Terminology 738
8.5.2 Sending Signals 739
8.5.3 Receiving Signals 742
8.5.4 Signal Handling Issues 745
8.5.5 Portable Signal Handling 752
8.5.6 Explicitly Blocking and Unblocking Signals 753
8.5.7 Synchronizing Flows to Avoid Nasty Concurrency Bugs 755

8.6 Nonlocal Jumps 759
8.7 Tools for Manipulating Processes 762
8.8 Summary 763

Bibliographic Notes 763
Homework Problems 764
Solutions to Practice Problems 771

9
Virtual Memory 775
9.1 Physical and Virtual Addressing 777
9.2 Address Spaces 778
9.3 VM as a Tool for Caching 779

9.3.1 DRAM Cache Organization 780
9.3.2 Page Tables 780
9.3.3 Page Hits 782
9.3.4 Page Faults 782
9.3.5 Allocating Pages 783
9.3.6 Locality to the Rescue Again 784

9.4 VM as a Tool for Memory Management 785
9.5 VM as a Tool for Memory Protection 786
9.6 Address Translation 787

9.6.1 Integrating Caches and VM 791
9.6.2 Speeding up Address Translation with a TLB 791
9.6.3 Multi-Level Page Tables 792
9.6.4 Putting It Together: End-to-end Address Translation 794

9.7 Case Study: The Intel Core i7/Linux Memory System 799

Contents xv

9.7.1 Core i7 Address Translation 800
9.7.2 Linux Virtual Memory System 803

9.8 Memory Mapping 807
9.8.1 Shared Objects Revisited 807
9.8.2 The fork Function Revisited 809
9.8.3 The execve Function Revisited 810
9.8.4 User-level Memory Mapping with the mmap Function 810

9.9 Dynamic Memory Allocation 812
9.9.1 The malloc and free Functions 814
9.9.2 Why Dynamic Memory Allocation? 816
9.9.3 Allocator Requirements and Goals 817
9.9.4 Fragmentation 819
9.9.5 Implementation Issues 820
9.9.6 Implicit Free Lists 820
9.9.7 Placing Allocated Blocks 822
9.9.8 Splitting Free Blocks 823
9.9.9 Getting Additional Heap Memory 823
9.9.10 Coalescing Free Blocks 824
9.9.11 Coalescing with Boundary Tags 824
9.9.12 Putting It Together: Implementing a Simple Allocator 827
9.9.13 Explicit Free Lists 835
9.9.14 Segregated Free Lists 836

9.10 Garbage Collection 838
9.10.1 Garbage Collector Basics 839
9.10.2 Mark&Sweep Garbage Collectors 840
9.10.3 Conservative Mark&Sweep for C Programs 842

9.11 Common Memory-Related Bugs in C Programs 843
9.11.1 Dereferencing Bad Pointers 843
9.11.2 Reading Uninitialized Memory 843
9.11.3 Allowing Stack Buffer Overflows 844
9.11.4 Assuming that Pointers and the Objects They Point to Are the

Same Size 844
9.11.5 Making Off-by-One Errors 845
9.11.6 Referencing a Pointer Instead of the Object It Points to 845
9.11.7 Misunderstanding Pointer Arithmetic 846
9.11.8 Referencing Nonexistent Variables 846
9.11.9 Referencing Data in Free Heap Blocks 847
9.11.10 Introducing Memory Leaks 847

9.12 Summary 848

Bibliographic Notes 848

Homework Problems 849

Solutions to Practice Problems 853

xvi Contents

Part III Interaction and Communication Between
Programs

10
System-Level I/O 861
10.1 Unix I/O 862
10.2 Opening and Closing Files 863
10.3 Reading and Writing Files 865
10.4 Robust Reading and Writing with the Rio Package 867

10.4.1 Rio Unbuffered Input and Output Functions 867
10.4.2 Rio Buffered Input Functions 868

10.5 Reading File Metadata 873
10.6 Sharing Files 875
10.7 I/O Redirection 877
10.8 Standard I/O 879
10.9 Putting It Together: Which I/O Functions Should I Use? 880
10.10 Summary 881

Bibliographic Notes 882
Homework Problems 882
Solutions to Practice Problems 883

11
Network Programming 885
11.1 The Client-Server Programming Model 886
11.2 Networks 887
11.3 The Global IP Internet 891

11.3.1 IP Addresses 893
11.3.2 Internet Domain Names 895
11.3.3 Internet Connections 899

11.4 The Sockets Interface 900
11.4.1 Socket Address Structures 901
11.4.2 The socket Function 902
11.4.3 The connect Function 903
11.4.4 The open_clientfd Function 903
11.4.5 The bind Function 904
11.4.6 The listen Function 905
11.4.7 The open_listenfd Function 905
11.4.8 The accept Function 907
11.4.9 Example Echo Client and Server 908

Contents xvii

11.5 Web Servers 911
11.5.1 Web Basics 911
11.5.2 Web Content 912
11.5.3 HTTP Transactions 914
11.5.4 Serving Dynamic Content 916

11.6 Putting It Together: The Tiny Web Server 919
11.7 Summary 927

Bibliographic Notes 928
Homework Problems 928
Solutions to Practice Problems 929

12
Concurrent Programming 933
12.1 Concurrent Programming with Processes 935

12.1.1 A Concurrent Server Based on Processes 936
12.1.2 Pros and Cons of Processes 937

12.2 Concurrent Programming with I/O Multiplexing 939
12.2.1 A Concurrent Event-Driven Server Based on I/O

Multiplexing 942
12.2.2 Pros and Cons of I/O Multiplexing 946

12.3 Concurrent Programming with Threads 947
12.3.1 Thread Execution Model 948
12.3.2 Posix Threads 948
12.3.3 Creating Threads 950
12.3.4 Terminating Threads 950
12.3.5 Reaping Terminated Threads 951
12.3.6 Detaching Threads 951
12.3.7 Initializing Threads 952
12.3.8 A Concurrent Server Based on Threads 952

12.4 Shared Variables in Threaded Programs 954
12.4.1 Threads Memory Model 955
12.4.2 Mapping Variables to Memory 956
12.4.3 Shared Variables 956

12.5 Synchronizing Threads with Semaphores 957
12.5.1 Progress Graphs 960
12.5.2 Semaphores 963
12.5.3 Using Semaphores for Mutual Exclusion 964
12.5.4 Using Semaphores to Schedule Shared Resources 966
12.5.5 Putting It Together: A Concurrent Server Based on

Prethreading 970
12.6 Using Threads for Parallelism 974

xviii Contents

12.7 Other Concurrency Issues 979
12.7.1 Thread Safety 979
12.7.2 Reentrancy 980
12.7.3 Using Existing Library Functions in Threaded Programs 982
12.7.4 Races 983
12.7.5 Deadlocks 985

12.8 Summary 988
Bibliographic Notes 989
Homework Problems 989
Solutions to Practice Problems 994

A
Error Handling 999
A.1 Error Handling in Unix Systems 1000
A.2 Error-Handling Wrappers 1001

References 1005

Index 1011

Preface

This book (CS:APP) is for computer scientists, computer engineers, and others
who want to be able to write better programs by learning what is going on “under
the hood” of a computer system.

Our aim is to explain the enduring concepts underlying all computer systems,
and to show you the concrete ways that these ideas affect the correctness, perfor-
mance, and utility of your application programs. Other systems books are written
from a builder’s perspective, describing how to implement the hardware or the sys-
tems software, including the operating system, compiler, and network interface.
This book is written from a programmer’s perspective, describing how application
programmers can use their knowledge of a system to write better programs. Of
course, learning what a system is supposed to do provides a good first step in learn-
ing how to build one, and so this book also serves as a valuable introduction to
those who go on to implement systems hardware and software.

If you study and learn the concepts in this book, you will be on your way to
becoming the rare “power programmer” who knows how things work and how
to fix them when they break. Our aim is to present the fundamental concepts in
ways that you will find useful right away. You will also be prepared to delve deeper,
studying such topics as compilers, computer architecture, operating systems, em-
bedded systems, and networking.

Assumptions about the Reader’s Background

The presentation of machine code in the book is based on two related formats
supported by Intel and its competitors, colloquially known as “x86.” IA32 is the
machine code that has become the de facto standard for a wide range of systems.
x86-64 is an extension of IA32 to enable programs to operate on larger data and to
reference a wider range of memory addresses. Since x86-64 systems are able to run
IA32 code, both of these forms of machine code will see widespread use for the
foreseeable future. We consider how these machines execute C programs on Unix
or Unix-like (such as Linux) operating systems. (To simplify our presentation,
we will use the term “Unix” as an umbrella term for systems having Unix as
their heritage, including Solaris, Mac OS, and Linux.) The text contains numerous
programming examples that have been compiled and run on Linux systems. We
assume that you have access to such a machine and are able to log in and do simple
things such as changing directories.

If your computer runs Microsoft Windows, you have two choices. First, you
can get a copy of Linux (www.ubuntu.com) and install it as a “dual boot” option,
so that your machine can run either operating system. Alternatively, by installing
a copy of the Cygwin tools (www.cygwin.com), you can run a Unix-like shell under

xix

www.ubuntu.com
www.cygwin.com

xx Preface

Windows and have an environment very close to that provided by Linux. Not all
features of Linux are available under Cygwin, however.

We also assume that you have some familiarity with C or C++. If your only
prior experience is with Java, the transition will require more effort on your part,
but we will help you. Java and C share similar syntax and control statements.
However, there are aspects of C, particularly pointers, explicit dynamic memory
allocation, and formatted I/O, that do not exist in Java. Fortunately, C is a small
language, and it is clearly and beautifully described in the classic “K&R” text
by Brian Kernighan and Dennis Ritchie [58]. Regardless of your programming
background, consider K&R an essential part of your personal systems library.

Several of the early chapters in the book explore the interactions between
C programs and their machine-language counterparts. The machine-language
examples were all generated by the GNU gcc compiler running on IA32 and x86-
64 processors. We do not assume any prior experience with hardware, machine
language, or assembly-language programming.

New to C? Advice on the C programming language

To help readers whose background in C programming is weak (or nonexistent), we have also included
these special notes to highlight features that are especially important in C. We assume you are familiar
with C++ or Java.

How to Read the Book

Learning how computer systems work from a programmer’s perspective is great
fun, mainly because you can do it actively. Whenever you learn something new,
you can try it out right away and see the result first hand. In fact, we believe that
the only way to learn systems is to do systems, either working concrete problems
or writing and running programs on real systems.

This theme pervades the entire book. When a new concept is introduced, it
is followed in the text by one or more practice problems that you should work
immediately to test your understanding. Solutions to the practice problems are
at the end of each chapter. As you read, try to solve each problem on your own,
and then check the solution to make sure you are on the right track. Each chapter
is followed by a set of homework problems of varying difficulty. Your instructor
has the solutions to the homework problems in an Instructor’s Manual. For each
homework problem, we show a rating of the amount of effort we feel it will require:

◆ Should require just a few minutes. Little or no programming required.

◆◆ Might require up to 20 minutes. Often involves writing and testing some code.
Many of these are derived from problems we have given on exams.

◆◆◆ Requires a significant effort, perhaps 1–2 hours. Generally involves writing
and testing a significant amount of code.

◆◆◆◆ A lab assignment, requiring up to 10 hours of effort.

Preface xxi

code/intro/hello.c

1 #include <stdio.h>

2

3 int main()

4 {

5 printf("hello, world\n");

6 return 0;

7 }

code/intro/hello.c

Figure 1 A typical code example.

Each code example in the text was formatted directly, without any manual
intervention, from a C program compiled with gcc and tested on a Linux system.
Of course, your system may have a different version of gcc, or a different compiler
altogether, and so your compiler might generate different machine code, but the
overall behavior should be the same. All of the source code is available from the
CS:APP Web page at csapp.cs.cmu.edu. In the text, the file names of the source
programs are documented in horizontal bars that surround the formatted code.
For example, the program in Figure 1 can be found in the file hello.c in directory
code/intro/. We encourage you to try running the example programs on your
system as you encounter them.

To avoid having a book that is overwhelming, both in bulk and in content,
we have created a number of Web asides containing material that supplements
the main presentation of the book. These asides are referenced within the book
with a notation of the form CHAP:TOP, where CHAP is a short encoding of the
chapter subject, and TOP is short code for the topic that is covered. For example,
Web Aside data:bool contains supplementary material on Boolean algebra for
the presentation on data representations in Chapter 2, while Web Aside arch:vlog
contains material describing processor designs using the Verilog hardware descrip-
tion language, supplementing the presentation of processor design in Chapter 4.
All of these Web asides are available from the CS:APP Web page.

Aside What is an aside?

You will encounter asides of this form throughout the text. Asides are parenthetical remarks that give
you some additional insight into the current topic. Asides serve a number of purposes. Some are little
history lessons. For example, where did C, Linux, and the Internet come from? Other asides are meant
to clarify ideas that students often find confusing. For example, what is the difference between a cache
line, set, and block? Other asides give real-world examples. For example, how a floating-point error
crashed a French rocket, or what the geometry of an actual Seagate disk drive looks like. Finally, some
asides are just fun stuff. For example, what is a “hoinky”?

xxii Preface

Book Overview

The CS:APP book consists of 12 chapters designed to capture the core ideas in
computer systems:

. Chapter 1: A Tour of Computer Systems. This chapter introduces the major
ideas and themes in computer systems by tracing the life cycle of a simple
“hello, world” program.

. Chapter 2: Representing and Manipulating Information. We cover computer
arithmetic, emphasizing the properties of unsigned and two’s-complement
number representations that affect programmers. We consider how numbers
are represented and therefore what range of values can be encoded for a given
word size. We consider the effect of casting between signed and unsigned num-
bers. We cover the mathematical properties of arithmetic operations. Novice
programmers are often surprised to learn that the (two’s-complement) sum
or product of two positive numbers can be negative. On the other hand, two’s-
complement arithmetic satisfies the algebraic properties of a ring, and hence a
compiler can safely transform multiplication by a constant into a sequence of
shifts and adds. We use the bit-level operations of C to demonstrate the prin-
ciples and applications of Boolean algebra. We cover the IEEE floating-point
format in terms of how it represents values and the mathematical properties
of floating-point operations.

Having a solid understanding of computer arithmetic is critical to writing
reliable programs. For example, programmers and compilers cannot replace
the expression (x<y) with (x-y < 0), due to the possibility of overflow. They
cannot even replace it with the expression (-y < -x), due to the asymmetric
range of negative and positive numbers in the two’s-complement represen-
tation. Arithmetic overflow is a common source of programming errors and
security vulnerabilities, yet few other books cover the properties of computer
arithmetic from a programmer’s perspective.

. Chapter 3: Machine-Level Representation of Programs. We teach you how to
read the IA32 and x86-64 assembly language generated by a C compiler. We
cover the basic instruction patterns generated for different control constructs,
such as conditionals, loops, and switch statements. We cover the implemen-
tation of procedures, including stack allocation, register usage conventions,
and parameter passing. We cover the way different data structures such as
structures, unions, and arrays are allocated and accessed. We also use the
machine-level view of programs as a way to understand common code se-
curity vulnerabilities, such as buffer overflow, and steps that the programmer,
the compiler, and the operating system can take to mitigate these threats.
Learning the concepts in this chapter helps you become a better programmer,
because you will understand how programs are represented on a machine.
One certain benefit is that you will develop a thorough and concrete under-
standing of pointers.

. Chapter 4: Processor Architecture. This chapter covers basic combinational
and sequential logic elements, and then shows how these elements can be

Preface xxiii

combined in a datapath that executes a simplified subset of the IA32 instruc-
tion set called “Y86.” We begin with the design of a single-cycle datapath. This
design is conceptually very simple, but it would not be very fast. We then intro-
duce pipelining, where the different steps required to process an instruction
are implemented as separate stages. At any given time, each stage can work
on a different instruction. Our five-stage processor pipeline is much more re-
alistic. The control logic for the processor designs is described using a simple
hardware description language called HCL. Hardware designs written in HCL
can be compiled and linked into simulators provided with the textbook, and
they can be used to generate Verilog descriptions suitable for synthesis into
working hardware.

. Chapter 5: Optimizing Program Performance. This chapter introduces a num-
ber of techniques for improving code performance, with the idea being that
programmers learn to write their C code in such a way that a compiler can
then generate efficient machine code. We start with transformations that re-
duce the work to be done by a program and hence should be standard practice
when writing any program for any machine. We then progress to transforma-
tions that enhance the degree of instruction-level parallelism in the generated
machine code, thereby improving their performance on modern “superscalar”
processors. To motivate these transformations, we introduce a simple opera-
tional model of how modern out-of-order processors work, and show how to
measure the potential performance of a program in terms of the critical paths
through a graphical representation of a program. You will be surprised how
much you can speed up a program by simple transformations of the C code.

. Chapter 6: The Memory Hierarchy.The memory system is one of the most visi-
ble parts of a computer system to application programmers. To this point, you
have relied on a conceptual model of the memory system as a linear array with
uniform access times. In practice, a memory system is a hierarchy of storage
devices with different capacities, costs, and access times. We cover the differ-
ent types of RAM and ROM memories and the geometry and organization of
magnetic-disk and solid-state drives. We describe how these storage devices
are arranged in a hierarchy. We show how this hierarchy is made possible by
locality of reference. We make these ideas concrete by introducing a unique
view of a memory system as a “memory mountain” with ridges of temporal
locality and slopes of spatial locality. Finally, we show you how to improve the
performance of application programs by improving their temporal and spatial
locality.

. Chapter 7: Linking. This chapter covers both static and dynamic linking, in-
cluding the ideas of relocatable and executable object files, symbol resolution,
relocation, static libraries, shared object libraries, and position-independent
code. Linking is not covered in most systems texts, but we cover it for sev-
eral reasons. First, some of the most confusing errors that programmers can
encounter are related to glitches during linking, especially for large software
packages. Second, the object files produced by linkers are tied to concepts
such as loading, virtual memory, and memory mapping.

xxiv Preface

. Chapter 8: Exceptional Control Flow. In this part of the presentation, we
step beyond the single-program model by introducing the general concept
of exceptional control flow (i.e., changes in control flow that are outside the
normal branches and procedure calls). We cover examples of exceptional
control flow that exist at all levels of the system, from low-level hardware
exceptions and interrupts, to context switches between concurrent processes,
to abrupt changes in control flow caused by the delivery of Unix signals, to
the nonlocal jumps in C that break the stack discipline.

This is the part of the book where we introduce the fundamental idea of
a process, an abstraction of an executing program. You will learn how pro-
cesses work and how they can be created and manipulated from application
programs. We show how application programmers can make use of multiple
processes via Unix system calls. When you finish this chapter, you will be able
to write a Unix shell with job control. It is also your first introduction to the
nondeterministic behavior that arises with concurrent program execution.

. Chapter 9: Virtual Memory. Our presentation of the virtual memory system
seeks to give some understanding of how it works and its characteristics. We
want you to know how it is that the different simultaneous processes can each
use an identical range of addresses, sharing some pages but having individual
copies of others. We also cover issues involved in managing and manipulating
virtual memory. In particular, we cover the operation of storage allocators
such as the Unix malloc and free operations. Covering this material serves
several purposes. It reinforces the concept that the virtual memory space is
just an array of bytes that the program can subdivide into different storage
units. It helps you understand the effects of programs containing memory ref-
erencing errors such as storage leaks and invalid pointer references. Finally,
many application programmers write their own storage allocators optimized
toward the needs and characteristics of the application. This chapter, more
than any other, demonstrates the benefit of covering both the hardware and
the software aspects of computer systems in a unified way. Traditional com-
puter architecture and operating systems texts present only part of the virtual
memory story.

. Chapter 10: System-Level I/O. We cover the basic concepts of Unix I/O such
as files and descriptors. We describe how files are shared, how I/O redirection
works, and how to access file metadata. We also develop a robust buffered I/O
package that deals correctly with a curious behavior known as short counts,
where the library function reads only part of the input data. We cover the C
standard I/O library and its relationship to Unix I/O, focusing on limitations
of standard I/O that make it unsuitable for network programming. In general,
the topics covered in this chapter are building blocks for the next two chapters
on network and concurrent programming.

. Chapter 11: Network Programming. Networks are interesting I/O devices to
program, tying together many of the ideas that we have studied earlier in the
text, such as processes, signals, byte ordering, memory mapping, and dynamic

Preface xxv

storage allocation. Network programs also provide a compelling context for
concurrency, which is the topic of the next chapter. This chapter is a thin slice
through network programming that gets you to the point where you can write
a Web server. We cover the client-server model that underlies all network
applications. We present a programmer’s view of the Internet, and show how
to write Internet clients and servers using the sockets interface. Finally, we
introduce HTTP and develop a simple iterative Web server.

. Chapter 12: Concurrent Programming. This chapter introduces concurrent
programming using Internet server design as the running motivational ex-
ample. We compare and contrast the three basic mechanisms for writing con-
current programs—processes, I/O multiplexing, and threads—and show how
to use them to build concurrent Internet servers. We cover basic principles of
synchronization using P and V semaphore operations, thread safety and reen-
trancy, race conditions, and deadlocks. Writing concurrent code is essential
for most server applications. We also describe the use of thread-level pro-
gramming to express parallelism in an application program, enabling faster
execution on multi-core processors. Getting all of the cores working on a sin-
gle computational problem requires a careful coordination of the concurrent
threads, both for correctness and to achieve high performance.

New to this Edition

The first edition of this book was published with a copyright of 2003. Consider-
ing the rapid evolution of computer technology, the book content has held up
surprisingly well. Intel x86 machines running Unix-like operating systems and
programmed in C proved to be a combination that continues to encompass many
systems today. Changes in hardware technology and compilers and the experience
of many instructors teaching the material have prompted a substantial revision.

Here are some of the more significant changes:

. Chapter 2: Representing and Manipulating Information.We have tried to make
this material more accessible, with more careful explanations of concepts
and with many more practice and homework problems. We moved some of
the more theoretical aspects to Web asides. We also describe some of the
security vulnerabilities that arise due to the overflow properties of computer
arithmetic.

. Chapter 3: Machine-Level Representation of Programs.We have extended our
coverage to include x86-64, the extension of x86 processors to a 64-bit word
size. We also use the code generated by a more recent version of gcc. We have
enhanced our coverage of buffer overflow vulnerabilities. We have created
Web asides on two different classes of instructions for floating point, and
also a view of the more exotic transformations made when compilers attempt
higher degrees of optimization. Another Web aside describes how to embed
x86 assembly code within a C program.

xxvi Preface

. Chapter 4: Processor Architecture. We include a more careful exposition of
exception detection and handling in our processor design. We have also cre-
ated a Web aside showing a mapping of our processor designs into Verilog,
enabling synthesis into working hardware.

. Chapter 5: Optimizing Program Performance. We have greatly changed our
description of how an out-of-order processor operates, and we have created
a simple technique for analyzing program performance based on the paths
in a data-flow graph representation of a program. A Web aside describes
how C programmers can write programs that make use of the SIMD (single-
instruction, multiple-data) instructions found in more recent versions of x86
processors.

. Chapter 6: The Memory Hierarchy. We have added material on solid-state
disks, and we have updated our presentation to be based on the memory
hierarchy of an Intel Core i7 processor.

. Chapter 7: Linking. This chapter has changed only slightly.

. Chapter 8: Exceptional Control Flow. We have enhanced our discussion of
how the process model introduces some fundamental concepts of concurrency,
such as nondeterminism.

. Chapter 9: Virtual Memory.We have updated our memory system case study to
describe the 64-bit Intel Core i7 processor. We have also updated our sample
implementation of malloc to work for both 32-bit and 64-bit execution.

. Chapter 10: System-Level I/O. This chapter has changed only slightly.

. Chapter 11: Network Programming. This chapter has changed only slightly.

. Chapter 12: Concurrent Programming.We have increased our coverage of the
general principles of concurrency, and we also describe how programmers
can use thread-level parallelism to make programs run faster on multi-core
machines.

In addition, we have added and revised a number of practice and homework
problems.

Origins of the Book

The book stems from an introductory course that we developed at Carnegie Mel-
lon University in the Fall of 1998, called 15-213: Introduction to Computer Systems
(ICS) [14]. The ICS course has been taught every semester since then, each time to
about 150–250 students, ranging from sophomores to masters degree students and
with a wide variety of majors. It is a required course for all undergraduates in the
CS and ECE departments at Carnegie Mellon, and it has become a prerequisite
for most upper-level systems courses.

The idea with ICS was to introduce students to computers in a different way.
Few of our students would have the opportunity to build a computer system. On
the other hand, most students, including all computer scientists and computer
engineers, will be required to use and program computers on a daily basis. So we

Preface xxvii

decided to teach about systems from the point of view of the programmer, using
the following filter: we would cover a topic only if it affected the performance,
correctness, or utility of user-level C programs.

For example, topics such as hardware adder and bus designs were out. Topics
such as machine language were in, but instead of focusing on how to write assem-
bly language by hand, we would look at how a C compiler translates C constructs
into machine code, including pointers, loops, procedure calls, and switch state-
ments. Further, we would take a broader and more holistic view of the system
as both hardware and systems software, covering such topics as linking, loading,
processes, signals, performance optimization, virtual memory, I/O, and network
and concurrent programming.

This approach allowed us to teach the ICS course in a way that is practical,
concrete, hands-on, and exciting for the students. The response from our students
and faculty colleagues was immediate and overwhelmingly positive, and we real-
ized that others outside of CMU might benefit from using our approach. Hence
this book, which we developed from the ICS lecture notes, and which we have
now revised to reflect changes in technology and how computer systems are im-
plemented.

For Instructors: Courses Based on the Book

Instructors can use the CS:APP book to teach five different kinds of systems
courses (Figure 2). The particular course depends on curriculum requirements,
personal taste, and the backgrounds and abilities of the students. From left to
right in the figure, the courses are characterized by an increasing emphasis on the
programmer’s perspective of a system. Here is a brief description:

. ORG: A computer organization course with traditional topics covered in an
untraditional style. Traditional topics such as logic design, processor architec-
ture, assembly language, and memory systems are covered. However, there is
more emphasis on the impact for the programmer. For example, data repre-
sentations are related back to the data types and operations of C programs,
and the presentation on assembly code is based on machine code generated
by a C compiler rather than hand-written assembly code.

. ORG+: The ORG course with additional emphasis on the impact of hardware
on the performance of application programs. Compared to ORG, students
learn more about code optimization and about improving the memory per-
formance of their C programs.

. ICS: The baseline ICS course, designed to produce enlightened programmers
who understand the impact of the hardware, operating system, and compila-
tion system on the performance and correctness of their application programs.
A significant difference from ORG+ is that low-level processor architecture is
not covered. Instead, programmers work with a higher-level model of a mod-
ern out-of-order processor. The ICS course fits nicely into a 10-week quarter,
and can also be stretched to a 15-week semester if covered at a more leisurely
pace.

xxviii Preface

Course

Chapter Topic ORG ORG+ ICS ICS+ SP

1 Tour of systems • • • • •
2 Data representation • • • • � (d)

3 Machine language • • • • •
4 Processor architecture • •
5 Code optimization • • •
6 Memory hierarchy � (a) • • • � (a)

7 Linking � (c) � (c) •
8 Exceptional control flow • • •
9 Virtual memory � (b) • • • •

10 System-level I/O • •
11 Network programming • •
12 Concurrent programming • •

Figure 2 Five systems courses based on the CS:APP book. Notes: (a) Hardware only,
(b) No dynamic storage allocation, (c) No dynamic linking, (d) No floating point. ICS+
is the 15-213 course from Carnegie Mellon.

. ICS+: The baseline ICS course with additional coverage of systems program-
ming topics such as system-level I/O, network programming, and concurrent
programming. This is the semester-long Carnegie Mellon course, which covers
every chapter in CS:APP except low-level processor architecture.

. SP: A systems programming course. Similar to the ICS+ course, but drops
floating point and performance optimization, and places more emphasis on
systems programming, including process control, dynamic linking, system-
level I/O, network programming, and concurrent programming. Instructors
might want to supplement from other sources for advanced topics such as
daemons, terminal control, and Unix IPC.

The main message of Figure 2 is that the CS:APP book gives a lot of options
to students and instructors. If you want your students to be exposed to lower-
level processor architecture, then that option is available via the ORG and ORG+
courses. On the other hand, if you want to switch from your current computer
organization course to an ICS or ICS+ course, but are wary are making such
a drastic change all at once, then you can move toward ICS incrementally. You
can start with ORG, which teaches the traditional topics in a nontraditional way.
Once you are comfortable with that material, then you can move to ORG+, and
eventually to ICS. If students have no experience in C (for example they have
only programmed in Java), you could spend several weeks on C and then cover
the material of ORG or ICS.

Preface xxix

Finally, we note that the ORG+ and SP courses would make a nice two-term
(either quarters or semesters) sequence. Or you might consider offering ICS+ as
one term of ICS and one term of SP.

Classroom-Tested Laboratory Exercises

The ICS+ course at Carnegie Mellon receives very high evaluations from students.
Median scores of 5.0/5.0 and means of 4.6/5.0 are typical for the student course
evaluations. Students cite the fun, exciting, and relevant laboratory exercises as
the primary reason. The labs are available from the CS:APP Web page. Here are
examples of the labs that are provided with the book:

. Data Lab. This lab requires students to implement simple logical and arith-
metic functions, but using a highly restricted subset of C. For example, they
must compute the absolute value of a number using only bit-level operations.
This lab helps students understand the bit-level representations of C data
types and the bit-level behavior of the operations on data.

. Binary Bomb Lab. A binary bomb is a program provided to students as an
object-code file. When run, it prompts the user to type in six different strings.
If any of these is incorrect, the bomb “explodes,” printing an error message
and logging the event on a grading server. Students must “defuse” their
own unique bombs by disassembling and reverse engineering the programs
to determine what the six strings should be. The lab teaches students to
understand assembly language, and also forces them to learn how to use a
debugger.

. Buffer Overflow Lab. Students are required to modify the run-time behavior
of a binary executable by exploiting a buffer overflow vulnerability. This lab
teaches the students about the stack discipline, and teaches them about the
danger of writing code that is vulnerable to buffer overflow attacks.

. Architecture Lab. Several of the homework problems of Chapter 4 can be
combined into a lab assignment, where students modify the HCL description
of a processor to add new instructions, change the branch prediction policy,
or add or remove bypassing paths and register ports. The resulting processors
can be simulated and run through automated tests that will detect most of the
possible bugs. This lab lets students experience the exciting parts of processor
design without requiring a complete background in logic design and hardware
description languages.

. Performance Lab. Students must optimize the performance of an application
kernel function such as convolution or matrix transposition. This lab provides
a very clear demonstration of the properties of cache memories, and gives
students experience with low-level program optimization.

. Shell Lab.Students implement their own Unix shell program with job control,
including the ctrl-c and ctrl-zkeystrokes, fg, bg, and jobs commands. This
is the student’s first introduction to concurrency, and gives them a clear idea
of Unix process control, signals, and signal handling.

xxx Preface

. Malloc Lab. Students implement their own versions of malloc, free, and
(optionally) realloc. This lab gives students a clear understanding of data
layout and organization, and requires them to evaluate different trade-offs
between space and time efficiency.

. Proxy Lab. Students implement a concurrent Web proxy that sits between
their browsers and the rest of the World Wide Web. This lab exposes the
students to such topics as Web clients and servers, and ties together many of
the concepts from the course, such as byte ordering, file I/O, process control,
signals, signal handling, memory mapping, sockets, and concurrency. Students
like being able to see their programs in action with real Web browsers and Web
servers.

The CS:APP Instructor’s Manual has a detailed discussion of the labs, as well
as directions for downloading the support software.

Acknowledgments for the Second Edition

We are deeply grateful to the many people who have helped us produce this second
edition of the CS:APP text.

First and foremost, we would to recognize our colleagues who have taught the
ICS course at Carnegie Mellon for their insightful feedback and encouragement:
Guy Blelloch, Roger Dannenberg, David Eckhardt, Greg Ganger, Seth Goldstein,
Greg Kesden, Bruce Maggs, Todd Mowry, Andreas Nowatzyk, Frank Pfenning,
and Markus Pueschel.

Thanks also to our sharp-eyed readers who contributed reports to the errata
page for the first edition: Daniel Amelang, Rui Baptista, Quarup Barreirinhas,
Michael Bombyk, Jörg Brauer, Jordan Brough, Yixin Cao, James Caroll, Rui Car-
valho, Hyoung-Kee Choi, Al Davis, Grant Davis, Christian Dufour, Mao Fan,
Tim Freeman, Inge Frick, Max Gebhardt, Jeff Goldblat, Thomas Gross, Anita
Gupta, John Hampton, Hiep Hong, Greg Israelsen, Ronald Jones, Haudy Kazemi,
Brian Kell, Constantine Kousoulis, Sacha Krakowiak, Arun Krishnaswamy, Mar-
tin Kulas, Michael Li, Zeyang Li, Ricky Liu, Mario Lo Conte, Dirk Maas, Devon
Macey, Carl Marcinik, Will Marrero, Simone Martins, Tao Men, Mark Morris-
sey, Venkata Naidu, Bhas Nalabothula, Thomas Niemann, Eric Peskin, David Po,
Anne Rogers, John Ross, Michael Scott, Seiki, Ray Shih, Darren Shultz, Erik
Silkensen, Suryanto, Emil Tarazi, Nawanan Theera-Ampornpunt, Joe Trdinich,
Michael Trigoboff, James Troup, Martin Vopatek, Alan West, Betsy Wolff, Tim
Wong, James Woodruff, Scott Wright, Jackie Xiao, Guanpeng Xu, Qing Xu, Caren
Yang, Yin Yongsheng, Wang Yuanxuan, Steven Zhang, and Day Zhong. Special
thanks to Inge Frick, who identified a subtle deep copy bug in our lock-and-copy
example, and to Ricky Liu, for his amazing proofreading skills.

Our Intel Labs colleagues Andrew Chien and Limor Fix were exceptionally
supportive throughout the writing of the text. Steve Schlosser graciously provided
some disk drive characterizations. Casey Helfrich and Michael Ryan installed
and maintained our new Core i7 box. Michael Kozuch, Babu Pillai, and Jason
Campbell provided valuable insight on memory system performance, multi-core

Preface xxxi

systems, and the power wall. Phil Gibbons and Shimin Chen shared their consid-
erable expertise on solid-state disk designs.

We have been able to call on the talents of many, including Wen-Mei Hwu,
Markus Pueschel, and Jiri Simsa, to provide both detailed comments and high-
level advice. James Hoe helped us create a Verilog version of the Y86 processor
and did all of the work needed to synthesize working hardware.

Many thanks to our colleagues who provided reviews of the draft manu-
script: James Archibald (Brigham Young University), Richard Carver (George
Mason University), Mirela Damian (Villanova University), Peter Dinda (North-
western University), John Fiore (Temple University), Jason Fritts (St. Louis Uni-
versity), John Greiner (Rice University), Brian Harvey (University of California,
Berkeley), Don Heller (Penn State University), Wei Chung Hsu (University of
Minnesota), Michelle Hugue (University of Maryland), Jeremy Johnson (Drexel
University), Geoff Kuenning (Harvey Mudd College), Ricky Liu, Sam Mad-
den (MIT), Fred Martin (University of Massachusetts, Lowell), Abraham Matta
(Boston University), Markus Pueschel (Carnegie Mellon University), Norman
Ramsey (Tufts University), Glenn Reinmann (UCLA), Michela Taufer (Univer-
sity of Delaware), and Craig Zilles (UIUC).

Paul Anagnostopoulos of Windfall Software did an outstanding job of type-
setting the book and leading the production team. Many thanks to Paul and his
superb team: Rick Camp (copyeditor), Joe Snowden (compositor), MaryEllen N.
Oliver (proofreader), Laurel Muller (artist), and Ted Laux (indexer).

Finally, we would like to thank our friends at Prentice Hall. Marcia Horton has
always been there for us. Our editor Matt Goldstein provided stellar leadership
from beginning to end. We are profoundly grateful for their help, encouragement,
and insights.

Acknowledgments from the First Edition

We are deeply indebted to many friends and colleagues for their thoughtful crit-
icisms and encouragement. A special thanks to our 15-213 students, whose infec-
tious energy and enthusiasm spurred us on. Nick Carter and Vinny Furia gener-
ously provided their malloc package.

Guy Blelloch, Greg Kesden, Bruce Maggs, and Todd Mowry taught the course
over multiple semesters, gave us encouragement, and helped improve the course
material. Herb Derby provided early spiritual guidance and encouragement. Al-
lan Fisher, Garth Gibson, Thomas Gross, Satya, Peter Steenkiste, and Hui Zhang
encouraged us to develop the course from the start. A suggestion from Garth
early on got the whole ball rolling, and this was picked up and refined with the
help of a group led by Allan Fisher. Mark Stehlik and Peter Lee have been very
supportive about building this material into the undergraduate curriculum. Greg
Kesden provided helpful feedback on the impact of ICS on the OS course. Greg
Ganger and Jiri Schindler graciously provided some disk drive characterizations
and answered our questions on modern disks. Tom Stricker showed us the mem-
ory mountain. James Hoe provided useful ideas and feedback on how to present
processor architecture.

xxxii Preface

A special group of students—Khalil Amiri, Angela Demke Brown, Chris
Colohan, Jason Crawford, Peter Dinda, Julio Lopez, Bruce Lowekamp, Jeff
Pierce, Sanjay Rao, Balaji Sarpeshkar, Blake Scholl, Sanjit Seshia, Greg Stef-
fan, Tiankai Tu, Kip Walker, and Yinglian Xie—were instrumental in helping
us develop the content of the course. In particular, Chris Colohan established a
fun (and funny) tone that persists to this day, and invented the legendary “binary
bomb” that has proven to be a great tool for teaching machine code and debugging
concepts.

Chris Bauer, Alan Cox, Peter Dinda, Sandhya Dwarkadas, John Greiner,
Bruce Jacob, Barry Johnson, Don Heller, Bruce Lowekamp, Greg Morrisett,
Brian Noble, Bobbie Othmer, Bill Pugh, Michael Scott, Mark Smotherman, Greg
Steffan, and Bob Wier took time that they did not have to read and advise us
on early drafts of the book. A very special thanks to Al Davis (University of
Utah), Peter Dinda (Northwestern University), John Greiner (Rice University),
Wei Hsu (University of Minnesota), Bruce Lowekamp (College of William &
Mary), Bobbie Othmer (University of Minnesota), Michael Scott (University of
Rochester), and Bob Wier (Rocky Mountain College) for class testing the Beta
version. A special thanks to their students as well!

We would also like to thank our colleagues at Prentice Hall. Marcia Horton,
Eric Frank, and Harold Stone have been unflagging in their support and vision.
Harold also helped us present an accurate historical perspective on RISC and
CISC processor architectures. Jerry Ralya provided sharp insights and taught us
a lot about good writing.

Finally, we would like to acknowledge the great technical writers Brian
Kernighan and the late W. Richard Stevens, for showing us that technical books
can be beautiful.

Thank you all.

Randy Bryant
Dave O’Hallaron
Pittsburgh, Pennsylvania

About the Authors

Randal E. Bryant received his Bachelor’s degree from
the University of Michigan in 1973 and then attended
graduate school at the Massachusetts Institute of
Technology, receiving a Ph.D. degree in computer sci-
ence in 1981. He spent three years as an Assistant
Professor at the California Institute of Technology,
and has been on the faculty at Carnegie Mellon since
1984. He is currently a University Professor of Com-
puter Science and Dean of the School of Computer
Science. He also holds a courtesy appointment with

the Department of Electrical and Computer Engineering.
He has taught courses in computer systems at both the undergraduate and

graduate level for over 30 years. Over many years of teaching computer archi-
tecture courses, he began shifting the focus from how computers are designed to
one of how programmers can write more efficient and reliable programs if they
understand the system better. Together with Professor O’Hallaron, he developed
the course 15-213 “Introduction to Computer Systems” at Carnegie Mellon that
is the basis for this book. He has also taught courses in algorithms, programming,
computer networking, and VLSI design.

Most of Professor Bryant’s research concerns the design of software tools
to help software and hardware designers verify the correctness of their systems.
These include several types of simulators, as well as formal verification tools that
prove the correctness of a design using mathematical methods. He has published
over 150 technical papers. His research results are used by major computer manu-
facturers, including Intel, FreeScale, IBM, and Fujitsu. He has won several major
awards for his research. These include two inventor recognition awards and a
technical achievement award from the Semiconductor Research Corporation, the
Kanellakis Theory and Practice Award from the Association for Computer Ma-
chinery (ACM), and the W. R. G. Baker Award, the Emmanuel Piore Award, and
the Phil Kaufman Award from the Institute of Electrical and Electronics Engi-
neers (IEEE). He is a Fellow of both the ACM and the IEEE and a member of
the U.S. National Academy of Engineering.

xxxiii

xxxiv About the Authors

David R. O’Hallaron is the Director of Intel Labs
Pittsburgh and an Associate Professor in Computer
Science and Electrical and Computer Engineering at
Carnegie Mellon University. He received his Ph.D.
from the University of Virginia.

He has taught computer systems courses at the
undergraduate and graduate levels on such topics as
computer architecture, introductory computer sys-
tems, parallel processor design, and Internet services.
Together with Professor Bryant, he developed the
course at Carnegie Mellon that led to this book. In

2004, he was awarded the Herbert Simon Award for Teaching Excellence by the
CMU School of Computer Science, an award for which the winner is chosen based
on a poll of the students.

Professor O’Hallaron works in the area of computer systems, with specific
interests in software systems for scientific computing, data-intensive computing,
and virtualization. The best known example of his work is the Quake project, a
group of computer scientists, civil engineers, and seismologists who have devel-
oped the ability to predict the motion of the ground during strong earthquakes. In
2003, Professor O’Hallaron and the other members of the Quake team won the
Gordon Bell Prize, the top international prize in high-performance computing.

C H A P T E R 1
A Tour of Computer Systems

1.1 Information Is Bits + Context 3

1.2 Programs Are Translated by Other Programs into Different Forms 4

1.3 It Pays to Understand How Compilation Systems Work 6

1.4 Processors Read and Interpret Instructions Stored in Memory 7

1.5 Caches Matter 12

1.6 Storage Devices Form a Hierarchy 13

1.7 The Operating System Manages the Hardware 14

1.8 Systems Communicate with Other Systems Using Networks 20

1.9 Important Themes 21

1.10 Summary 25

Bibliographic Notes 26

1

2 Chapter 1 A Tour of Computer Systems

A computer system consists of hardware and systems software that work together
to run application programs. Specific implementations of systems change over
time, but the underlying concepts do not. All computer systems have similar
hardware and software components that perform similar functions. This book is
written for programmers who want to get better at their craft by understanding
how these components work and how they affect the correctness and performance
of their programs.

You are poised for an exciting journey. If you dedicate yourself to learning the
concepts in this book, then you will be on your way to becoming a rare “power pro-
grammer,” enlightened by an understanding of the underlying computer system
and its impact on your application programs.

You are going to learn practical skills such as how to avoid strange numerical
errors caused by the way that computers represent numbers. You will learn how
to optimize your C code by using clever tricks that exploit the designs of modern
processors and memory systems. You will learn how the compiler implements
procedure calls and how to use this knowledge to avoid the security holes from
buffer overflow vulnerabilities that plague network and Internet software. You will
learn how to recognize and avoid the nasty errors during linking that confound
the average programmer. You will learn how to write your own Unix shell, your
own dynamic storage allocation package, and even your own Web server. You will
learn the promises and pitfalls of concurrency, a topic of increasing importance as
multiple processor cores are integrated onto single chips.

In their classic text on the C programming language [58], Kernighan and
Ritchie introduce readers to C using the hello program shown in Figure 1.1.
Although hello is a very simple program, every major part of the system must
work in concert in order for it to run to completion. In a sense, the goal of this
book is to help you understand what happens and why, when you run hello on
your system.

We begin our study of systems by tracing the lifetime of the hello program,
from the time it is created by a programmer, until it runs on a system, prints its
simple message, and terminates. As we follow the lifetime of the program, we will
briefly introduce the key concepts, terminology, and components that come into
play. Later chapters will expand on these ideas.

code/intro/hello.c

1 #include <stdio.h>

2

3 int main()

4 {

5 printf("hello, world\n");

6 }

code/intro/hello.c

Figure 1.1 The hello program.

Section 1.1 Information Is Bits + Context 3

1.1 Information Is Bits + Context

Our hello program begins life as a source program (or source file) that the
programmer creates with an editor and saves in a text file called hello.c. The
source program is a sequence of bits, each with a value of 0 or 1, organized
in 8-bit chunks called bytes. Each byte represents some text character in the
program.

Most modern systems represent text characters using the ASCII standard that
represents each character with a unique byte-sized integer value. For example,
Figure 1.2 shows the ASCII representation of the hello.c program.

The hello.c program is stored in a file as a sequence of bytes. Each byte has
an integer value that corresponds to some character. For example, the first byte
has the integer value 35, which corresponds to the character ‘#’. The second byte
has the integer value 105, which corresponds to the character ‘i’, and so on. Notice
that each text line is terminated by the invisible newline character ‘\n’, which is
represented by the integer value 10. Files such as hello.c that consist exclusively
of ASCII characters are known as text files. All other files are known as binary
files.

The representation of hello.c illustrates a fundamental idea: All information
in a system—including disk files, programs stored in memory, user data stored in
memory, and data transferred across a network—is represented as a bunch of bits.
The only thing that distinguishes different data objects is the context in which
we view them. For example, in different contexts, the same sequence of bytes
might represent an integer, floating-point number, character string, or machine
instruction.

As programmers, we need to understand machine representations of numbers
because they are not the same as integers and real numbers. They are finite
approximations that can behave in unexpected ways. This fundamental idea is
explored in detail in Chapter 2.

i n c l u d e <sp> < s t d i o .

35 105 110 99 108 117 100 101 32 60 115 116 100 105 111 46

h > \n \n i n t <sp> m a i n () \n {

104 62 10 10 105 110 116 32 109 97 105 110 40 41 10 123

\n <sp> <sp> <sp> <sp> p r i n t f (" h e l

10 32 32 32 32 112 114 105 110 116 102 40 34 104 101 108

l o , <sp> w o r l d \ n ") ; \n }

108 111 44 32 119 111 114 108 100 92 110 34 41 59 10 125

Figure 1.2 The ASCII text representation of hello.c.

4 Chapter 1 A Tour of Computer Systems

Aside Origins of the C programming language

C was developed from 1969 to 1973 by Dennis Ritchie of Bell Laboratories. The American National
Standards Institute (ANSI) ratified the ANSI C standard in 1989, and this standardization later became
the responsibility of the International Standards Organization (ISO). The standards define the C
language and a set of library functions known as the C standard library. Kernighan and Ritchie describe
ANSI C in their classic book, which is known affectionately as “K&R” [58]. In Ritchie’s words [88], C
is “quirky, flawed, and an enormous success.” So why the success?

. C was closely tied with the Unix operating system. C was developed from the beginning as the
system programming language for Unix. Most of the Unix kernel, and all of its supporting tools
and libraries, were written in C. As Unix became popular in universities in the late 1970s and early
1980s, many people were exposed to C and found that they liked it. Since Unix was written almost
entirely in C, it could be easily ported to new machines, which created an even wider audience for
both C and Unix.

. C is a small, simple language.The design was controlled by a single person, rather than a committee,
and the result was a clean, consistent design with little baggage. The K&R book describes the
complete language and standard library, with numerous examples and exercises, in only 261 pages.
The simplicity of C made it relatively easy to learn and to port to different computers.

. C was designed for a practical purpose. C was designed to implement the Unix operating system.
Later, other people found that they could write the programs they wanted, without the language
getting in the way.

C is the language of choice for system-level programming, and there is a huge installed base of
application-level programs as well. However, it is not perfect for all programmers and all situations.
C pointers are a common source of confusion and programming errors. C also lacks explicit support
for useful abstractions such as classes, objects, and exceptions. Newer languages such as C++ and Java
address these issues for application-level programs.

1.2 Programs Are Translated by Other Programs into
Different Forms

The hello program begins life as a high-level C program because it can be read
and understood by human beings in that form. However, in order to run hello.c
on the system, the individual C statements must be translated by other programs
into a sequence of low-level machine-language instructions. These instructions are
then packaged in a form called an executable object program and stored as a binary
disk file. Object programs are also referred to as executable object files.

On a Unix system, the translation from source file to object file is performed
by a compiler driver:

unix> gcc -o hello hello.c

Section 1.2 Programs Are Translated by Other Programs into Different Forms 5

Pre-
processor
(cpp)

Compiler
(cc1)

Assembler
(as)

Linker
(ld)

hello.c hello.i hello.s hello.o

printf.o

hello

Source
program

(text)

Modified
source

program
(text)

Assembly
program

(text)

Relocatable
object

programs
(binary)

Executable
object

program
(binary)

Figure 1.3 The compilation system.

Here, the gcc compiler driver reads the source file hello.c and translates it into
an executable object file hello. The translation is performed in the sequence
of four phases shown in Figure 1.3. The programs that perform the four phases
(preprocessor, compiler, assembler, and linker) are known collectively as the
compilation system.

. Preprocessing phase.The preprocessor (cpp) modifies the original C program
according to directives that begin with the # character. For example, the
#include <stdio.h> command in line 1 of hello.c tells the preprocessor
to read the contents of the system header file stdio.h and insert it directly
into the program text. The result is another C program, typically with the .i
suffix.

. Compilation phase. The compiler (cc1) translates the text file hello.i into
the text file hello.s, which contains an assembly-language program. Each
statement in an assembly-language program exactly describes one low-level
machine-language instruction in a standard text form. Assembly language is
useful because it provides a common output language for different compilers
for different high-level languages. For example, C compilers and Fortran
compilers both generate output files in the same assembly language.

. Assembly phase. Next, the assembler (as) translates hello.s into machine-
language instructions, packages them in a form known as a relocatable object
program, and stores the result in the object file hello.o. The hello.o file is
a binary file whose bytes encode machine language instructions rather than
characters. If we were to view hello.o with a text editor, it would appear to
be gibberish.

. Linking phase.Notice that ourhelloprogram calls theprintf function, which
is part of the standard C library provided by every C compiler. The printf
function resides in a separate precompiled object file called printf.o, which
must somehow be merged with our hello.o program. The linker (ld) handles
this merging. The result is the hello file, which is an executable object file (or
simply executable) that is ready to be loaded into memory and executed by
the system.

6 Chapter 1 A Tour of Computer Systems

Aside The GNU project

GCC is one of many useful tools developed by the GNU (short for GNU’s Not Unix) project. The
GNU project is a tax-exempt charity started by Richard Stallman in 1984, with the ambitious goal of
developing a complete Unix-like system whose source code is unencumbered by restrictions on how
it can be modified or distributed. The GNU project has developed an environment with all the major
components of a Unix operating system, except for the kernel, which was developed separately by
the Linux project. The GNU environment includes the emacs editor, gcc compiler, gdb debugger,
assembler, linker, utilities for manipulating binaries, and other components. The gcc compiler has
grown to support many different languages, with the ability to generate code for many different
machines. Supported languages include C, C++, Fortran, Java, Pascal, Objective-C, and Ada.

The GNU project is a remarkable achievement, and yet it is often overlooked. The modern open-
source movement (commonly associated with Linux) owes its intellectual origins to the GNU project’s
notion of free software (“free” as in “free speech,” not “free beer”). Further, Linux owes much of its
popularity to the GNU tools, which provide the environment for the Linux kernel.

1.3 It Pays to Understand How Compilation Systems Work

For simple programs such as hello.c, we can rely on the compilation system to
produce correct and efficient machine code. However, there are some important
reasons why programmers need to understand how compilation systems work:

. Optimizing program performance. Modern compilers are sophisticated tools
that usually produce good code. As programmers, we do not need to know
the inner workings of the compiler in order to write efficient code. However,
in order to make good coding decisions in our C programs, we do need a
basic understanding of machine-level code and how the compiler translates
different C statements into machine code. For example, is a switch statement
always more efficient than a sequence of if-else statements? How much
overhead is incurred by a function call? Is a while loop more efficient than
a for loop? Are pointer references more efficient than array indexes? Why
does our loop run so much faster if we sum into a local variable instead of an
argument that is passed by reference? How can a function run faster when we
simply rearrange the parentheses in an arithmetic expression?

In Chapter 3, we will introduce two related machine languages: IA32, the
32-bit code that has become ubiquitous on machines running Linux, Windows,
and more recently the Macintosh operating systems, and x86-64, a 64-bit
extension found in more recent microprocessors. We describe how compilers
translate different C constructs into these languages. In Chapter 5, you will
learn how to tune the performance of your C programs by making simple
transformations to the C code that help the compiler do its job better. In
Chapter 6, you will learn about the hierarchical nature of the memory system,
how C compilers store data arrays in memory, and how your C programs can
exploit this knowledge to run more efficiently.

Section 1.4 Processors Read and Interpret Instructions Stored in Memory 7

. Understanding link-time errors. In our experience, some of the most perplex-
ing programming errors are related to the operation of the linker, especially
when you are trying to build large software systems. For example, what does
it mean when the linker reports that it cannot resolve a reference? What is the
difference between a static variable and a global variable? What happens if
you define two global variables in different C files with the same name? What
is the difference between a static library and a dynamic library? Why does it
matter what order we list libraries on the command line? And scariest of all,
why do some linker-related errors not appear until run time? You will learn
the answers to these kinds of questions in Chapter 7.

. Avoiding security holes. For many years, buffer overflow vulnerabilities have
accounted for the majority of security holes in network and Internet servers.
These vulnerabilities exist because too few programmers understand the need
to carefully restrict the quantity and forms of data they accept from untrusted
sources. A first step in learning secure programming is to understand the con-
sequences of the way data and control information are stored on the program
stack. We cover the stack discipline and buffer overflow vulnerabilities in
Chapter 3 as part of our study of assembly language. We will also learn about
methods that can be used by the programmer, compiler, and operating system
to reduce the threat of attack.

1.4 Processors Read and Interpret Instructions
Stored in Memory

At this point, our hello.c source program has been translated by the compilation
system into an executable object file called hello that is stored on disk. To run
the executable file on a Unix system, we type its name to an application program
known as a shell:

unix> ./hello

hello, world

unix>

The shell is a command-line interpreter that prints a prompt, waits for you to type a
command line, and then performs the command. If the first word of the command
line does not correspond to a built-in shell command, then the shell assumes that
it is the name of an executable file that it should load and run. So in this case,
the shell loads and runs the hello program and then waits for it to terminate. The
hello program prints its message to the screen and then terminates. The shell then
prints a prompt and waits for the next input command line.

1.4.1 Hardware Organization of a System

To understand what happens to our hello program when we run it, we need
to understand the hardware organization of a typical system, which is shown in
Figure 1.4. This particular picture is modeled after the family of Intel Pentium

8 Chapter 1 A Tour of Computer Systems

Figure 1.4
Hardware organization
of a typical system. CPU:
Central Processing Unit,
ALU: Arithmetic/Logic
Unit, PC: Program counter,
USB: Universal Serial Bus.

CPU

Register file

PC ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk
hello executable

stored on disk

systems, but all systems have a similar look and feel. Don’t worry about the
complexity of this figure just now. We will get to its various details in stages
throughout the course of the book.

Buses

Running throughout the system is a collection of electrical conduits called buses
that carry bytes of information back and forth between the components. Buses
are typically designed to transfer fixed-sized chunks of bytes known as words. The
number of bytes in a word (the word size) is a fundamental system parameter that
varies across systems. Most machines today have word sizes of either 4 bytes (32
bits) or 8 bytes (64 bits). For the sake of our discussion here, we will assume a word
size of 4 bytes, and we will assume that buses transfer only one word at a time.

I/O Devices

Input/output (I/O) devices are the system’s connection to the external world. Our
example system has four I/O devices: a keyboard and mouse for user input, a
display for user output, and a disk drive (or simply disk) for long-term storage of
data and programs. Initially, the executable hello program resides on the disk.

Each I/O device is connected to the I/O bus by either a controller or an adapter.
The distinction between the two is mainly one of packaging. Controllers are chip
sets in the device itself or on the system’s main printed circuit board (often called
the motherboard). An adapter is a card that plugs into a slot on the motherboard.
Regardless, the purpose of each is to transfer information back and forth between
the I/O bus and an I/O device.

Section 1.4 Processors Read and Interpret Instructions Stored in Memory 9

Chapter 6 has more to say about how I/O devices such as disks work. In
Chapter 10, you will learn how to use the Unix I/O interface to access devices from
your application programs. We focus on the especially interesting class of devices
known as networks, but the techniques generalize to other kinds of devices as well.

Main Memory

The main memory is a temporary storage device that holds both a program and
the data it manipulates while the processor is executing the program. Physically,
main memory consists of a collection of dynamic random access memory (DRAM)
chips. Logically, memory is organized as a linear array of bytes, each with its own
unique address (array index) starting at zero. In general, each of the machine
instructions that constitute a program can consist of a variable number of bytes.
The sizes of data items that correspond to C program variables vary according to
type. For example, on an IA32 machine running Linux, data of type short requires
two bytes, types int, float, and long four bytes, and type double eight bytes.

Chapter 6 has more to say about how memory technologies such as DRAM
chips work, and how they are combined to form main memory.

Processor

The central processing unit (CPU), or simply processor, is the engine that inter-
prets (or executes) instructions stored in main memory. At its core is a word-sized
storage device (or register) called the program counter (PC). At any point in time,
the PC points at (contains the address of) some machine-language instruction in
main memory.1

From the time that power is applied to the system, until the time that the
power is shut off, a processor repeatedly executes the instruction pointed at by the
program counter and updates the program counter to point to the next instruction.
A processor appears to operate according to a very simple instruction execution
model, defined by its instruction set architecture. In this model, instructions execute
in strict sequence, and executing a single instruction involves performing a series
of steps. The processor reads the instruction from memory pointed at by the
program counter (PC), interprets the bits in the instruction, performs some simple
operation dictated by the instruction, and then updates the PC to point to the next
instruction, which may or may not be contiguous in memory to the instruction that
was just executed.

There are only a few of these simple operations, and they revolve around
main memory, the register file, and the arithmetic/logic unit (ALU). The register
file is a small storage device that consists of a collection of word-sized registers,
each with its own unique name. The ALU computes new data and address values.
Here are some examples of the simple operations that the CPU might carry out
at the request of an instruction:

1. PC is also a commonly used acronym for “personal computer.” However, the distinction between
the two should be clear from the context.

10 Chapter 1 A Tour of Computer Systems

. Load: Copy a byte or a word from main memory into a register, overwriting
the previous contents of the register.

. Store: Copy a byte or a word from a register to a location in main memory,
overwriting the previous contents of that location.

. Operate: Copy the contents of two registers to the ALU, perform an arithmetic
operation on the two words, and store the result in a register, overwriting the
previous contents of that register.

. Jump: Extract a word from the instruction itself and copy that word into the
program counter (PC), overwriting the previous value of the PC.

We say that a processor appears to be a simple implementation of its in-
struction set architecture, but in fact modern processors use far more complex
mechanisms to speed up program execution. Thus, we can distinguish the pro-
cessor’s instruction set architecture, describing the effect of each machine-code
instruction, from its microarchitecture, describing how the processor is actually
implemented. When we study machine code in Chapter 3, we will consider the
abstraction provided by the machine’s instruction set architecture. Chapter 4 has
more to say about how processors are actually implemented.

1.4.2 Running the hello Program

Given this simple view of a system’s hardware organization and operation, we can
begin to understand what happens when we run our example program. We must
omit a lot of details here that will be filled in later, but for now we will be content
with the big picture.

Initially, the shell program is executing its instructions, waiting for us to type
a command. As we type the characters “./hello” at the keyboard, the shell
program reads each one into a register, and then stores it in memory, as shown in
Figure 1.5.

When we hit the enter key on the keyboard, the shell knows that we have
finished typing the command. The shell then loads the executable hello file by
executing a sequence of instructions that copies the code and data in the hello
object file from disk to main memory. The data include the string of characters
“hello, world\n” that will eventually be printed out.

Using a technique known as direct memory access (DMA, discussed in Chap-
ter 6), the data travels directly from disk to main memory, without passing through
the processor. This step is shown in Figure 1.6.

Once the code and data in the hello object file are loaded into memory, the
processor begins executing the machine-language instructions in the hello pro-
gram’s main routine. These instructions copy the bytes in the “hello, world\n”
string from memory to the register file, and from there to the display device, where
they are displayed on the screen. This step is shown in Figure 1.7.

Section 1.4 Processors Read and Interpret Instructions Stored in Memory 11

Figure 1.5
Reading the hello
command from the
keyboard.

CPU

Register file

PC ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk

“hello”

User
types
“hello”

Disk

CPU

Register file

PC ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

“hello, world\n”

hello code

hello executable
stored on disk

Figure 1.6 Loading the executable from disk into main memory.

12 Chapter 1 A Tour of Computer Systems

Figure 1.7
Writing the output string
from memory to the
display.

CPU

Register file

PC ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk“hello, world\n”

“hello, world\n”

hello code

hello executable
stored on disk

1.5 Caches Matter

An important lesson from this simple example is that a system spends a lot of
time moving information from one place to another. The machine instructions in
the hello program are originally stored on disk. When the program is loaded,
they are copied to main memory. As the processor runs the program, instruc-
tions are copied from main memory into the processor. Similarly, the data string
“hello,world\n”, originally on disk, is copied to main memory, and then copied
from main memory to the display device. From a programmer’s perspective, much
of this copying is overhead that slows down the “real work” of the program. Thus,
a major goal for system designers is to make these copy operations run as fast as
possible.

Because of physical laws, larger storage devices are slower than smaller stor-
age devices. And faster devices are more expensive to build than their slower
counterparts. For example, the disk drive on a typical system might be 1000 times
larger than the main memory, but it might take the processor 10,000,000 times
longer to read a word from disk than from memory.

Similarly, a typical register file stores only a few hundred bytes of information,
as opposed to billions of bytes in the main memory. However, the processor can
read data from the register file almost 100 times faster than from memory. Even
more troublesome, as semiconductor technology progresses over the years, this
processor-memory gap continues to increase. It is easier and cheaper to make
processors run faster than it is to make main memory run faster.

To deal with the processor-memory gap, system designers include smaller
faster storage devices called cache memories (or simply caches) that serve as
temporary staging areas for information that the processor is likely to need in
the near future. Figure 1.8 shows the cache memories in a typical system. An L1

Section 1.6 Storage Devices Form a Hierarchy 13

Figure 1.8
Cache memories.

I/O
bridge

CPU chip

Cache
memories

Register file

System bus Memory bus

Bus interface
Main

memory

ALU

cache on the processor chip holds tens of thousands of bytes and can be accessed
nearly as fast as the register file. A larger L2 cache with hundreds of thousands
to millions of bytes is connected to the processor by a special bus. It might take 5
times longer for the process to access the L2 cache than the L1 cache, but this is
still 5 to 10 times faster than accessing the main memory. The L1 and L2 caches are
implemented with a hardware technology known as static random access memory
(SRAM). Newer and more powerful systems even have three levels of cache: L1,
L2, and L3. The idea behind caching is that a system can get the effect of both
a very large memory and a very fast one by exploiting locality, the tendency for
programs to access data and code in localized regions. By setting up caches to hold
data that is likely to be accessed often, we can perform most memory operations
using the fast caches.

One of the most important lessons in this book is that application program-
mers who are aware of cache memories can exploit them to improve the perfor-
mance of their programs by an order of magnitude. You will learn more about
these important devices and how to exploit them in Chapter 6.

1.6 Storage Devices Form a Hierarchy

This notion of inserting a smaller, faster storage device (e.g., cache memory)
between the processor and a larger slower device (e.g., main memory) turns out
to be a general idea. In fact, the storage devices in every computer system are
organized as a memory hierarchy similar to Figure 1.9. As we move from the top
of the hierarchy to the bottom, the devices become slower, larger, and less costly
per byte. The register file occupies the top level in the hierarchy, which is known
as level 0, or L0. We show three levels of caching L1 to L3, occupying memory
hierarchy levels 1 to 3. Main memory occupies level 4, and so on.

The main idea of a memory hierarchy is that storage at one level serves as a
cache for storage at the next lower level. Thus, the register file is a cache for the
L1 cache. Caches L1 and L2 are caches for L2 and L3, respectively. The L3 cache
is a cache for the main memory, which is a cache for the disk. On some networked
systems with distributed file systems, the local disk serves as a cache for data stored
on the disks of other systems.

14 Chapter 1 A Tour of Computer Systems

CPU registers hold words
retrieved from cache memory.

L1 cache holds cache lines
retrieved from L2 cache.

L2 cache holds cache lines
retrieved from L3 cache.

Main memory holds disk blocks
retrieved from local disks.

Local disks hold files
retrieved from disks on
remote network server.

Regs

L3 cache
(SRAM)

L2 cache
(SRAM)

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Remote secondary storage
(distributed file systems, Web servers)

Smaller,
faster,
and

costlier
(per byte)
storage
devices

Larger,
slower,

and
cheaper

(per byte)
storage
devices

L0:

L1:

L2:

L3:

L4:

L5:

L6:

L3 cache holds cache lines
retrieved from memory.

Figure 1.9 An example of a memory hierarchy.

Just as programmers can exploit knowledge of the different caches to improve
performance, programmers can exploit their understanding of the entire memory
hierarchy. Chapter 6 will have much more to say about this.

1.7 The Operating System Manages the Hardware

Back to our hello example. When the shell loaded and ran the hello program,
and when the hello program printed its message, neither program accessed the
keyboard, display, disk, or main memory directly. Rather, they relied on the
services provided by the operating system. We can think of the operating system as
a layer of software interposed between the application program and the hardware,
as shown in Figure 1.10. All attempts by an application program to manipulate the
hardware must go through the operating system.

The operating system has two primary purposes: (1) to protect the hardware
from misuse by runaway applications, and (2) to provide applications with simple
and uniform mechanisms for manipulating complicated and often wildly different
low-level hardware devices. The operating system achieves both goals via the

Figure 1.10
Layered view of a
computer system.

Application programs

Operating system

Main memory I/O devicesProcessor

Software

Hardware

Section 1.7 The Operating System Manages the Hardware 15

Figure 1.11
Abstractions provided by
an operating system.

Main memory I/O devicesProcessor

Processes

Virtual memory

Files

fundamental abstractions shown in Figure 1.11: processes, virtual memory, and
files. As this figure suggests, files are abstractions for I/O devices, virtual memory
is an abstraction for both the main memory and disk I/O devices, and processes
are abstractions for the processor, main memory, and I/O devices. We will discuss
each in turn.

Aside Unix and Posix

The 1960s was an era of huge, complex operating systems, such as IBM’s OS/360 and Honeywell’s
Multics systems. While OS/360 was one of the most successful software projects in history, Multics
dragged on for years and never achieved wide-scale use. Bell Laboratories was an original partner in the
Multics project, but dropped out in 1969 because of concern over the complexity of the project and the
lack of progress. In reaction to their unpleasant Multics experience, a group of Bell Labs researchers—
Ken Thompson, Dennis Ritchie, Doug McIlroy, and Joe Ossanna—began work in 1969 on a simpler
operating system for a DEC PDP-7 computer, written entirely in machine language. Many of the ideas
in the new system, such as the hierarchical file system and the notion of a shell as a user-level process,
were borrowed from Multics but implemented in a smaller, simpler package. In 1970, Brian Kernighan
dubbed the new system “Unix” as a pun on the complexity of “Multics.” The kernel was rewritten in
C in 1973, and Unix was announced to the outside world in 1974 [89].

Because Bell Labs made the source code available to schools with generous terms, Unix developed
a large following at universities. The most influential work was done at the University of California
at Berkeley in the late 1970s and early 1980s, with Berkeley researchers adding virtual memory and
the Internet protocols in a series of releases called Unix 4.xBSD (Berkeley Software Distribution).
Concurrently, Bell Labs was releasing their own versions, which became known as System V Unix.
Versions from other vendors, such as the Sun Microsystems Solaris system, were derived from these
original BSD and System V versions.

Trouble arose in the mid 1980s as Unix vendors tried to differentiate themselves by adding new
and often incompatible features. To combat this trend, IEEE (Institute for Electrical and Electronics
Engineers) sponsored an effort to standardize Unix, later dubbed “Posix” by Richard Stallman. The
result was a family of standards, known as the Posix standards, that cover such issues as the C language
interface for Unix system calls, shell programs and utilities, threads, and network programming. As
more systems comply more fully with the Posix standards, the differences between Unix versions are
gradually disappearing.

16 Chapter 1 A Tour of Computer Systems

1.7.1 Processes

When a program such as hello runs on a modern system, the operating system
provides the illusion that the program is the only one running on the system. The
program appears to have exclusive use of both the processor, main memory, and
I/O devices. The processor appears to execute the instructions in the program, one
after the other, without interruption. And the code and data of the program appear
to be the only objects in the system’s memory. These illusions are provided by the
notion of a process, one of the most important and successful ideas in computer
science.

A process is the operating system’s abstraction for a running program. Multi-
ple processes can run concurrently on the same system, and each process appears
to have exclusive use of the hardware. By concurrently, we mean that the instruc-
tions of one process are interleaved with the instructions of another process. In
most systems, there are more processes to run than there are CPUs to run them.
Traditional systems could only execute one program at a time, while newer multi-
core processors can execute several programs simultaneously. In either case, a
single CPU can appear to execute multiple processes concurrently by having the
processor switch among them. The operating system performs this interleaving
with a mechanism known as context switching. To simplify the rest of this discus-
sion, we consider only a uniprocessor system containing a single CPU. We will
return to the discussion of multiprocessor systems in Section 1.9.1.

The operating system keeps track of all the state information that the process
needs in order to run. This state, which is known as the context, includes infor-
mation such as the current values of the PC, the register file, and the contents
of main memory. At any point in time, a uniprocessor system can only execute
the code for a single process. When the operating system decides to transfer con-
trol from the current process to some new process, it performs a context switch
by saving the context of the current process, restoring the context of the new
process, and then passing control to the new process. The new process picks up
exactly where it left off. Figure 1.12 shows the basic idea for our example hello
scenario.

There are two concurrent processes in our example scenario: the shell process
and the hello process. Initially, the shell process is running alone, waiting for input
on the command line. When we ask it to run the hello program, the shell carries

Figure 1.12
Process context
switching.

Process A

read

Process B

User code

Kernel code

Kernel code

User code

User code

Context
switch

Context
switch

Time

Disk interrupt
Return

from read

Section 1.7 The Operating System Manages the Hardware 17

out our request by invoking a special function known as a system call that passes
control to the operating system. The operating system saves the shell’s context,
creates a new hello process and its context, and then passes control to the new
hello process. After hello terminates, the operating system restores the context
of the shell process and passes control back to it, where it waits for the next
command line input.

Implementing the process abstraction requires close cooperation between
both the low-level hardware and the operating system software. We will explore
how this works, and how applications can create and control their own processes,
in Chapter 8.

1.7.2 Threads

Although we normally think of a process as having a single control flow, in modern
systems a process can actually consist of multiple execution units, called threads,
each running in the context of the process and sharing the same code and global
data. Threads are an increasingly important programming model because of the
requirement for concurrency in network servers, because it is easier to share data
between multiple threads than between multiple processes, and because threads
are typically more efficient than processes. Multi-threading is also one way to make
programs run faster when multiple processors are available, as we will discuss in
Section 1.9.1. You will learn the basic concepts of concurrency, including how to
write threaded programs, in Chapter 12.

1.7.3 Virtual Memory

Virtual memory is an abstraction that provides each process with the illusion that it
has exclusive use of the main memory. Each process has the same uniform view of
memory, which is known as its virtual address space. The virtual address space for
Linux processes is shown in Figure 1.13. (Other Unix systems use a similar layout.)
In Linux, the topmost region of the address space is reserved for code and data
in the operating system that is common to all processes. The lower region of the
address space holds the code and data defined by the user’s process. Note that
addresses in the figure increase from the bottom to the top.

The virtual address space seen by each process consists of a number of well-
defined areas, each with a specific purpose. You will learn more about these areas
later in the book, but it will be helpful to look briefly at each, starting with the
lowest addresses and working our way up:

. Program code and data.Code begins at the same fixed address for all processes,
followed by data locations that correspond to global C variables. The code and
data areas are initialized directly from the contents of an executable object file,
in our case the hello executable. You will learn more about this part of the
address space when we study linking and loading in Chapter 7.

18 Chapter 1 A Tour of Computer Systems

Figure 1.13
Process virtual address
space.

0x08048000 (32)
0x00400000 (64)

0

Memory
invisible to
user code

printf function

Loaded from the
hello executable file

User stack
(created at run time)

Memory mapped region for
shared libraries

Run-time heap
(created at run time by malloc)

Read/write data

Read-only code and data

Kernel virtual memory

. Heap.The code and data areas are followed immediately by the run-time heap.
Unlike the code and data areas, which are fixed in size once the process begins
running, the heap expands and contracts dynamically at run time as a result
of calls to C standard library routines such as malloc and free. We will study
heaps in detail when we learn about managing virtual memory in Chapter 9.

. Shared libraries.Near the middle of the address space is an area that holds the
code and data for shared libraries such as the C standard library and the math
library. The notion of a shared library is a powerful but somewhat difficult
concept. You will learn how they work when we study dynamic linking in
Chapter 7.

. Stack. At the top of the user’s virtual address space is the user stack that
the compiler uses to implement function calls. Like the heap, the user stack
expands and contracts dynamically during the execution of the program. In
particular, each time we call a function, the stack grows. Each time we return
from a function, it contracts. You will learn how the compiler uses the stack
in Chapter 3.

. Kernel virtual memory. The kernel is the part of the operating system that is
always resident in memory. The top region of the address space is reserved for
the kernel. Application programs are not allowed to read or write the contents
of this area or to directly call functions defined in the kernel code.

For virtual memory to work, a sophisticated interaction is required between
the hardware and the operating system software, including a hardware translation
of every address generated by the processor. The basic idea is to store the contents

Section 1.7 The Operating System Manages the Hardware 19

of a process’s virtual memory on disk, and then use the main memory as a cache
for the disk. Chapter 9 explains how this works and why it is so important to the
operation of modern systems.

1.7.4 Files

A file is a sequence of bytes, nothing more and nothing less. Every I/O device,
including disks, keyboards, displays, and even networks, is modeled as a file. All
input and output in the system is performed by reading and writing files, using a
small set of system calls known as Unix I/O.

This simple and elegant notion of a file is nonetheless very powerful because
it provides applications with a uniform view of all of the varied I/O devices that
might be contained in the system. For example, application programmers who
manipulate the contents of a disk file are blissfully unaware of the specific disk
technology. Further, the same program will run on different systems that use
different disk technologies. You will learn about Unix I/O in Chapter 10.

Aside The Linux project

In August 1991, a Finnish graduate student named Linus Torvalds modestly announced a new Unix-like
operating system kernel:

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)

Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?

Summary: small poll for my new operating system

Date: 25 Aug 91 20:57:08 GMT

Hello everybody out there using minix -

I’m doing a (free) operating system (just a hobby, won’t be big and

professional like gnu) for 386(486) AT clones. This has been brewing

since April, and is starting to get ready. I’d like any feedback on

things people like/dislike in minix, as my OS resembles it somewhat

(same physical layout of the file-system (due to practical reasons)

among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work.

This implies that I’ll get something practical within a few months, and

I’d like to know what features most people would want. Any suggestions

are welcome, but I won’t promise I’ll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

20 Chapter 1 A Tour of Computer Systems

The rest, as they say, is history. Linux has evolved into a technical and cultural phenomenon. By
combining forces with the GNU project, the Linux project has developed a complete, Posix-compliant
version of the Unix operating system, including the kernel and all of the supporting infrastructure.
Linux is available on a wide array of computers, from hand-held devices to mainframe computers. A
group at IBM has even ported Linux to a wristwatch!

1.8 Systems Communicate with Other Systems
Using Networks

Up to this point in our tour of systems, we have treated a system as an isolated
collection of hardware and software. In practice, modern systems are often linked
to other systems by networks. From the point of view of an individual system, the
network can be viewed as just another I/O device, as shown in Figure 1.14. When
the system copies a sequence of bytes from main memory to the network adapter,
the data flows across the network to another machine, instead of, say, to a local
disk drive. Similarly, the system can read data sent from other machines and copy
this data to its main memory.

With the advent of global networks such as the Internet, copying information
from one machine to another has become one of the most important uses of
computer systems. For example, applications such as email, instant messaging, the
World Wide Web, FTP, and telnet are all based on the ability to copy information
over a network.

Returning to our hello example, we could use the familiar telnet application
to run hello on a remote machine. Suppose we use a telnet client running on our

Figure 1.14
A network is another I/O
device.

CPU chip

Register file

PC ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus

Expansion slots

Disk
controller

Network
adapter

Network

Graphics
adapter

MonitorMouse Keyboard

USB
controller

Disk

Section 1.9 Important Themes 21

1.User types
“hello” at the

keyboard

5. Client prints
“hello, world\n”

string on display

2. Client sends “hello”
string to telnet server

4. Telnet server sends
“hello, world\n” string

to client

3. Server sends “hello”
string to the shell, which
runs the hello program
and passes the output

to the telnet server

Local
telnet
client

Remote
telnet
server

Figure 1.15 Using telnet to run hello remotely over a network.

local machine to connect to a telnet server on a remote machine. After we log in
to the remote machine and run a shell, the remote shell is waiting to receive an
input command. From this point, running the hello program remotely involves
the five basic steps shown in Figure 1.15.

After we type the “hello” string to the telnet client and hit the enter key,
the client sends the string to the telnet server. After the telnet server receives the
string from the network, it passes it along to the remote shell program. Next, the
remote shell runs the hello program, and passes the output line back to the telnet
server. Finally, the telnet server forwards the output string across the network to
the telnet client, which prints the output string on our local terminal.

This type of exchange between clients and servers is typical of all network
applications. In Chapter 11, you will learn how to build network applications, and
apply this knowledge to build a simple Web server.

1.9 Important Themes

This concludes our initial whirlwind tour of systems. An important idea to take
away from this discussion is that a system is more than just hardware. It is a
collection of intertwined hardware and systems software that must cooperate in
order to achieve the ultimate goal of running application programs. The rest of
this book will fill in some details about the hardware and the software, and it will
show how, by knowing these details, you can write programs that are faster, more
reliable, and more secure.

To close out this chapter, we highlight several important concepts that cut
across all aspects of computer systems. We will discuss the importance of these
concepts at multiple places within the book.

1.9.1 Concurrency and Parallelism

Throughout the history of digital computers, two demands have been constant
forces driving improvements: we want them to do more, and we want them to
run faster. Both of these factors improve when the processor does more things at
once. We use the term concurrency to refer to the general concept of a system with
multiple, simultaneous activities, and the term parallelism to refer to the use of
concurrency to make a system run faster. Parallelism can be exploited at multiple

22 Chapter 1 A Tour of Computer Systems

levels of abstraction in a computer system. We highlight three levels here, working
from the highest to the lowest level in the system hierarchy.

Thread-Level Concurrency

Building on the process abstraction, we are able to devise systems where multiple
programs execute at the same time, leading to concurrency. With threads, we
can even have multiple control flows executing within a single process. Support
for concurrent execution has been found in computer systems since the advent
of time-sharing in the early 1960s. Traditionally, this concurrent execution was
only simulated, by having a single computer rapidly switch among its executing
processes, much as a juggler keeps multiple balls flying through the air. This form
of concurrency allows multiple users to interact with a system at the same time,
such as when many people want to get pages from a single Web server. It also
allows a single user to engage in multiple tasks concurrently, such as having a
Web browser in one window, a word processor in another, and streaming music
playing at the same time. Until recently, most actual computing was done by a
single processor, even if that processor had to switch among multiple tasks. This
configuration is known as a uniprocessor system.

When we construct a system consisting of multiple processors all under the
control of a single operating system kernel, we have a multiprocessor system.
Such systems have been available for large-scale computing since the 1980s, but
they have more recently become commonplace with the advent of multi-core
processors and hyperthreading. Figure 1.16 shows a taxonomy of these different
processor types.

Multi-core processors have several CPUs (referred to as “cores”) integrated
onto a single integrated-circuit chip. Figure 1.17 illustrates the organization of an
Intel Core i7 processor, where the microprocessor chip has four CPU cores, each
with its own L1 and L2 caches but sharing the higher levels of cache as well as the
interface to main memory. Industry experts predict that they will be able to have
dozens, and ultimately hundreds, of cores on a single chip.

Hyperthreading, sometimes called simultaneous multi-threading, is a tech-
nique that allows a single CPU to execute multiple flows of control. It involves
having multiple copies of some of the CPU hardware, such as program counters
and register files, while having only single copies of other parts of the hardware,
such as the units that perform floating-point arithmetic. Whereas a conventional

Figure 1.16
Categorizing different
processor configurations.
Multiprocessors are
becoming prevalent with
the advent of multi-
core processors and
hyperthreading.

All processors

Uniprocessors

Multiprocessors

Multi-
core

Hyper-
threaded

Section 1.9 Important Themes 23

Figure 1.17
Intel Core i7 organization.
Four processor cores are
integrated onto a single
chip.

Processor package

Core 0 Core 3

. . .

Regs

L1
d-cache

L2 unified cache

L3 unified cache
(shared by all cores)

Main memory

L1
i-cache

Regs

L1
d-cache

L2 unified cache

L1
i-cache

processor requires around 20,000 clock cycles to shift between different threads,
a hyperthreaded processor decides which of its threads to execute on a cycle-
by-cycle basis. It enables the CPU to make better advantage of its processing
resources. For example, if one thread must wait for some data to be loaded into
a cache, the CPU can proceed with the execution of a different thread. As an ex-
ample, the Intel Core i7 processor can have each core executing two threads, and
so a four-core system can actually execute eight threads in parallel.

The use of multiprocessing can improve system performance in two ways.
First, it reduces the need to simulate concurrency when performing multiple tasks.
As mentioned, even a personal computer being used by a single person is expected
to perform many activities concurrently. Second, it can run a single application
program faster, but only if that program is expressed in terms of multiple threads
that can effectively execute in parallel. Thus, although the principles of concur-
rency have been formulated and studied for over 50 years, the advent of multi-core
and hyperthreaded systems has greatly increased the desire to find ways to write
application programs that can exploit the thread-level parallelism available with
the hardware. Chapter 12 will look much more deeply into concurrency and its
use to provide a sharing of processing resources and to enable more parallelism
in program execution.

Instruction-Level Parallelism

At a much lower level of abstraction, modern processors can execute multiple
instructions at one time, a property known as instruction-level parallelism. For

24 Chapter 1 A Tour of Computer Systems

example, early microprocessors, such as the 1978-vintage Intel 8086 required
multiple (typically, 3–10) clock cycles to execute a single instruction. More recent
processors can sustain execution rates of 2–4 instructions per clock cycle. Any
given instruction requires much longer from start to finish, perhaps 20 cycles or
more, but the processor uses a number of clever tricks to process as many as 100
instructions at a time. In Chapter 4, we will explore the use of pipelining, where the
actions required to execute an instruction are partitioned into different steps and
the processor hardware is organized as a series of stages, each performing one
of these steps. The stages can operate in parallel, working on different parts of
different instructions. We will see that a fairly simple hardware design can sustain
an execution rate close to one instruction per clock cycle.

Processors that can sustain execution rates faster than one instruction per
cycle are known as superscalar processors. Most modern processors support super-
scalar operation. In Chapter 5, we will describe a high-level model of such proces-
sors. We will see that application programmers can use this model to understand
the performance of their programs. They can then write programs such that the
generated code achieves higher degrees of instruction-level parallelism and there-
fore runs faster.

Single-Instruction, Multiple-Data (SIMD) Parallelism

At the lowest level, many modern processors have special hardware that allows
a single instruction to cause multiple operations to be performed in parallel,
a mode known as single-instruction, multiple-data, or “SIMD” parallelism. For
example, recent generations of Intel and AMD processors have instructions that
can add four pairs of single-precision floating-point numbers (C data type float)
in parallel.

These SIMD instructions are provided mostly to speed up applications that
process image, sound, and video data. Although some compilers attempt to auto-
matically extract SIMD parallelism from C programs, a more reliable method is to
write programs using special vector data types supported in compilers such as gcc.
We describe this style of programming in Web Aside opt:simd, as a supplement to
the more general presentation on program optimization found in Chapter 5.

1.9.2 The Importance of Abstractions in Computer Systems

The use of abstractions is one of the most important concepts in computer science.
For example, one aspect of good programming practice is to formulate a simple
application-program interface (API) for a set of functions that allow programmers
to use the code without having to delve into its inner workings. Different program-
ming languages provide different forms and levels of support for abstraction, such
as Java class declarations and C function prototypes.

We have already been introduced to several of the abstractions seen in com-
puter systems, as indicated in Figure 1.18. On the processor side, the instruction set
architecture provides an abstraction of the actual processor hardware. With this
abstraction, a machine-code program behaves as if it were executed on a proces-

Section 1.10 Summary 25

Figure 1.18
Some abstractions pro-
vided by a computer
system. A major theme
in computer systems is to
provide abstract represen-
tations at different levels to
hide the complexity of the
actual implementations.

Main memory I/O devicesProcessorOperating system

Processes

Virtual memory

Files

Virtual machine

Instruction set
architecture

sor that performs just one instruction at a time. The underlying hardware is far
more elaborate, executing multiple instructions in parallel, but always in a way
that is consistent with the simple, sequential model. By keeping the same execu-
tion model, different processor implementations can execute the same machine
code, while offering a range of cost and performance.

On the operating system side, we have introduced three abstractions: files as
an abstraction of I/O, virtual memory as an abstraction of program memory, and
processes as an abstraction of a running program. To these abstractions we add
a new one: the virtual machine, providing an abstraction of the entire computer,
including the operating system, the processor, and the programs. The idea of a
virtual machine was introduced by IBM in the 1960s, but it has become more
prominent recently as a way to manage computers that must be able to run
programs designed for multiple operating systems (such as Microsoft Windows,
MacOS, and Linux) or different versions of the same operating system.

We will return to these abstractions in subsequent sections of the book.

1.10 Summary

A computer system consists of hardware and systems software that cooperate
to run application programs. Information inside the computer is represented as
groups of bits that are interpreted in different ways, depending on the context.
Programs are translated by other programs into different forms, beginning as
ASCII text and then translated by compilers and linkers into binary executable
files.

Processors read and interpret binary instructions that are stored in main
memory. Since computers spend most of their time copying data between memory,
I/O devices, and the CPU registers, the storage devices in a system are arranged
in a hierarchy, with the CPU registers at the top, followed by multiple levels
of hardware cache memories, DRAM main memory, and disk storage. Storage
devices that are higher in the hierarchy are faster and more costly per bit than
those lower in the hierarchy. Storage devices that are higher in the hierarchy serve
as caches for devices that are lower in the hierarchy. Programmers can optimize
the performance of their C programs by understanding and exploiting the memory
hierarchy.

26 Chapter 1 A Tour of Computer Systems

The operating system kernel serves as an intermediary between the applica-
tion and the hardware. It provides three fundamental abstractions: (1) Files are
abstractions for I/O devices. (2) Virtual memory is an abstraction for both main
memory and disks. (3) Processes are abstractions for the processor, main memory,
and I/O devices.

Finally, networks provide ways for computer systems to communicate with
one another. From the viewpoint of a particular system, the network is just another
I/O device.

Bibliographic Notes

Ritchie has written interesting first hand accounts of the early days of C and
Unix [87, 88]. Ritchie and Thompson presented the first published account
of Unix [89]. Silberschatz, Gavin, and Gagne [98] provide a comprehensive
history of the different flavors of Unix. The GNU (www.gnu.org) and Linux
(www.linux.org) Web pages have loads of current and historical information.
The Posix standards are available online at (www.unix.org).

www.gnu.org
www.unix.org
www.linux.org

Part I
Program Structure
and Execution

Our exploration of computer systems starts by studying the com-
puter itself, comprising a processor and a memory subsystem. At
the core, we require ways to represent basic data types, such as

approximations to integer and real arithmetic. From there we can con-
sider how machine-level instructions manipulate data and how a com-
piler translates C programs into these instructions. Next, we study several
methods of implementing a processor to gain a better understanding of
how hardware resources are used to execute instructions. Once we under-
stand compilers and machine-level code, we can examine how to maxi-
mize program performance by writing C programs that, when compiled,
achieve the maximum possible performance. We conclude with the de-
sign of the memory subsystem, one of the most complex components of
a modern computer system.

This part of the book will give you a deep understanding of how
application programs are represented and executed. You will gain skills
that help you write programs that are secure, reliable, and make the best
use of the computing resources.

27

This page intentionally left blank

C H A P T E R 2
Representing and Manipulating
Information

2.1 Information Storage 33

2.2 Integer Representations 56

2.3 Integer Arithmetic 79

2.4 Floating Point 99

2.5 Summary 118

Bibliographic Notes 119

Homework Problems 119

Solutions to Practice Problems 134

29

30 Chapter 2 Representing and Manipulating Information

Modern computers store and process information represented as 2-valued signals.
These lowly binary digits, or bits, form the basis of the digital revolution. The
familiar decimal, or base-10, representation has been in use for over 1000 years,
having been developed in India, improved by Arab mathematicians in the 12th
century, and brought to the West in the 13th century by the Italian mathematician
Leonardo Pisano (c. 1170 – c. 1250), better known as Fibonacci. Using decimal
notation is natural for ten-fingered humans, but binary values work better when
building machines that store and process information. Two-valued signals can
readily be represented, stored, and transmitted, for example, as the presence or
absence of a hole in a punched card, as a high or low voltage on a wire, or as a
magnetic domain oriented clockwise or counterclockwise. The electronic circuitry
for storing and performing computations on 2-valued signals is very simple and
reliable, enabling manufacturers to integrate millions, or even billions, of such
circuits on a single silicon chip.

In isolation, a single bit is not very useful. When we group bits together and
apply some interpretation that gives meaning to the different possible bit patterns,
however, we can represent the elements of any finite set. For example, using a
binary number system, we can use groups of bits to encode nonnegative numbers.
By using a standard character code, we can encode the letters and symbols in a
document. We cover both of these encodings in this chapter, as well as encodings
to represent negative numbers and to approximate real numbers.

We consider the three most important representations of numbers. Unsigned
encodings are based on traditional binary notation, representing numbers greater
than or equal to 0. Two’s-complement encodings are the most common way to
represent signed integers, that is, numbers that may be either positive or neg-
ative. Floating-point encodings are a base-two version of scientific notation for
representing real numbers. Computers implement arithmetic operations, such as
addition and multiplication, with these different representations, similar to the
corresponding operations on integers and real numbers.

Computer representations use a limited number of bits to encode a number,
and hence some operations can overflow when the results are too large to be rep-
resented. This can lead to some surprising results. For example, on most of today’s
computers (those using a 32-bit representation of data type int), computing the
expression

200 * 300 * 400 * 500

yields −884,901,888. This runs counter to the properties of integer arithmetic—
computing the product of a set of positive numbers has yielded a negative result.

On the other hand, integer computer arithmetic satisfies many of the familiar
properties of true integer arithmetic. For example, multiplication is associative
and commutative, so that computing any of the following C expressions yields
−884,901,888:

(500 * 400) * (300 * 200)

((500 * 400) * 300) * 200

((200 * 500) * 300) * 400

400 * (200 * (300 * 500))

Chapter 2 Representing and Manipulating Information 31

The computer might not generate the expected result, but at least it is consistent!
Floating-point arithmetic has altogether different mathematical properties.

The product of a set of positive numbers will always be positive, although over-
flow will yield the special value +∞. Floating-point arithmetic is not associative,
due to the finite precision of the representation. For example, the C expression
(3.14+1e20)-1e20 will evaluate to 0.0 on most machines, while 3.14+(1e20-
1e20) will evaluate to 3.14. The different mathematical properties of integer
vs. floating-point arithmetic stem from the difference in how they handle the finite-
ness of their representations—integer representations can encode a comparatively
small range of values, but do so precisely, while floating-point representations can
encode a wide range of values, but only approximately.

By studying the actual number representations, we can understand the ranges
of values that can be represented and the properties of the different arithmetic
operations. This understanding is critical to writing programs that work correctly
over the full range of numeric values and that are portable across different combi-
nations of machine, operating system, and compiler. As we will describe, a number
of computer security vulnerabilities have arisen due to some of the subtleties of
computer arithmetic. Whereas in an earlier era program bugs would only incon-
venience people when they happened to be triggered, there are now legions of
hackers who try to exploit any bug they can find to obtain unauthorized access
to other people’s systems. This puts a higher level of obligation on programmers
to understand how their programs work and how they can be made to behave in
undesirable ways.

Computers use several different binary representations to encode numeric
values. You will need to be familiar with these representations as you progress
into machine-level programming in Chapter 3. We describe these encodings in
this chapter and show you how to reason about number representations.

We derive several ways to perform arithmetic operations by directly manip-
ulating the bit-level representations of numbers. Understanding these techniques
will be important for understanding the machine-level code generated by compil-
ers in their attempt to optimize the performance of arithmetic expression eval-
uation.

Our treatment of this material is based on a core set of mathematical prin-
ciples. We start with the basic definitions of the encodings and then derive such
properties as the range of representable numbers, their bit-level representations,
and the properties of the arithmetic operations. We believe it is important for you
to examine the material from this abstract viewpoint, because programmers need
to have a clear understanding of how computer arithmetic relates to the more
familiar integer and real arithmetic.

Aside How to read this chapter

If you find equations and formulas daunting, do not let that stop you from getting the most out of this
chapter! We provide full derivations of mathematical ideas for completeness, but the best way to read
this material is often to skip over the derivation on your initial reading. Instead, study the examples

32 Chapter 2 Representing and Manipulating Information

provided, and be sure to work all of the practice problems. The examples will give you an intuition
behind the ideas, and the practice problems engage you in active learning, helping you put thoughts
into action. With these as background, you will find it much easier to go back and follow the derivations.
Be assured, as well, that the mathematical skills required to understand this material are within reach
of someone with good grasp of high school algebra.

The C++ programming language is built upon C, using the exact same numeric
representations and operations. Everything said in this chapter about C also holds
for C++. The Java language definition, on the other hand, created a new set of
standards for numeric representations and operations. Whereas the C standards
are designed to allow a wide range of implementations, the Java standard is quite
specific on the formats and encodings of data. We highlight the representations
and operations supported by Java at several places in the chapter.

Aside The evolution of the C programming language

As was described in an aside in Section 1.2, the C programming language was first developed by Dennis
Ritchie of Bell Laboratories for use with the Unix operating system (also developed at Bell Labs). At
the time, most system programs, such as operating systems, had to be written largely in assembly code,
in order to have access to the low-level representations of different data types. For example, it was
not feasible to write a memory allocator, such as is provided by the malloc library function, in other
high-level languages of that era.

The original Bell Labs version of C was documented in the first edition of the book by Brian
Kernighan and Dennis Ritchie [57]. Over time, C has evolved through the efforts of several standard-
ization groups. The first major revision of the original Bell Labs C led to the ANSI C standard in 1989,
by a group working under the auspices of the American National Standards Institute. ANSI C was a
major departure from Bell Labs C, especially in the way functions are declared. ANSI C is described
in the second edition of Kernighan and Ritchie’s book [58], which is still considered one of the best
references on C.

The International Standards Organization took over responsibility for standardizing the C lan-
guage, adopting a version that was substantially the same as ANSI C in 1990 and hence is referred to as
“ISO C90.” This same organization sponsored an updating of the language in 1999, yielding “ISO C99.”
Among other things, this version introduced some new data types and provided support for text strings
requiring characters not found in the English language.

The GNU Compiler Collection (gcc) can compile programs according to the conventions of several
different versions of the C language, based on different command line options, as shown in Figure 2.1.
For example, to compile program prog.c according to ISO C99, we could give the command line

unix> gcc -std=c99 prog.c

The options -ansi and -std=c89 have the same effect—the code is compiled according to the ANSI
or ISO C90 standard. (C90 is sometimes referred to as “C89,” since its standardization effort began in
1989.) The option -std=c99 causes the compiler to follow the ISO C99 convention.

Section 2.1 Information Storage 33

C version gcc command line option

GNU 89 none, -std=gnu89
ANSI, ISO C90 -ansi, -std=c89
ISO C99 -std=c99

GNU 99 -std=gnu99

Figure 2.1 Specifying different versions of C to gcc.

As of the writing of this book, when no option is specified, the program will be compiled according
to a version of C based on ISO C90, but including some features of C99, some of C++, and others
specific to gcc. This version can be specified explicitly using the option -std=gnu89. The GNU project
is developing a version that combines ISO C99, plus other features, that can be specified with command
line option -std=gnu99. (Currently, this implementation is incomplete.) This will become the default
version.

2.1 Information Storage

Rather than accessing individual bits in memory, most computers use blocks
of eight bits, or bytes, as the smallest addressable unit of memory. A machine-
level program views memory as a very large array of bytes, referred to as virtual
memory. Every byte of memory is identified by a unique number, known as its
address, and the set of all possible addresses is known as the virtual address space.
As indicated by its name, this virtual address space is just a conceptual image
presented to the machine-level program. The actual implementation (presented
in Chapter 9) uses a combination of random-access memory (RAM), disk storage,
special hardware, and operating system software to provide the program with what
appears to be a monolithic byte array.

In subsequent chapters, we will cover how the compiler and run-time system
partitions this memory space into more manageable units to store the different
program objects, that is, program data, instructions, and control information.
Various mechanisms are used to allocate and manage the storage for different
parts of the program. This management is all performed within the virtual address
space. For example, the value of a pointer in C—whether it points to an integer,
a structure, or some other program object—is the virtual address of the first byte
of some block of storage. The C compiler also associates type information with
each pointer, so that it can generate different machine-level code to access the
value stored at the location designated by the pointer depending on the type of
that value. Although the C compiler maintains this type information, the actual
machine-level program it generates has no information about data types. It simply
treats each program object as a block of bytes, and the program itself as a sequence
of bytes.

34 Chapter 2 Representing and Manipulating Information

New to C? The role of pointers in C

Pointers are a central feature of C. They provide the mechanism for referencing elements of data
structures, including arrays. Just like a variable, a pointer has two aspects: its value and its type. The
value indicates the location of some object, while its type indicates what kind of object (e.g., integer or
floating-point number) is stored at that location.

2.1.1 Hexadecimal Notation

A single byte consists of 8 bits. In binary notation, its value ranges from 000000002
to 111111112. When viewed as a decimal integer, its value ranges from 010 to 25510.
Neither notation is very convenient for describing bit patterns. Binary notation
is too verbose, while with decimal notation, it is tedious to convert to and from
bit patterns. Instead, we write bit patterns as base-16, or hexadecimal numbers.
Hexadecimal (or simply “hex”) uses digits ‘0’ through ‘9’ along with characters
‘A’ through ‘F’ to represent 16 possible values. Figure 2.2 shows the decimal and
binary values associated with the 16 hexadecimal digits. Written in hexadecimal,
the value of a single byte can range from 0016 to FF16.

In C, numeric constants starting with 0x or 0X are interpreted as being in
hexadecimal. The characters ‘A’ through ‘F’ may be written in either upper or
lower case. For example, we could write the number FA1D37B16 as 0xFA1D37B,
as 0xfa1d37b, or even mixing upper and lower case, e.g., 0xFa1D37b. We will use
the C notation for representing hexadecimal values in this book.

A common task in working with machine-level programs is to manually con-
vert between decimal, binary, and hexadecimal representations of bit patterns.
Converting between binary and hexadecimal is straightforward, since it can be
performed one hexadecimal digit at a time. Digits can be converted by referring
to a chart such as that shown in Figure 2.2. One simple trick for doing the conver-
sion in your head is to memorize the decimal equivalents of hex digits A, C, and F.
The hex values B, D, and E can be translated to decimal by computing their values
relative to the first three.

For example, suppose you are given the number 0x173A4C. You can convert
this to binary format by expanding each hexadecimal digit, as follows:

Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

Figure 2.2 Hexadecimal notation. Each Hex digit encodes one of 16 values.

Section 2.1 Information Storage 35

Hexadecimal 1 7 3 A 4 C

Binary 0001 0111 0011 1010 0100 1100

This gives the binary representation 000101110011101001001100.
Conversely, given a binary number 1111001010110110110011, you convert it

to hexadecimal by first splitting it into groups of 4 bits each. Note, however, that if
the total number of bits is not a multiple of 4, you should make the leftmost group
be the one with fewer than 4 bits, effectively padding the number with leading
zeros. Then you translate each group of 4 bits into the corresponding hexadecimal
digit:

Binary 11 1100 1010 1101 1011 0011
Hexadecimal 3 C A D B 3

Practice Problem 2.1
Perform the following number conversions:

A. 0x39A7F8 to binary

B. Binary 1100100101111011 to hexadecimal

C. 0xD5E4C to binary

D. Binary 1001101110011110110101 to hexadecimal

When a value x is a power of two, that is, x = 2n for some nonnegative integer
n, we can readily write x in hexadecimal form by remembering that the binary
representation of x is simply 1 followed by n zeros. The hexadecimal digit 0
represents four binary zeros. So, for n written in the form i + 4j , where 0 ≤ i ≤ 3,
we can write x with a leading hex digit of 1 (i = 0), 2 (i = 1), 4 (i = 2), or 8
(i = 3), followed by j hexadecimal 0s. As an example, for x = 2048 = 211, we have
n = 11 = 3 + 4 . 2, giving hexadecimal representation 0x800.

Practice Problem 2.2
Fill in the blank entries in the following table, giving the decimal and hexadecimal
representations of different powers of 2:

n 2n (Decimal) 2n (Hexadecimal)

9 512 0x200

19
16,384

0x10000

17
32

0x80

36 Chapter 2 Representing and Manipulating Information

Converting between decimal and hexadecimal representations requires using
multiplication or division to handle the general case. To convert a decimal num-
ber x to hexadecimal, we can repeatedly divide x by 16, giving a quotient q and a
remainder r , such that x = q . 16 + r . We then use the hexadecimal digit represent-
ing r as the least significant digit and generate the remaining digits by repeating
the process on q. As an example, consider the conversion of decimal 314156:

314156 = 19634 . 16 + 12 (C)

19634 = 1227 . 16 + 2 (2)

1227 = 76 . 16 + 11 (B)

76 = 4 . 16 + 12 (C)

4 = 0 . 16 + 4 (4)

From this we can read off the hexadecimal representation as 0x4CB2C.
Conversely, to convert a hexadecimal number to decimal, we can multiply

each of the hexadecimal digits by the appropriate power of 16. For example, given
the number 0x7AF, we compute its decimal equivalent as 7 . 162 + 10 . 16 + 15 =
7 . 256 + 10 . 16 + 15 = 1792 + 160 + 15 = 1967.

Practice Problem 2.3
A single byte can be represented by two hexadecimal digits. Fill in the missing
entries in the following table, giving the decimal, binary, and hexadecimal values
of different byte patterns:

Decimal Binary Hexadecimal

0 0000 0000 0x00

167
62

188
0011 0111
1000 1000
1111 0011

0x52

0xAC

0xE7

Aside Converting between decimal and hexadecimal

For converting larger values between decimal and hexadecimal, it is best to let a computer or calculator
do the work. For example, the following script in the Perl language converts a list of numbers (given
on the command line) from decimal to hexadecimal:

Section 2.1 Information Storage 37

bin/d2h

1 #!/usr/local/bin/perl

2 # Convert list of decimal numbers into hex

3

4 for ($i = 0; $i < @ARGV; $i++) {

5 printf("%d\t= 0x%x\n", $ARGV[$i], $ARGV[$i]);

6 }

bin/d2h

Once this file has been set to be executable, the command

unix> ./d2h 100 500 751

yields output

100 = 0x64

500 = 0x1f4

751 = 0x2ef

Similarly, the following script converts from hexadecimal to decimal:

bin/h2d

1 #!/usr/local/bin/perl

2 # Convert list of hex numbers into decimal

3

4 for ($i = 0; $i < @ARGV; $i++) {

5 $val = hex($ARGV[$i]);

6 printf("0x%x = %d\n", $val, $val);

7 }

bin/h2d

Practice Problem 2.4
Without converting the numbers to decimal or binary, try to solve the follow-
ing arithmetic problems, giving the answers in hexadecimal. Hint: Just modify
the methods you use for performing decimal addition and subtraction to use
base 16.

A. 0x503c+ 0x8=
B. 0x503c− 0x40=
C. 0x503c+ 64 =
D. 0x50ea− 0x503c=

38 Chapter 2 Representing and Manipulating Information

2.1.2 Words

Every computer has a word size, indicating the nominal size of integer and pointer
data. Since a virtual address is encoded by such a word, the most important system
parameter determined by the word size is the maximum size of the virtual address
space. That is, for a machine with a w-bit word size, the virtual addresses can range
from 0 to 2w − 1, giving the program access to at most 2w bytes.

Most personal computers today have a 32-bit word size. This limits the virtual
address space to 4 gigabytes (written 4 GB), that is, just over 4 × 109 bytes. Al-
though this is ample space for most applications, we have reached the point where
many large-scale scientific and database applications require larger amounts of
storage. Consequently, high-end machines with 64-bit word sizes are becoming in-
creasingly common as storage costs decrease. As hardware costs drop over time,
even desktop and laptop machines will switch to 64-bit word sizes, and so we will
consider the general case of a w-bit word size, as well as the special cases of w = 32
and w = 64.

2.1.3 Data Sizes

Computers and compilers support multiple data formats using different ways to
encode data, such as integers and floating point, as well as different lengths. For
example, many machines have instructions for manipulating single bytes, as well
as integers represented as 2-, 4-, and 8-byte quantities. They also support floating-
point numbers represented as 4- and 8-byte quantities.

The C language supports multiple data formats for both integer and floating-
point data. The C data type char represents a single byte. Although the name
“char” derives from the fact that it is used to store a single character in a text
string, it can also be used to store integer values. The C data type int can also be
prefixed by the qualifiers short, long, and recently long long, providing integer
representations of various sizes. Figure 2.3 shows the number of bytes allocated

C declaration 32-bit 64-bit

char 1 1
short int 2 2
int 4 4
long int 4 8
long long int 8 8

char * 4 8

float 4 4
double 8 8

Figure 2.3 Sizes (in bytes) of C numeric data types. The number of bytes allocated
varies with machine and compiler. This chart shows the values typical of 32-bit and 64-bit
machines.

Section 2.1 Information Storage 39

for different C data types. The exact number depends on both the machine and
the compiler. We show typical sizes for 32-bit and 64-bit machines. Observe that
“short” integers have 2-byte allocations, while an unqualified int is 4 bytes. A
“long” integer uses the full word size of the machine. The “long long” integer
data type, introduced in ISO C99, allows the full range of 64-bit integers. For 32-bit
machines, the compiler must compile operations for this data type by generating
code that performs sequences of 32-bit operations.

Figure 2.3 also shows that a pointer (e.g., a variable declared as being of type
“char *”) uses the full word size of the machine. Most machines also support
two different floating-point formats: single precision, declared in C as float,
and double precision, declared in C as double. These formats use 4 and 8 bytes,
respectively.

New to C? Declaring pointers

For any data type T , the declaration

T *p;

indicates that p is a pointer variable, pointing to an object of type T . For example,

char *p;

is the declaration of a pointer to an object of type char.

Programmers should strive to make their programs portable across different
machines and compilers. One aspect of portability is to make the program insensi-
tive to the exact sizes of the different data types. The C standards set lower bounds
on the numeric ranges of the different data types, as will be covered later, but there
are no upper bounds. Since 32-bit machines have been the standard since around
1980, many programs have been written assuming the allocations listed for this
word size in Figure 2.3. Given the increasing availability of 64-bit machines, many
hidden word size dependencies will show up as bugs in migrating these programs
to new machines. For example, many programmers assume that a program object
declared as type int can be used to store a pointer. This works fine for most 32-bit
machines but leads to problems on a 64-bit machine.

2.1.4 Addressing and Byte Ordering

For program objects that span multiple bytes, we must establish two conventions:
what the address of the object will be, and how we will order the bytes in memory.
In virtually all machines, a multi-byte object is stored as a contiguous sequence
of bytes, with the address of the object given by the smallest address of the bytes
used. For example, suppose a variable x of type int has address 0x100, that is, the
value of the address expression &x is 0x100. Then the 4 bytes of xwould be stored
in memory locations 0x100, 0x101, 0x102, and 0x103.

40 Chapter 2 Representing and Manipulating Information

For ordering the bytes representing an object, there are two common conven-
tions. Consider a w-bit integer having a bit representation [xw−1, xw−2, . . . , x1, x0],
where xw−1 is the most significant bit and x0 is the least. Assuming w is a multiple
of 8, these bits can be grouped as bytes, with the most significant byte having bits
[xw−1, xw−2, . . . , xw−8], the least significant byte having bits [x7, x6, . . . , x0], and
the other bytes having bits from the middle. Some machines choose to store the ob-
ject in memory ordered from least significant byte to most, while other machines
store them from most to least. The former convention—where the least signifi-
cant byte comes first—is referred to as little endian. This convention is followed
by most Intel-compatible machines. The latter convention—where the most sig-
nificant byte comes first—is referred to as big endian. This convention is followed
by most machines from IBM and Sun Microsystems. Note that we said “most.”
The conventions do not split precisely along corporate boundaries. For example,
both IBM and Sun manufacture machines that use Intel-compatible processors
and hence are little endian. Many recent microprocessors are bi-endian, meaning
that they can be configured to operate as either little- or big-endian machines.

Continuing our earlier example, suppose the variable x of type int and at
address 0x100 has a hexadecimal value of 0x01234567. The ordering of the bytes
within the address range 0x100 through 0x103 depends on the type of machine:

01

0x100

23

0x101

45

0x102

67

0x103
Big endian

67

0x100

45

0x101

23

0x102

01

0x103
Little endian

Note that in the word 0x01234567 the high-order byte has hexadecimal value
0x01, while the low-order byte has value 0x67.

People get surprisingly emotional about which byte ordering is the proper one.
In fact, the terms “little endian” and “big endian” come from the book Gulliver’s
Travels by Jonathan Swift, where two warring factions could not agree as to how a
soft-boiled egg should be opened—by the little end or by the big. Just like the egg
issue, there is no technological reason to choose one byte ordering convention over
the other, and hence the arguments degenerate into bickering about socio-political
issues. As long as one of the conventions is selected and adhered to consistently,
the choice is arbitrary.

Aside Origin of “endian”

Here is how Jonathan Swift, writing in 1726, described the history of the controversy between big and
little endians:

Section 2.1 Information Storage 41

. . . Lilliput and Blefuscu . . . have, as I was going to tell you, been engaged in a most obstinate war
for six-and-thirty moons past. It began upon the following occasion. It is allowed on all hands, that
the primitive way of breaking eggs, before we eat them, was upon the larger end; but his present
majesty’s grandfather, while he was a boy, going to eat an egg, and breaking it according to the
ancient practice, happened to cut one of his fingers. Whereupon the emperor his father published
an edict, commanding all his subjects, upon great penalties, to break the smaller end of their eggs.
The people so highly resented this law, that our histories tell us, there have been six rebellions raised
on that account; wherein one emperor lost his life, and another his crown. These civil commotions
were constantly fomented by the monarchs of Blefuscu; and when they were quelled, the exiles
always fled for refuge to that empire. It is computed that eleven thousand persons have at several
times suffered death, rather than submit to break their eggs at the smaller end. Many hundred
large volumes have been published upon this controversy: but the books of the Big-endians have
been long forbidden, and the whole party rendered incapable by law of holding employments.

In his day, Swift was satirizing the continued conflicts between England (Lilliput) and France (Blefuscu).
Danny Cohen, an early pioneer in networking protocols, first applied these terms to refer to byte
ordering [25], and the terminology has been widely adopted.

For most application programmers, the byte orderings used by their machines
are totally invisible; programs compiled for either class of machine give identical
results. At times, however, byte ordering becomes an issue. The first is when
binary data are communicated over a network between different machines. A
common problem is for data produced by a little-endian machine to be sent to
a big-endian machine, or vice versa, leading to the bytes within the words being in
reverse order for the receiving program. To avoid such problems, code written for
networking applications must follow established conventions for byte ordering to
make sure the sending machine converts its internal representation to the network
standard, while the receiving machine converts the network standard to its internal
representation. We will see examples of these conversions in Chapter 11.

A second case where byte ordering becomes important is when looking at
the byte sequences representing integer data. This occurs often when inspecting
machine-level programs. As an example, the following line occurs in a file that
gives a text representation of the machine-level code for an Intel IA32 processor:

80483bd: 01 05 64 94 04 08 add %eax,0x8049464

This line was generated by a disassembler, a tool that determines the instruction
sequence represented by an executable program file. We will learn more about
disassemblers and how to interpret lines such as this in Chapter 3. For now, we
simply note that this line states that the hexadecimal byte sequence 01 05 64
94 04 08 is the byte-level representation of an instruction that adds a word of
data to the value stored at address 0x8049464. If we take the final 4 bytes of
the sequence, 64 94 04 08, and write them in reverse order, we have 08 04 94
64. Dropping the leading 0, we have the value 0x8049464, the numeric value
written on the right. Having bytes appear in reverse order is a common occurrence
when reading machine-level program representations generated for little-endian

42 Chapter 2 Representing and Manipulating Information

1 #include <stdio.h>

2

3 typedef unsigned char *byte_pointer;

4

5 void show_bytes(byte_pointer start, int len) {

6 int i;

7 for (i = 0; i < len; i++)

8 printf(" %.2x", start[i]);

9 printf("\n");

10 }

11

12 void show_int(int x) {

13 show_bytes((byte_pointer) &x, sizeof(int));

14 }

15

16 void show_float(float x) {

17 show_bytes((byte_pointer) &x, sizeof(float));

18 }

19

20 void show_pointer(void *x) {

21 show_bytes((byte_pointer) &x, sizeof(void *));

22 }

Figure 2.4 Code to print the byte representation of program objects. This code uses
casting to circumvent the type system. Similar functions are easily defined for other data
types.

machines such as this one. The natural way to write a byte sequence is to have the
lowest-numbered byte on the left and the highest on the right, but this is contrary
to the normal way of writing numbers with the most significant digit on the left
and the least on the right.

A third case where byte ordering becomes visible is when programs are
written that circumvent the normal type system. In the C language, this can be
done using a cast to allow an object to be referenced according to a different data
type from which it was created. Such coding tricks are strongly discouraged for
most application programming, but they can be quite useful and even necessary
for system-level programming.

Figure 2.4 shows C code that uses casting to access and print the byte rep-
resentations of different program objects. We use typedef to define data type
byte_pointer as a pointer to an object of type “unsigned char.” Such a byte
pointer references a sequence of bytes where each byte is considered to be a non-
negative integer. The first routine show_bytes is given the address of a sequence
of bytes, indicated by a byte pointer, and a byte count. It prints the individual
bytes in hexadecimal. The C formatting directive “%.2x” indicates that an integer
should be printed in hexadecimal with at least two digits.

Section 2.1 Information Storage 43

New to C? Naming data types with typedef

The typedef declaration in C provides a way of giving a name to a data type. This can be a great help
in improving code readability, since deeply nested type declarations can be difficult to decipher.

The syntax for typedef is exactly like that of declaring a variable, except that it uses a type name
rather than a variable name. Thus, the declaration of byte_pointer in Figure 2.4 has the same form as
the declaration of a variable of type “unsigned char *.”

For example, the declaration

typedef int *int_pointer;

int_pointer ip;

defines type “int_pointer” to be a pointer to an int, and declares a variable ip of this type. Alterna-
tively, we could declare this variable directly as

int *ip;

New to C? Formatted printing with printf

The printf function (along with its cousins fprintf and sprintf) provides a way to print information
with considerable control over the formatting details. The first argument is a format string, while
any remaining arguments are values to be printed. Within the format string, each character sequence
starting with ‘%’ indicates how to format the next argument. Typical examples include ‘%d’ to print a
decimal integer, ‘%f’ to print a floating-point number, and ‘%c’ to print a character having the character
code given by the argument.

New to C? Pointers and arrays

In function show_bytes (Figure 2.4), we see the close connection between pointers and arrays, as will
be discussed in detail in Section 3.8. We see that this function has an argument start of type byte_
pointer (which has been defined to be a pointer to unsigned char), but we see the array reference
start[i] on line 8. In C, we can dereference a pointer with array notation, and we can reference array
elements with pointer notation. In this example, the reference start[i] indicates that we want to read
the byte that is i positions beyond the location pointed to by start.

Procedures show_int, show_float, and show_pointer demonstrate how to
use procedure show_bytes to print the byte representations of C program objects
of type int, float, and void *, respectively. Observe that they simply pass show_
bytes a pointer &x to their argument x, casting the pointer to be of type “unsigned
char *.” This cast indicates to the compiler that the program should consider the
pointer to be to a sequence of bytes rather than to an object of the original data
type. This pointer will then be to the lowest byte address occupied by the object.

44 Chapter 2 Representing and Manipulating Information

New to C? Pointer creation and dereferencing

In lines 13, 17, and 21 of Figure 2.4, we see uses of two operations that give C (and therefore C++) its
distinctive character. The C “address of” operator & creates a pointer. On all three lines, the expression
&x creates a pointer to the location holding the object indicated by variable x. The type of this pointer
depends on the type of x, and hence these three pointers are of type int *, float *, and void **,
respectively. (Data type void * is a special kind of pointer with no associated type information.)

The cast operator converts from one data type to another. Thus, the cast (byte_pointer) &x
indicates that whatever type the pointer &x had before, the program will now reference a pointer to
data of type unsigned char. The casts shown here do not change the actual pointer; they simply direct
the compiler to refer to the data being pointed to according to the new data type.

These procedures use the Csizeofoperator to determine the number of bytes
used by the object. In general, the expression sizeof(T) returns the number of
bytes required to store an object of type T . Using sizeof rather than a fixed value
is one step toward writing code that is portable across different machine types.

We ran the code shown in Figure 2.5 on several different machines, giving the
results shown in Figure 2.6. The following machines were used:

Linux 32: Intel IA32 processor running Linux
Windows: Intel IA32 processor running Windows
Sun: Sun Microsystems SPARC processor running Solaris
Linux 64: Intel x86-64 processor running Linux

Our argument 12,345 has hexadecimal representation 0x00003039. For the int
data, we get identical results for all machines, except for the byte ordering. In
particular, we can see that the least significant byte value of 0x39 is printed first
for Linux 32, Windows, and Linux 64, indicating little-endian machines, and last
for Sun, indicating a big-endian machine. Similarly, the bytes of the float data
are identical, except for the byte ordering. On the other hand, the pointer values
are completely different. The different machine/operating system configurations

code/data/show-bytes.c

1 void test_show_bytes(int val) {

2 int ival = val;

3 float fval = (float) ival;

4 int *pval = &ival;

5 show_int(ival);

6 show_float(fval);

7 show_pointer(pval);

8 }

code/data/show-bytes.c

Figure 2.5 Byte representation examples. This code prints the byte representations of
sample data objects.

Section 2.1 Information Storage 45

Machine Value Type Bytes (hex)

Linux 32 12,345 int 39 30 00 00

Windows 12,345 int 39 30 00 00

Sun 12,345 int 00 00 30 39

Linux 64 12,345 int 39 30 00 00

Linux 32 12,345.0 float 00 e4 40 46

Windows 12,345.0 float 00 e4 40 46

Sun 12,345.0 float 46 40 e4 00

Linux 64 12,345.0 float 00 e4 40 46

Linux 32 &ival int * e4 f9 ff bf

Windows &ival int * b4 cc 22 00

Sun &ival int * ef ff fa 0c

Linux 64 &ival int * b8 11 e5 ff ff 7f 00 00

Figure 2.6 Byte representations of different data values. Results for int and float
are identical, except for byte ordering. Pointer values are machine dependent.

use different conventions for storage allocation. One feature to note is that the
Linux 32, Windows, and Sun machines use 4-byte addresses, while the Linux 64
machine uses 8-byte addresses.

Observe that although the floating-point and the integer data both encode
the numeric value 12,345, they have very different byte patterns: 0x00003039
for the integer, and 0x4640E400 for floating point. In general, these two formats
use different encoding schemes. If we expand these hexadecimal patterns into
binary form and shift them appropriately, we find a sequence of 13 matching bits,
indicated by a sequence of asterisks, as follows:

0 0 0 0 3 0 3 9

00000000000000000011000000111001

4 6 4 0 E 4 0 0

01000110010000001110010000000000

This is not coincidental. We will return to this example when we study floating-
point formats.

Practice Problem 2.5
Consider the following three calls to show_bytes:

int val = 0x87654321;

byte_pointer valp = (byte_pointer) &val;

show_bytes(valp, 1); /* A. */

show_bytes(valp, 2); /* B. */

show_bytes(valp, 3); /* C. */

46 Chapter 2 Representing and Manipulating Information

Indicate which of the following values will be printed by each call on a little-
endian machine and on a big-endian machine:

A. Little endian: Big endian:

B. Little endian: Big endian:

C. Little endian: Big endian:

Practice Problem 2.6
Using show_int and show_float, we determine that the integer 3510593 has hexa-
decimal representation 0x00359141, while the floating-point number 3510593.0
has hexadecimal representation 0x4A564504.

A. Write the binary representations of these two hexadecimal values.

B. Shift these two strings relative to one another to maximize the number of
matching bits. How many bits match?

C. What parts of the strings do not match?

2.1.5 Representing Strings

A string in C is encoded by an array of characters terminated by the null (having
value 0) character. Each character is represented by some standard encoding, with
the most common being the ASCII character code. Thus, if we run our routine
show_byteswith arguments "12345" and 6 (to include the terminating character),
we get the result 31 32 33 34 35 00. Observe that the ASCII code for decimal digit
x happens to be 0x3x, and that the terminating byte has the hex representation
0x00. This same result would be obtained on any system using ASCII as its
character code, independent of the byte ordering and word size conventions. As
a consequence, text data is more platform-independent than binary data.

Aside Generating an ASCII table

You can display a table showing the ASCII character code by executing the command man ascii.

Practice Problem 2.7
What would be printed as a result of the following call to show_bytes?

const char *s = "abcdef";

show_bytes((byte_pointer) s, strlen(s));

Note that letters ‘a’ through ‘z’ have ASCII codes 0x61 through 0x7A.

Section 2.1 Information Storage 47

Aside The Unicode standard for text encoding

The ASCII character set is suitable for encoding English-language documents, but it does not have
much in the way of special characters, such as the French ‘ç.’ It is wholly unsuited for encoding
documents in languages such as Greek, Russian, and Chinese. Over the years, a variety of methods
have been developed to encode text for different languages. The Unicode Consortium has devised the
most comprehensive and widely accepted standard for encoding text. The current Unicode standard
(version 5.0) has a repertoire of nearly 100,000 characters supporting languages ranging from Albanian
to Xamtanga (a language spoken by the Xamir people of Ethiopia).

The base encoding, known as the “Universal Character Set” of Unicode, uses a 32-bit representa-
tion of characters. This would seem to require every string of text to consist of 4 bytes per character.
However, alternative codings are possible where common characters require just 1 or 2 bytes, while
less common ones require more. In particular, the UTF-8 representation encodes each character as a
sequence of bytes, such that the standard ASCII characters use the same single-byte encodings as they
have in ASCII, implying that all ASCII byte sequences have the same meaning in UTF-8 as they do in
ASCII.

The Java programming language uses Unicode in its representations of strings. Program libraries
are also available for C to support Unicode.

2.1.6 Representing Code

Consider the following C function:

1 int sum(int x, int y) {

2 return x + y;

3 }

When compiled on our sample machines, we generate machine code having the
following byte representations:

Linux 32: 55 89 e5 8b 45 0c 03 45 08 c9 c3

Windows: 55 89 e5 8b 45 0c 03 45 08 5d c3

Sun: 81 c3 e0 08 90 02 00 09

Linux 64: 55 48 89 e5 89 7d fc 89 75 f8 03 45 fc c9 c3

Here we find that the instruction codings are different. Different machine types
use different and incompatible instructions and encodings. Even identical proces-
sors running different operating systems have differences in their coding conven-
tions and hence are not binary compatible. Binary code is seldom portable across
different combinations of machine and operating system.

A fundamental concept of computer systems is that a program, from the
perspective of the machine, is simply a sequence of bytes. The machine has no
information about the original source program, except perhaps some auxiliary
tables maintained to aid in debugging. We will see this more clearly when we study
machine-level programming in Chapter 3.

48 Chapter 2 Representing and Manipulating Information

~ & 0 1 | 0 1 ^ 0 1

0 1 0 0 0 0 0 1 0 0 1
1 0 1 0 1 1 1 1 1 1 0

Figure 2.7 Operations of Boolean algebra. Binary values 1 and 0 encode logic values
True and False, while operations ~, &, |, and ^ encode logical operations Not, And,
Or, and Exclusive-Or, respectively.

2.1.7 Introduction to Boolean Algebra

Since binary values are at the core of how computers encode, store, and manipu-
late information, a rich body of mathematical knowledge has evolved around the
study of the values 0 and 1. This started with the work of George Boole (1815–
1864) around 1850 and thus is known as Boolean algebra. Boole observed that by
encoding logic values True and False as binary values 1 and 0, he could formulate
an algebra that captures the basic principles of logical reasoning.

The simplest Boolean algebra is defined over the 2-element set {0, 1}. Fig-
ure 2.7 defines several operations in this algebra. Our symbols for representing
these operations are chosen to match those used by the C bit-level operations, as
will be discussed later. The Boolean operation ~ corresponds to the logical op-
eration Not, denoted by the symbol ¬. That is, we say that ¬P is true when P

is not true, and vice versa. Correspondingly, ~p equals 1 when p equals 0, and
vice versa. Boolean operation & corresponds to the logical operation And, de-
noted by the symbol ∧. We say that P ∧ Q holds when both P is true and Q is
true. Correspondingly, p & q equals 1 only when p = 1 and q = 1. Boolean opera-
tion | corresponds to the logical operation Or, denoted by the symbol ∨. We say
that P ∨ Q holds when either P is true or Q is true. Correspondingly, p | q equals
1 when either p = 1 or q = 1. Boolean operation ^ corresponds to the logical op-
eration Exclusive-Or, denoted by the symbol ⊕. We say that P ⊕ Q holds when
either P is true or Q is true, but not both. Correspondingly, p ^ q equals 1 when
either p = 1 and q = 0, or p = 0 and q = 1.

Claude Shannon (1916–2001), who later founded the field of information
theory, first made the connection between Boolean algebra and digital logic. In
his 1937 master’s thesis, he showed that Boolean algebra could be applied to the
design and analysis of networks of electromechanical relays. Although computer
technology has advanced considerably since, Boolean algebra still plays a central
role in the design and analysis of digital systems.

We can extend the four Boolean operations to also operate on bit vectors,
strings of zeros and ones of some fixed length w. We define the operations over
bit vectors according their applications to the matching elements of the arguments.
Let a and b denote the bit vectors [aw−1, aw−2, . . . , a0] and [bw−1, bw−2, . . . , b0],
respectively. We define a & b to also be a bit vector of length w, where the ith
element equals ai & bi, for 0 ≤ i < w. The operations |, ^, and ~ are extended to
bit vectors in a similar fashion.

Section 2.1 Information Storage 49

As examples, consider the case where w = 4, and with arguments a = [0110]
and b = [1100]. Then the four operations a & b, a | b, a ^ b, and ~b yield

0110 0110 0110
& 1100 | 1100 ^ 1100 ~ 1100

0100 1110 1010 0011

Practice Problem 2.8
Fill in the following table showing the results of evaluating Boolean operations on
bit vectors.

Operation Result

a [01101001]
b [01010101]

~a

~b

a & b

a | b

a ^ b

Web Aside DATA:BOOL More on Boolean algebra and Boolean rings

The Boolean operations |, &, and ~ operating on bit vectors of length w form a Boolean algebra, for
any integer w > 0. The simplest is the case where w = 1, and there are just two elements, but for
the more general case there are 2w bit vectors of length w. Boolean algebra has many of the same
properties as arithmetic over integers. For example, just as multiplication distributes over addition,
written a . (b + c) = (a . b) + (a . c), Boolean operation &distributes over |, written a & (b | c) = (a & b) |

(a & c). In addition, however, Boolean operation | distributes over &, and so we can write a | (b & c) =
(a | b) & (a | c), whereas we cannot say that a + (b . c) = (a + b) . (a + c) holds for all integers.

When we consider operations ^, &, and ~ operating on bit vectors of length w, we get a different
mathematical form, known as a Boolean ring. Boolean rings have many properties in common with
integer arithmetic. For example, one property of integer arithmetic is that every value x has an additive
inverse −x, such that x + −x = 0. A similar property holds for Boolean rings, where ^ is the “addition”
operation, but in this case each element is its own additive inverse. That is, a ^ a = 0 for any value a,
where we use 0 here to represent a bit vector of all zeros. We can see this holds for single bits, since
0 ^ 0 = 1^ 1 = 0, and it extends to bit vectors as well. This property holds even when we rearrange terms
and combine them in a different order, and so (a ^ b) ^ a = b. This property leads to some interesting
results and clever tricks, as we will explore in Problem 2.10.

One useful application of bit vectors is to represent finite sets. We can encode
any subset A ⊆ {0, 1, . . . , w − 1} with a bit vector [aw−1, . . . , a1, a0], where ai = 1 if
and only if i ∈ A. For example, recalling that we write aw−1 on the left and a0 on the

50 Chapter 2 Representing and Manipulating Information

right, bit vector a
.= [01101001]encodes the set A = {0, 3, 5, 6}, while bit vector b

.=
[01010101]encodes the set B = {0, 2, 4, 6}. With this way of encoding sets, Boolean
operations | and & correspond to set union and intersection, respectively, and ~
corresponds to set complement. Continuing our earlier example, the operation
a & b yields bit vector [01000001], while A ∩ B = {0, 6}.

We will see the encoding of sets by bit vectors in a number of practical
applications. For example, in Chapter 8, we will see that there are a number of
different signals that can interrupt the execution of a program. We can selectively
enable or disable different signals by specifying a bit-vector mask, where a 1 in
bit position i indicates that signal i is enabled, and a 0 indicates that it is disabled.
Thus, the mask represents the set of enabled signals.

Practice Problem 2.9
Computers generate color pictures on a video screen or liquid crystal display
by mixing three different colors of light: red, green, and blue. Imagine a simple
scheme, with three different lights, each of which can be turned on or off, project-
ing onto a glass screen:

Light sources Glass screen

Observer

Red

Green

Blue

We can then create eight different colors based on the absence (0) or presence (1)
of light sources R, G, and B:

R G B Color

0 0 0 Black
0 0 1 Blue
0 1 0 Green
0 1 1 Cyan
1 0 0 Red
1 0 1 Magenta
1 1 0 Yellow
1 1 1 White

Each of these colors can be represented as a bit vector of length 3, and we can
apply Boolean operations to them.

Section 2.1 Information Storage 51

A. The complement of a color is formed by turning off the lights that are on and
turning on the lights that are off. What would be the complement of each of
the eight colors listed above?

B. Describe the effect of applying Boolean operations on the following colors:

Blue | Green =
Yellow & Cyan =
Red ^ Magenta =

2.1.8 Bit-Level Operations in C

One useful feature of C is that it supports bit-wise Boolean operations. In fact, the
symbols we have used for the Boolean operations are exactly those used by C: |
for Or, & for And, ~ for Not, and ^ for Exclusive-Or. These can be applied to
any “integral” data type, that is, one declared as type char or int, with or without
qualifiers such as short, long, long long, or unsigned. Here are some examples
of expression evaluation for data type char:

C expression Binary expression Binary result Hexadecimal result

~0x41 ~[0100 0001] [1011 1110] 0xBE

~0x00 ~[0000 0000] [1111 1111] 0xFF

0x69 & 0x55 [0110 1001] & [0101 0101] [0100 0001] 0x41

0x69 | 0x55 [0110 1001] | [0101 0101] [0111 1101] 0x7D

As our examples show, the best way to determine the effect of a bit-level ex-
pression is to expand the hexadecimal arguments to their binary representations,
perform the operations in binary, and then convert back to hexadecimal.

Practice Problem 2.10
As an application of the property that a ^ a = 0 for any bit vector a, consider the
following program:

1 void inplace_swap(int *x, int *y) {

2 *y = *x ^ *y; /* Step 1 */

3 *x = *x ^ *y; /* Step 2 */

4 *y = *x ^ *y; /* Step 3 */

5 }

As the name implies, we claim that the effect of this procedure is to swap the
values stored at the locations denoted by pointer variables x and y. Note that
unlike the usual technique for swapping two values, we do not need a third
location to temporarily store one value while we are moving the other. There
is no performance advantage to this way of swapping; it is merely an intellectual
amusement.

52 Chapter 2 Representing and Manipulating Information

Starting with values a and b in the locations pointed to by x and y, respectively,
fill in the table that follows, giving the values stored at the two locations after each
step of the procedure. Use the properties of ^ to show that the desired effect is
achieved. Recall that every element is its own additive inverse (that is, a ^ a = 0).

Step *x *y

Initially a b

Step 1
Step 2
Step 3

Practice Problem 2.11
Armed with the function inplace_swap from Problem 2.10, you decide to write
code that will reverse the elements of an array by swapping elements from opposite
ends of the array, working toward the middle.

You arrive at the following function:

1 void reverse_array(int a[], int cnt) {

2 int first, last;

3 for (first = 0, last = cnt-1;

4 first <= last;

5 first++,last--)

6 inplace_swap(&a[first], &a[last]);

7 }

When you apply your function to an array containing elements 1, 2, 3, and 4, you
find the array now has, as expected, elements 4, 3, 2, and 1. When you try it on
an array with elements 1, 2, 3, 4, and 5, however, you are surprised to see that
the array now has elements 5, 4, 0, 2, and 1. In fact, you discover that the code
always works correctly on arrays of even length, but it sets the middle element to
0 whenever the array has odd length.

A. For an array of odd length cnt= 2k + 1, what are the values of variables
first and last in the final iteration of function reverse_array?

B. Why does this call to function xor_swap set the array element to 0?

C. What simple modification to the code for reverse_array would eliminate
this problem?

One common use of bit-level operations is to implement masking operations,
where a mask is a bit pattern that indicates a selected set of bits within a word. As
an example, the mask 0xFF (having ones for the least significant 8 bits) indicates
the low-order byte of a word. The bit-level operation x & 0xFF yields a value
consisting of the least significant byte of x, but with all other bytes set to 0.
For example, with x = 0x89ABCDEF, the expression would yield 0x000000EF.
The expression ~0 will yield a mask of all ones, regardless of the word size of

Section 2.1 Information Storage 53

the machine. Although the same mask can be written 0xFFFFFFFF for a 32-bit
machine, such code is not as portable.

Practice Problem 2.12
Write C expressions, in terms of variable x, for the following values. Your code
should work for any word size w ≥ 8. For reference, we show the result of evalu-
ating the expressions for x = 0x87654321, with w = 32.

A. The least significant byte of x, with all other bits set to 0. [0x00000021].

B. All but the least significant byte of x complemented, with the least significant
byte left unchanged. [0x789ABC21].

C. The least significant byte set to all 1s, and all other bytes of x left unchanged.
[0x876543FF].

Practice Problem 2.13
The Digital Equipment VAX computer was a very popular machine from the late
1970s until the late 1980s. Rather than instructions for Boolean operations And
and Or, it had instructions bis (bit set) and bic (bit clear). Both instructions take
a data word x and a mask word m. They generate a result z consisting of the bits of
x modified according to the bits of m. With bis, the modification involves setting
z to 1 at each bit position where m is 1. With bic, the modification involves setting
z to 0 at each bit position where m is 1.

To see how these operations relate to the C bit-level operations, assume we
have functions bis and bic implementing the bit set and bit clear operations, and
that we want to use these to implement functions computing bit-wise operations
| and ^, without using any other C operations. Fill in the missing code below.
Hint: Write C expressions for the operations bis and bic.

/* Declarations of functions implementing operations bis and bic */

int bis(int x, int m);

int bic(int x, int m);

/* Compute x|y using only calls to functions bis and bic */

int bool_or(int x, int y) {

int result = ;

return result;

}

/* Compute x^y using only calls to functions bis and bic */

int bool_xor(int x, int y) {

int result = ;

return result;

}

54 Chapter 2 Representing and Manipulating Information

2.1.9 Logical Operations in C

C also provides a set of logical operators ||, &&, and !, which correspond to the Or,
And, and Not operations of logic. These can easily be confused with the bit-level
operations, but their function is quite different. The logical operations treat any
nonzero argument as representing True and argument 0 as representing False.
They return either 1 or 0, indicating a result of either True or False, respectively.
Here are some examples of expression evaluation:

Expression Result

!0x41 0x00

!0x00 0x01

!!0x41 0x01

0x69 && 0x55 0x01

0x69 || 0x55 0x01

Observe that a bit-wise operation will have behavior matching that of its logical
counterpart only in the special case in which the arguments are restricted to 0 or 1.

A second important distinction between the logical operators && and || ver-
sus their bit-level counterparts & and | is that the logical operators do not evaluate
their second argument if the result of the expression can be determined by evaluat-
ing the first argument. Thus, for example, the expression a && 5/awill never cause
a division by zero, and the expression p && *p++will never cause the dereferencing
of a null pointer.

Practice Problem 2.14
Suppose that x and y have byte values 0x66 and 0x39, respectively. Fill in the
following table indicating the byte values of the different C expressions:

Expression Value Expression Value

x & y x && y

x | y x || y

~x | ~y !x || !y

x & !y x && ~y

Practice Problem 2.15
Using only bit-level and logical operations, write a C expression that is equivalent
to x == y. In other words, it will return 1 when x and y are equal, and 0 otherwise.

2.1.10 Shift Operations in C

C also provides a set of shift operations for shifting bit patterns to the left and
to the right. For an operand x having bit representation [xn−1, xn−2, . . . , x0],
the C expression x << k yields a value with bit representation [xn−k−1, xn−k−2,

Section 2.1 Information Storage 55

. . . , x0, 0, . . . 0]. That is, x is shifted k bits to the left, dropping off the k most
significant bits and filling the right end with k zeros. The shift amount should be a
value between 0 and n − 1. Shift operations associate from left to right, so x << j
<< k is equivalent to (x << j) << k.

There is a corresponding right shift operation x >> k, but it has a slightly
subtle behavior. Generally, machines support two forms of right shift: logical
and arithmetic. A logical right shift fills the left end with k zeros, giving a result
[0, . . . , 0, xn−1, xn−2, . . . xk]. An arithmetic right shift fills the left end with k repe-
titions of the most significant bit, giving a result [xn−1, . . . , xn−1, xn−1, xn−2, . . . xk].
This convention might seem peculiar, but as we will see it is useful for operating
on signed integer data.

As examples, the following table shows the effect of applying the different
shift operations to some sample 8-bit data:

Operation Values

Argument x [01100011] [10010101]
x << 4 [00110000] [01010000]
x >> 4 (logical) [00000110] [00001001]
x >> 4 (arithmetic) [00000110] [11111001]

The italicized digits indicate the values that fill the right (left shift) or left (right
shift) ends. Observe that all but one entry involves filling with zeros. The exception
is the case of shifting [10010101] right arithmetically. Since its most significant bit
is 1, this will be used as the fill value.

The C standards do not precisely define which type of right shift should
be used. For unsigned data (i.e., integral objects declared with the qualifier
unsigned), right shifts must be logical. For signed data (the default), either
arithmetic or logical shifts may be used. This unfortunately means that any code
assuming one form or the other will potentially encounter portability problems.
In practice, however, almost all compiler/machine combinations use arithmetic
right shifts for signed data, and many programmers assume this to be the case.

Java, on the other hand, has a precise definition of how right shifts should
be performed. The expression x >> k shifts x arithmetically by k positions, while
x >>> k shifts it logically.

Aside Shifting by k, for large values of k

For a data type consisting of w bits, what should be the effect of shifting by some value k ≥ w? For
example, what should be the effect of computing the following expressions on a 32-bit machine:

int lval = 0xFEDCBA98 << 32;

int aval = 0xFEDCBA98 >> 36;

unsigned uval = 0xFEDCBA98u >> 40;

56 Chapter 2 Representing and Manipulating Information

The C standards carefully avoid stating what should be done in such a case. On many machines, the shift
instructions consider only the lower log2 w bits of the shift amount when shifting a w-bit value, and so
the shift amount is effectively computed as k mod w. For example, on a 32-bit machine following this
convention, the above three shifts are computed as if they were by amounts 0, 4, and 8, respectively,
giving results

lval 0xFEDCBA98

aval 0xFFEDCBA9

uval 0x00FEDCBA

This behavior is not guaranteed for C programs, however, and so shift amounts should be kept less
than the word size.

Java, on the other hand, specifically requires that shift amounts should be computed in the modular
fashion we have shown.

Aside Operator precedence issues with shift operations

It might be tempting to write the expression 1<<2 + 3<<4, intending it to mean (1<<2) + (3<<4). But,
in C, the former expression is equivalent to 1 << (2+3) << 4, since addition (and subtraction) have
higher precedence than shifts. The left-to-right associativity rule then causes this to be parenthesized
as (1 << (2+3)) << 4, giving value 512, rather than the intended 52.

Getting the precedence wrong in C expressions is a common source of program errors, and often
these are difficult to spot by inspection. When in doubt, put in parentheses!

Practice Problem 2.16
Fill in the table below showing the effects of the different shift operations on single-
byte quantities. The best way to think about shift operations is to work with binary
representations. Convert the initial values to binary, perform the shifts, and then
convert back to hexadecimal. Each of the answers should be 8 binary digits or 2
hexadecimal digits.

(Logical) (Arithmetic)
x x << 3 x >> 2 x >> 2

Hex Binary Binary Hex Binary Hex Binary Hex

0xC3

0x75

0x87

0x66

2.2 Integer Representations

In this section, we describe two different ways bits can be used to encode integers—
one that can only represent nonnegative numbers, and one that can represent

Section 2.2 Integer Representations 57

C data type Minimum Maximum

char −128 127
unsigned char 0 255
short [int] −32,768 32,767
unsigned short [int] 0 65,535
int −2,147,483,648 2,147,483,647
unsigned [int] 0 4,294,967,295
long [int] −2,147,483,648 2,147,483,647
unsigned long [int] 0 4,294,967,295
long long [int] −9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned long long [int] 0 18,446,744,073,709,551,615

Figure 2.8 Typical ranges for C integral data types on a 32-bit machine. Text in
square brackets is optional.

C data type Minimum Maximum

char −128 127
unsigned char 0 255
short [int] −32,768 32,767
unsigned short [int] 0 65,535
int −2,147,483,648 2,147,483,647
unsigned [int] 0 4,294,967,295
long [int] −9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned long [int] 0 18,446,744,073,709,551,615
long long [int] −9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned long long [int] 0 18,446,744,073,709,551,615

Figure 2.9 Typical ranges for C integral data types on a 64-bit machine. Text in
square brackets is optional.

negative, zero, and positive numbers. We will see later that they are strongly
related both in their mathematical properties and their machine-level implemen-
tations. We also investigate the effect of expanding or shrinking an encoded integer
to fit a representation with a different length.

2.2.1 Integral Data Types

C supports a variety of integral data types—ones that represent finite ranges of
integers. These are shown in Figures 2.8 and 2.9, along with the ranges of values
they can have for “typical” 32- and 64-bit machines. Each type can specify a size
with keyword char, short, long, or long long, as well as an indication of whether
the represented numbers are all nonnegative (declared as unsigned), or possibly

58 Chapter 2 Representing and Manipulating Information

C data type Minimum Maximum

char −127 127
unsigned char 0 255
short [int] −32,767 32,767
unsigned short [int] 0 65,535
int −32,767 32,767
unsigned [int] 0 65,535
long [int] −2,147,483,647 2,147,483,647
unsigned long [int] 0 4,294,967,295
long long [int] −9,223,372,036,854,775,807 9,223,372,036,854,775,807
unsigned long long [int] 0 18,446,744,073,709,551,615

Figure 2.10 Guaranteed ranges for C integral data types. Text in square brackets is
optional. The C standards require that the data types have at least these ranges of values.

negative (the default). As we saw in Figure 2.3, the number of bytes allocated for
the different sizes vary according to machine’s word size and the compiler. Based
on the byte allocations, the different sizes allow different ranges of values to be
represented. The only machine-dependent range indicated is for size designator
long. Most 64-bit machines use an 8-byte representation, giving a much wider
range of values than the 4-byte representation used on 32-bit machines.

One important feature to note in Figures 2.8 and 2.9 is that the ranges are not
symmetric—the range of negative numbers extends one further than the range of
positive numbers. We will see why this happens when we consider how negative
numbers are represented.

The C standards define minimum ranges of values that each data type must
be able to represent. As shown in Figure 2.10, their ranges are the same or smaller
than the typical implementations shown in Figures 2.8 and 2.9. In particular, we see
that they require only a symmetric range of positive and negative numbers. We also
see that data type int could be implemented with 2-byte numbers, although this is
mostly a throwback to the days of 16-bit machines. We also see that size long could
be implemented with 4-byte numbers, as is often the case. Data type long long
was introduced with ISO C99, and it requires at least an 8-byte representation.

New to C? Signed and unsigned numbers in C, C++, and Java

Both C and C++ support signed (the default) and unsigned numbers. Java supports only signed numbers.

2.2.2 Unsigned Encodings

Assume we have an integer data type of w bits. We write a bit vector as either �x, to
denote the entire vector, or as [xw−1, xw−2, . . . , x0], to denote the individual bits
within the vector. Treating �x as a number written in binary notation, we obtain the

Section 2.2 Integer Representations 59

Figure 2.11
Unsigned number
examples for w = 4.
When bit i in the binary
representation has value
1, it contributes 2i to the
value. 161514131211109876543210

20 = 1

21 = 2

22 = 4

23 = 8

[0001]

[0101]

[1011]

[1111]

unsigned interpretation of �x. We express this interpretation as a function B2Uw

(for “binary to unsigned,” length w):

B2Uw(�x)
.=

w−1∑
i=0

xi2
i (2.1)

In this equation, the notation “ .=” means that the left-hand side is defined to be
equal to the right-hand side. The function B2Uw maps strings of zeros and ones
of length w to nonnegative integers. As examples, Figure 2.11 shows the mapping,
given by B2U , from bit vectors to integers for the following cases:

B2U4([0001]) = 0 . 23 + 0 . 22 + 0 . 21 + 1 . 20 = 0 + 0 + 0 + 1 = 1
B2U4([0101]) = 0 . 23 + 1 . 22 + 0 . 21 + 1 . 20 = 0 + 4 + 0 + 1 = 5
B2U4([1011]) = 1 . 23 + 0 . 22 + 1 . 21 + 1 . 20 = 8 + 0 + 2 + 1 = 11
B2U4([1111]) = 1 . 23 + 1 . 22 + 1 . 21 + 1 . 20 = 8 + 4 + 2 + 1 = 15

(2.2)

In the figure, we represent each bit position i by a rightward-pointing blue bar of
length 2i. The numeric value associated with a bit vector then equals the combined
length of the bars for which the corresponding bit values are 1.

Let us consider the range of values that can be represented using w bits. The
least value is given by bit vector [00 . . . 0] having integer value 0, and the greatest
value is given by bit vector [11 . . . 1] having integer value UMaxw

.= ∑w−1
i=0 2i =

2w − 1. Using the 4-bit case as an example, we have UMax4 = B2U4([1111]) =
24 − 1 = 15. Thus, the function B2Uw can be defined as a mapping B2Uw: {0, 1}w →
{0, . . . , 2w − 1}.

The unsigned binary representation has the important property that every
number between 0 and 2w − 1has a unique encoding as a w-bit value. For example,
there is only one representation of decimal value 11 as an unsigned, 4-bit number,
namely [1011]. This property is captured in mathematical terms by stating that
function B2Uw is a bijection—it associates a unique value to each bit vector of

60 Chapter 2 Representing and Manipulating Information

length w; conversely, each integer between 0 and 2w − 1 has a unique binary
representation as a bit vector of length w.

2.2.3 Two’s-Complement Encodings

For many applications, we wish to represent negative values as well. The most com-
mon computer representation of signed numbers is known as two’s-complement
form. This is defined by interpreting the most significant bit of the word to have
negative weight. We express this interpretation as a function B2Tw (for “binary
to two’s-complement” length w):

B2Tw(�x)
.= −xw−12w−1 +

w−2∑
i=0

xi2
i (2.3)

The most significant bit xw−1 is also called the sign bit. Its “weight” is − 2w−1, the
negation of its weight in an unsigned representation. When the sign bit is set to
1, the represented value is negative, and when set to 0 the value is nonnegative.
As examples, Figure 2.12 shows the mapping, given by B2T , from bit vectors to
integers for the following cases:

B2T4([0001]) = −0 . 23 + 0 . 22 + 0 . 21 + 1 . 20 = 0 + 0 + 0 + 1 = 1
B2T4([0101]) = −0 . 23 + 1 . 22 + 0 . 21 + 1 . 20 = 0 + 4 + 0 + 1 = 5
B2T4([1011]) = −1 . 23 + 0 . 22 + 1 . 21 + 1 . 20 = −8 + 0 + 2 + 1 = −5
B2T4([1111]) = −1 . 23 + 1 . 22 + 1 . 21 + 1 . 20 = −8 + 4 + 2 + 1 = −1

(2.4)

In the figure, we indicate that the sign bit has negative weight by showing it as
a leftward-pointing gray bar. The numeric value associated with a bit vector is
then given by the combination of the possible leftward-pointing gray bar and the
rightward-pointing blue bars.

Figure 2.12
Two’s-complement
number examples for
w = 4. Bit 3 serves as a
sign bit, and so, when
set to 1, it contributes
− 23 = −8 to the value. This
weighting is shown as a
leftward-pointing gray bar.

876543210–1–2–3–4–5–6–7–8

20 = 1

21 = 2

22 = 4

–23 = –8

[0001]

[0101]

[1011]

[1111]

Section 2.2 Integer Representations 61

We see that the bit patterns are identical for Figures 2.11 and 2.12 (as well as
for Equations 2.2 and 2.4), but the values differ when the most significant bit is 1,
since in one case it has weight +8, and in the other case it has weight −8.

Let us consider the range of values that can be represented as a w-bit two’s-
complement number. The least representable value is given by bit vector [10 . . . 0]
(set the bit with negative weight, but clear all others), having integer value
TMinw

.= − 2w−1. The greatest value is given by bit vector [01 . . . 1] (clear the bit
with negative weight, but set all others), having integer value TMaxw

.= ∑w−2
i=0 2i =

2w−1 − 1. Using the 4-bit case as an example, we have TMin4 = B2T4([1000]) =
− 23 = −8, and TMax4 = B2T4([0111]) = 22 + 21 + 20 = 4 + 2 + 1 = 7.

We can see that B2Tw is a mapping of bit patterns of length w to numbers be-
tween TMinw and TMaxw, written as B2Tw: {0, 1}w → {− 2w−1, . . . , 2w−1 − 1}. As
we saw with the unsigned representation, every number within the representable
range has a unique encoding as a w-bit two’s-complement number. In mathemat-
ical terms, we say that the function B2Tw is a bijection—it associates a unique
value to each bit vector of length w; conversely, each integer between − 2w−1 and
2w−1 − 1 has a unique binary representation as a bit vector of length w.

Practice Problem 2.17
Assuming w = 4, we can assign a numeric value to each possible hexadecimal
digit, assuming either an unsigned or a two’s-complement interpretation. Fill in
the following table according to these interpretations by writing out the nonzero
powers of two in the summations shown in Equations 2.1 and 2.3:

�x
Hexadecimal Binary B2U4(�x) B2T4(�x)

0xE [1110] 23 + 22 + 21 = 14 −23 + 22 + 21 = −2
0x0

0x5

0x8

0xD

0xF

Figure 2.13 shows the bit patterns and numeric values for several important
numbers for different word sizes. The first three give the ranges of representable
integers in terms of the values of UMaxw, TMinw, and TMaxw. We will refer
to these three special values often in the ensuing discussion. We will drop the
subscript w and refer to the values UMax, TMin, and TMax when w can be inferred
from context or is not central to the discussion.

A few points are worth highlighting about these numbers. First, as observed
in Figures 2.8 and 2.9, the two’s-complement range is asymmetric: |TMin| =
|TMax| + 1, that is, there is no positive counterpart to TMin. As we shall see,
this leads to some peculiar properties of two’s-complement arithmetic and can be

62 Chapter 2 Representing and Manipulating Information

Word size w

Value 8 16 32 64

UMaxw 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF

255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMinw 0x80 0x8000 0x80000000 0x8000000000000000

−128 −32,768 −2,147,483,648 −9,223,372,036,854,775,808
TMaxw 0x7F 0x7FFF 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF

127 32,767 2,147,483,647 9,223,372,036,854,775,807
−1 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF

0 0x00 0x0000 0x00000000 0x0000000000000000

Figure 2.13 Important numbers. Both numeric values and hexadecimal representations
are shown.

the source of subtle program bugs. This asymmetry arises, because half the bit pat-
terns (those with the sign bit set to 1) represent negative numbers, while half (those
with the sign bit set to 0) represent nonnegative numbers. Since 0 is nonnegative,
this means that it can represent one less positive number than negative. Second,
the maximum unsigned value is just over twice the maximum two’s-complement
value: UMax = 2TMax + 1. All of the bit patterns that denote negative numbers
in two’s-complement notation become positive values in an unsigned representa-
tion. Figure 2.13 also shows the representations of constants −1 and 0. Note that
−1 has the same bit representation as UMax—a string of all ones. Numeric value
0 is represented as a string of all zeros in both representations.

The C standards do not require signed integers to be represented in two’s-
complement form, but nearly all machines do so. Programmers who are con-
cerned with maximizing portability across all possible machines should not assume
any particular range of representable values, beyond the ranges indicated in Fig-
ure 2.10, nor should they assume any particular representation of signed numbers.
On the other hand, many programs are written assuming a two’s-complement
representation of signed numbers, and the “typical” ranges shown in Figures 2.8
and 2.9, and these programs are portable across a broad range of machines and
compilers. The file <limits.h> in the C library defines a set of constants delim-
iting the ranges of the different integer data types for the particular machine on
which the compiler is running. For example, it defines constants INT_MAX, INT_
MIN, and UINT_MAX describing the ranges of signed and unsigned integers. For a
two’s-complement machine in which data type int has w bits, these constants
correspond to the values of TMaxw, TMinw, and UMaxw.

Aside Exact-size integer types

For some programs, it is essential that data types be encoded using representations with specific sizes.
For example, when writing programs to enable a machine to communicate over the Internet according
to a standard protocol, it is important to have data types compatible with those specified by the protocol.

Section 2.2 Integer Representations 63

We have seen that some C data types, especially long, have different ranges on different machines, and
in fact the C standards only specify the minimum ranges for any data type, and not the exact ranges.
Although we can choose data types that will be compatible with standard representations on most
machines, there is not guarantee of portability.

The ISO C99 standard introduces another class of integer types in the file stdint.h. This file
defines a set of data types with declarations of the form intN_t and uintN_t, specifying N -bit signed
and unsigned integers, for different values of N . The exact values of N are implementation dependent,
but most compilers allow values of 8, 16, 32, and 64. Thus, we can unambiguously declare an unsigned,
16-bit variable by giving it type uint16_t, and a signed variable of 32 bits as int32_t.

Along with these data types are a set of macros defining the minimum and maximum values for
each value of N . These have names of the form INTN_MIN, INTN_MAX, and UINTN_MAX.

The Java standard is quite specific about integer data type ranges and repre-
sentations. It requires a two’s-complement representation with the exact ranges
shown for the 64-bit case (Figure 2.9). In Java, the single-byte data type is called
byte instead of char, and there is no long long data type. These detailed require-
ments are intended to enable Java programs to behave identically regardless of
the machines running them.

Aside Alternative representations of signed numbers

There are two other standard representations for signed numbers:

Ones’ Complement: This is the same as two’s complement, except that the most
significant bit has weight −(2w−1 − 1) rather than − 2w−1:

B2Ow(�x)
.= −xw−1(2

w−1 − 1) +
w−2∑
i=0

xi2
i

Sign-Magnitude: The most significant bit is a sign bit that determines whether
the remaining bits should be given negative or positive
weight:

B2Sw(�x)
.= (−1)xw−1 .

(
w−2∑
i=0

xi2
i

)

Both of these representations have the curious property that there are two different encodings of the
number 0. For both representations, [00 . . . 0] is interpreted as +0. The value −0 can be represented
in sign-magnitude form as [10 . . . 0] and in ones’-complement as [11 . . . 1]. Although machines based
on ones’-complement representations were built in the past, almost all modern machines use two’s
complement. We will see that sign-magnitude encoding is used with floating-point numbers.

Note the different position of apostrophes: Two’s complement versus Ones’ complement. The term
“two’s complement” arises from the fact that for nonnegative x we compute a w-bit representation
of −x as 2w − x (a single two). The term “ones’ complement” comes from the property that we can
compute −x in this notation as [111 . . . 1] − x (multiple ones).

64 Chapter 2 Representing and Manipulating Information

12,345 −12,345 53,191

Weight Bit Value Bit Value Bit Value

1 1 1 1 1 1 1
2 0 0 1 2 1 2
4 0 0 1 4 1 4
8 1 8 0 0 0 0

16 1 16 0 0 0 0
32 1 32 0 0 0 0
64 0 0 1 64 1 64

128 0 0 1 128 1 128
256 0 0 1 256 1 256
512 0 0 1 512 1 512

1,024 0 0 1 1,024 1 1,024
2,048 0 0 1 2,048 1 2,048
4,096 1 4,096 0 0 0 0
8,192 1 8,192 0 0 0 0

16,384 0 0 1 16,384 1 16,384
±32,768 0 0 1 −32,768 1 32,768

Total 12,345 −12,345 53,191

Figure 2.14 Two’s-complement representations of 12,345 and −12,345, and
unsigned representation of 53,191. Note that the latter two have identical bit
representations.

As an example, consider the following code:

1 short x = 12345;

2 short mx = -x;

3

4 show_bytes((byte_pointer) &x, sizeof(short));

5 show_bytes((byte_pointer) &mx, sizeof(short));

When run on a big-endian machine, this code prints 30 39 and cf c7, indi-
cating that x has hexadecimal representation 0x3039, while mx has hexadeci-
mal representation 0xCFC7. Expanding these into binary, we get bit patterns
[0011000000111001] for x and [1100111111000111] for mx. As Figure 2.14 shows,
Equation 2.3 yields values 12,345 and −12,345 for these two bit patterns.

Practice Problem 2.18
In Chapter 3, we will look at listings generated by a disassembler, a program that
converts an executable program file back to a more readable ASCII form. These
files contain many hexadecimal numbers, typically representing values in two’s-
complement form. Being able to recognize these numbers and understand their

Section 2.2 Integer Representations 65

significance (for example, whether they are negative or positive) is an important
skill.

For the lines labeled A–J (on the right) in the following listing, convert the
hexadecimal values (in 32-bit two’s-complement form) shown to the right of the
instruction names (sub, mov, and add) into their decimal equivalents:

8048337: 81 ec b8 01 00 00 sub $0x1b8,%esp A.

804833d: 8b 55 08 mov 0x8(%ebp),%edx

8048340: 83 c2 14 add $0x14,%edx B.

8048343: 8b 85 58 fe ff ff mov 0xfffffe58(%ebp),%eax C.

8048349: 03 02 add (%edx),%eax

804834b: 89 85 74 fe ff ff mov %eax,0xfffffe74(%ebp) D.

8048351: 8b 55 08 mov 0x8(%ebp),%edx

8048354: 83 c2 44 add $0x44,%edx E.

8048357: 8b 85 c8 fe ff ff mov 0xfffffec8(%ebp),%eax F.

804835d: 89 02 mov %eax,(%edx)

804835f: 8b 45 10 mov 0x10(%ebp),%eax G.

8048362: 03 45 0c add 0xc(%ebp),%eax H.

8048365: 89 85 ec fe ff ff mov %eax,0xfffffeec(%ebp) I.

804836b: 8b 45 08 mov 0x8(%ebp),%eax

804836e: 83 c0 20 add $0x20,%eax J.

8048371: 8b 00 mov (%eax),%eax

2.2.4 Conversions Between Signed and Unsigned

C allows casting between different numeric data types. For example, suppose
variable x is declared as int and u as unsigned. The expression (unsigned) x
converts the value of x to an unsigned value, and (int) u converts the value of u
to a signed integer. What should be the effect of casting signed value to unsigned,
or vice versa? From a mathematical perspective, one can imagine several different
conventions. Clearly, we want to preserve any value that can be represented in
both forms. On the other hand, converting a negative value to unsigned might yield
zero. Converting an unsigned value that is too large to be represented in two’s-
complement form might yield TMax. For most implementations of C, however,
the answer to this question is based on a bit-level perspective, rather than on a
numeric one.

For example, consider the following code:

1 short int v = -12345;

2 unsigned short uv = (unsigned short) v;

3 printf("v = %d, uv = %u\n", v, uv);

When run on a two’s-complement machine, it generates the following output:

v = -12345, uv = 53191

What we see here is that the effect of casting is to keep the bit values identical
but change how these bits are interpreted. We saw in Figure 2.14 that the 16-bit

66 Chapter 2 Representing and Manipulating Information

two’s-complement representation of −12,345 is identical to the 16-bit unsigned
representation of 53,191. Casting from short int to unsigned short changed the
numeric value, but not the bit representation.

Similarly, consider the following code:

1 unsigned u = 4294967295u; /* UMax_32 */

2 int tu = (int) u;

3 printf("u = %u, tu = %d\n", u, tu);

When run on a two’s-complement machine, it generates the following output:

u = 4294967295, tu = -1

We can see from Figure 2.13 that, for a 32-bit word size, the bit patterns represent-
ing 4,294,967,295 (UMax32) in unsigned form and −1 in two’s-complement form
are identical. In casting from unsigned int to int, the underlying bit representa-
tion stays the same.

This is a general rule for how most C implementations handle conversions
between signed and unsigned numbers with the same word size—the numeric
values might change, but the bit patterns do not. Let us capture this principle
in a more mathematical form. Since both B2Uw and B2Tw are bijections, they
have well-defined inverses. Define U2Bw to be B2U−1

w
, and T2Bw to be B2T−1

w
.

These functions give the unsigned or two’s-complement bit patterns for a numeric
value. That is, given an integer x in the range 0 ≤ x < 2w, the function U2Bw(x)

gives the unique w-bit unsigned representation of x. Similarly, when x is in the
range − 2w−1 ≤ x < 2w−1, the function T2Bw(x) gives the unique w-bit two’s-
complement representation of x. Observe that for values in the range 0 ≤ x < 2w−1,
both of these functions will yield the same bit representation—the most significant
bit will be 0, and hence it does not matter whether this bit has positive or negative
weight.

Now define the function U2Tw as U2Tw(x)
.= B2Tw(U2Bw(x)). This function

takes a number between 0 and 2w − 1 and yields a number between − 2w−1 and
2w−1 − 1, where the two numbers have identical bit representations, except that
the argument is unsigned, while the result has a two’s-complement representa-
tion. Similarly, for x between − 2w−1 and 2w−1 − 1, the function T2Uw, defined as
T2Uw(x)

.= B2Uw(T2Bw(x)), yields the number having the same unsigned repre-
sentation as the two’s-complement representation of x.

Pursuing our earlier examples, we see from Figure 2.14 that T2U16(−12,345)
= 53,191, and U2T16(53,191) = −12,345. That is, the 16-bit pattern written in
hexadecimal as 0xCFC7 is both the two’s-complement representation of −12,345
and the unsigned representation of 53,191. Similarly, from Figure 2.13, we see that
T2U32(−1) = 4,294,967,295, and U2T32(4,294,967,295) = −1. That is, UMax has
the same bit representation in unsigned form as does −1 in two’s-complement
form.

We see, then, that function U2T describes the conversion of an unsigned
number to its 2-complement counterpart, while T2U converts in the opposite

Section 2.2 Integer Representations 67

direction. These describe the effect of casting between these data types in most C
implementations.

Practice Problem 2.19
Using the table you filled in when solving Problem 2.17, fill in the following table
describing the function T2U4:

x T2U4(x)

−8
−3
−2
−1

0
5

To get a better understanding of the relation between a signed number x and
its unsigned counterpart T2Uw(x), we can use the fact that they have identical bit
representations to derive a numerical relationship. Comparing Equations 2.1 and
2.3, we can see that for bit pattern �x, if we compute the difference B2Uw(�x) −
B2Tw(�x), the weighted sums for bits from 0 to w − 2 will cancel each other,
leaving a value: B2Uw(�x) − B2Tw(�x) = xw−1(2

w−1 − − 2w−1) = xw−12w. This gives
a relationship B2Uw(�x) = xw−12w + B2Tw(�x). If we let �x = T2Bw(x), we then have

B2Uw(T2Bw(x)) = T2Uw(x) = xw−12w + x (2.5)

This relationship is useful for proving relationships between unsigned and two’s-
complement arithmetic. In the two’s-complement representation of x, bit xw−1
determines whether or not x is negative, giving

T2Uw(x) =
{

x + 2w, x < 0
x, x ≥ 0

(2.6)

As examples, Figure 2.15 compares how functions B2U and B2T assign values
to bit patterns for w = 4. For the two’s-complement case, the most significant
bit serves as the sign bit, which we diagram as a gray, leftward-pointing bar.
For the unsigned case, this bit has positive weight, which we show as a black,
rightward-pointing bar. In going from two’s complement to unsigned, the most
significant bit changes its weight from −8 to +8. As a consequence, the values
that are negative in a two’s-complement representation increase by 24 = 16 with
an unsigned representation. Thus, −5 becomes +11, and −1 becomes +15.

Figure 2.16 illustrates the general behavior of function T2U . As it shows, when
mapping a signed number to its unsigned counterpart, negative numbers are con-
verted to large positive numbers, while nonnegative numbers remain unchanged.

68 Chapter 2 Representing and Manipulating Information

87654321 1615141312111090–1–2–3–4–5–6–7–8

20 = 1

21 = 2

22 = 4

–23 = –8

[1011]

[1111]

23 = 8

+16

+16

Figure 2.15 Comparing unsigned and two’s-complement representations for w = 4.
The weight of the most significant bit is −8 for two’s complement, and +8 for unsigned,
yielding a net difference of 16.

Figure 2.16
Conversion from two’s
complement to unsigned.
Function T2U converts
negative numbers to large
positive numbers.

�2w�1

0

�2w�1

2w

0

2w�1

Two’s
complement

Unsigned

Practice Problem 2.20
Explain how Equation 2.6 applies to the entries in the table you generated when
solving Problem 2.19.

Going in the other direction, we wish to derive the relationship between an
unsigned number u and its signed counterpart U2Tw(u), both having bit repre-
sentations �u = U2Bw(u). We have

B2Tw(U2Bw(u)) = U2Tw(u) = −uw−12w + u (2.7)

In the unsigned representation of u, bit uw−1 determines whether or not u is greater
than or equal to 2w−1, giving

U2Tw(u) =
{

u, u < 2w−1

u − 2w, u ≥ 2w−1 (2.8)

Section 2.2 Integer Representations 69

Figure 2.17
Conversion from un-
signed to two’s com-
plement. Function U2T
converts numbers greater
than 2w−1 − 1 to negative
values.

�2w�1

0

�2w�1

2w

0

2w�1

Two’s
complement

Unsigned

This behavior is illustrated in Figure 2.17. For small (< 2w−1) numbers, the conver-
sion from unsigned to signed preserves the numeric value. Large (≥ 2w−1) numbers
are converted to negative values.

To summarize, we considered the effects of converting in both directions be-
tween unsigned and two’s-complement representations. For values x in the range
0 ≤ x < 2w−1, we have T2Uw(x) = x and U2Tw(x) = x. That is, numbers in this
range have identical unsigned and two’s-complement representations. For val-
ues outside of this range, the conversions either add or subtract 2w. For exam-
ple, we have T2Uw(−1) = −1 + 2w = UMaxw—the negative number closest to
0 maps to the largest unsigned number. At the other extreme, one can see that
T2Uw(TMinw) = − 2w−1 + 2w = 2w−1 = TMaxw + 1—the most negative number
maps to an unsigned number just outside the range of positive, two’s-complement
numbers. Using the example of Figure 2.14, we can see that T2U16(−12,345) =
65,536 + −12,345 = 53,191.

2.2.5 Signed vs. Unsigned in C

As indicated in Figures 2.8 and 2.9, C supports both signed and unsigned arithmetic
for all of its integer data types. Although the C standard does not specify a particu-
lar representation of signed numbers, almost all machines use two’s complement.
Generally, most numbers are signed by default. For example, when declaring a
constant such as 12345 or 0x1A2B, the value is considered signed. Adding charac-
ter ‘U’ or ‘u’ as a suffix creates an unsigned constant, e.g., 12345U or 0x1A2Bu.

C allows conversion between unsigned and signed. The rule is that the under-
lying bit representation is not changed. Thus, on a two’s-complement machine, the
effect is to apply the function U2Tw when converting from unsigned to signed, and
T2Uw when converting from signed to unsigned, where w is the number of bits
for the data type.

Conversions can happen due to explicit casting, such as in the following code:

1 int tx, ty;

2 unsigned ux, uy;

3

4 tx = (int) ux;

5 uy = (unsigned) ty;

70 Chapter 2 Representing and Manipulating Information

Alternatively, they can happen implicitly when an expression of one type is as-
signed to a variable of another, as in the following code:

1 int tx, ty;

2 unsigned ux, uy;

3

4 tx = ux; /* Cast to signed */

5 uy = ty; /* Cast to unsigned */

When printing numeric values with printf, the directives %d, %u, and %x
are used to print a number as a signed decimal, an unsigned decimal, and in
hexadecimal format, respectively. Note that printf does not make use of any type
information, and so it is possible to print a value of type int with directive %u and
a value of type unsigned with directive %d. For example, consider the following
code:

1 int x = -1;

2 unsigned u = 2147483648; /* 2 to the 31st */

3

4 printf("x = %u = %d\n", x, x);

5 printf("u = %u = %d\n", u, u);

When run on a 32-bit machine, it prints the following:

x = 4294967295 = -1

u = 2147483648 = -2147483648

In both cases, printf prints the word first as if it represented an unsigned number,
and second as if it represented a signed number. We can see the conversion
routines in action: T2U32(−1) = UMax32 = 232 − 1 and U2T32(2

31) = 231 − 232 =
− 231 = TMin32.

Some of the peculiar behavior arises due to C’s handling of expressions con-
taining combinations of signed and unsigned quantities. When an operation is
performed where one operand is signed and the other is unsigned, C implicitly
casts the signed argument to unsigned and performs the operations assuming
the numbers are nonnegative. As we will see, this convention makes little dif-
ference for standard arithmetic operations, but it leads to nonintuitive results
for relational operators such as < and >. Figure 2.18 shows some sample rela-
tional expressions and their resulting evaluations, assuming a 32-bit machine us-
ing two’s-complement representation. Consider the comparison -1 < 0U. Since
the second operand is unsigned, the first one is implicitly cast to unsigned, and
hence the expression is equivalent to the comparison 4294967295U < 0U (recall
that T2Uw(−1) = UMaxw), which of course is false. The other cases can be under-
stood by similar analyses.

Practice Problem 2.21
Assuming the expressions are evaluated on a 32-bit machine that uses two’s-
complement arithmetic, fill in the following table describing the effect of casting
and relational operations, in the style of Figure 2.18:

Section 2.2 Integer Representations 71

Expression Type Evaluation

-2147483647-1 == 2147483648U

-2147483647-1 < 2147483647

-2147483647-1U < 2147483647

-2147483647-1 < -2147483647

-2147483647-1U < -2147483647

Web Aside DATA:TMIN Writing TMin in C

In Figure 2.18 and in Problem 2.21, we carefully wrote the value of TMin32 as -2147483647-1. Why
not simply write it as either -2147483648 or 0x80000000? Looking at the C header file limits.h, we
see that they use a similar method as we have to write TMin32 and TMax32:

/* Minimum and maximum values a ‘signed int’ can hold. */

#define INT_MAX 2147483647

#define INT_MIN (-INT_MAX - 1)

Unfortunately, a curious interaction between the asymmetry of the two’s-complement representation
and the conversion rules of C force us to write TMin32 in this unusual way. Although understanding
this issue requires us to delve into one of the murkier corners of the C language standards, it will help
us appreciate some of the subtleties of integer data types and representations.

2.2.6 Expanding the Bit Representation of a Number

One common operation is to convert between integers having different word sizes
while retaining the same numeric value. Of course, this may not be possible when
the destination data type is too small to represent the desired value. Converting
from a smaller to a larger data type, however, should always be possible. To convert

Expression Type Evaluation

0 == 0U unsigned 1

-1 < 0 signed 1

-1 < 0U unsigned 0 *
2147483647 > -2147483647-1 signed 1

2147483647U > -2147483647-1 unsigned 0 *
2147483647 > (int) 2147483648U signed 1 *
-1 > -2 signed 1

(unsigned) -1 > -2 unsigned 1

Figure 2.18 Effects of C promotion rules. Nonintuitive cases marked by ‘*’. When
either operand of a comparison is unsigned, the other operand is implicitly cast to
unsigned. See Web Aside data:tmin for why we write TMin32 as -2147483647-1.

72 Chapter 2 Representing and Manipulating Information

an unsigned number to a larger data type, we can simply add leading zeros to the
representation; this operation is known as zero extension. For converting a two’s-
complement number to a larger data type, the rule is to perform a sign extension,
adding copies of the most significant bit to the representation. Thus, if our original
value has bit representation [xw−1, xw−2, . . . , x0], the expanded representation
is [xw−1, . . . , xw−1, xw−1, xw−2, . . . , x0]. (We show the sign bit xw−1 in blue to
highlight its role in sign extension.)

As an example, consider the following code:

1 short sx = -12345; /* -12345 */

2 unsigned short usx = sx; /* 53191 */

3 int x = sx; /* -12345 */

4 unsigned ux = usx; /* 53191 */

5

6 printf("sx = %d:\t", sx);

7 show_bytes((byte_pointer) &sx, sizeof(short));

8 printf("usx = %u:\t", usx);

9 show_bytes((byte_pointer) &usx, sizeof(unsigned short));

10 printf("x = %d:\t", x);

11 show_bytes((byte_pointer) &x, sizeof(int));

12 printf("ux = %u:\t", ux);

13 show_bytes((byte_pointer) &ux, sizeof(unsigned));

When run on a 32-bit big-endian machine using a two’s-complement representa-
tion, this code prints the output

sx = -12345: cf c7

usx = 53191: cf c7

x = -12345: ff ff cf c7

ux = 53191: 00 00 cf c7

We see that although the two’s-complement representation of −12,345 and the
unsigned representation of 53,191 are identical for a 16-bit word size, they dif-
fer for a 32-bit word size. In particular, −12,345 has hexadecimal representation
0xFFFFCFC7, while 53,191 has hexadecimal representation 0x0000CFC7. The for-
mer has been sign extended—16 copies of the most significant bit 1, having hexa-
decimal representation 0xFFFF, have been added as leading bits. The latter has
been extended with 16 leading zeros, having hexadecimal representation 0x0000.

As an illustration, Figure 2.19 shows the result of applying expanding from
word size w = 3 to w = 4 by sign extension. Bit vector [101] represents the value
−4 + 1 = −3. Applying sign extension gives bit vector [1101] representing the
value −8 + 4 + 1 = −3. We can see that, for w = 4, the combined value of the
two most significant bits is −8 + 4 = −4, matching the value of the sign bit for
w = 3. Similarly, bit vectors [111] and [1111] both represent the value −1.

Can we justify that sign extension works? What we want to prove is that

B2Tw+k([xw−1, . . . , xw−1︸ ︷︷ ︸
k times

, xw−1, xw−2, . . . , x0]) = B2Tw([xw−1, xw−2, . . . , x0])

Section 2.2 Integer Representations 73

Figure 2.19
Examples of sign exten-
sion from w = 3 to w = 4.
For w = 4, the combined
weight of the upper 2 bits
is −8 + 4 = −4, matching
that of the sign bit for
w = 3. 876543210–1–2–3–4–5–6–7–8

20 = 1

21 = 2

22 = 4

–23 = –8

[101]

[1101]

[111]

[1111]

–22 = –4

where, in the expression on the left-hand side, we have made k additional copies
of bit xw−1. The proof follows by induction on k. That is, if we can prove that sign
extending by 1 bit preserves the numeric value, then this property will hold when
sign extending by an arbitrary number of bits. Thus, the task reduces to proving
that

B2Tw+1([xw−1, xw−1, xw−2, . . . , x0]) = B2Tw([xw−1, xw−2, . . . , x0])

Expanding the left-hand expression with Equation 2.3 gives the following:

B2Tw+1([xw−1, xw−1, xw−2, . . . , x0]) = −xw−12w +
w−1∑
i=0

xi2
i

= −xw−12w + xw−12w−1 +
w−2∑
i=0

xi2
i

= −xw−1

(
2w − 2w−1

)
+

w−2∑
i=0

xi2
i

= −xw−12w−1 +
w−2∑
i=0

xi2
i

= B2Tw([xw−1, xw−2, . . . , x0])

The key property we exploit is that 2w − 2w−1 = 2w−1. Thus, the combined effect
of adding a bit of weight − 2w and of converting the bit having weight − 2w−1 to
be one with weight 2w−1 is to preserve the original numeric value.

74 Chapter 2 Representing and Manipulating Information

Practice Problem 2.22
Show that each of the following bit vectors is a two’s-complement representation
of −5 by applying Equation 2.3:

A. [1011]

B. [11011]

C. [111011]

Observe that the second and third bit vectors can be derived from the first by sign
extension.

One point worth making is that the relative order of conversion from one
data size to another and between unsigned and signed can affect the behavior of
a program. Consider the following code:

1 short sx = -12345; /* -12345 */

2 unsigned uy = sx; /* Mystery! */

3

4 printf("uy = %u:\t", uy);

5 show_bytes((byte_pointer) &uy, sizeof(unsigned));

When run on a big-endian machine, this code causes the following output to be
printed:

uy = 4294954951: ff ff cf c7

This shows that when converting from short to unsigned, we first change the
size and then from signed to unsigned. That is, (unsigned) sx is equivalent to
(unsigned) (int) sx, evaluating to 4,294,954,951, not (unsigned) (unsigned
short) sx, which evaluates to 53,191. Indeed this convention is required by the
C standards.

Practice Problem 2.23
Consider the following C functions:

int fun1(unsigned word) {

return (int) ((word << 24) >> 24);

}

int fun2(unsigned word) {

return ((int) word << 24) >> 24;

}

Assume these are executed on a machine with a 32-bit word size that uses two’s-
complement arithmetic. Assume also that right shifts of signed values are per-
formed arithmetically, while right shifts of unsigned values are performed logically.

Section 2.2 Integer Representations 75

A. Fill in the following table showing the effect of these functions for several
example arguments. You will find it more convenient to work with a hexa-
decimal representation. Just remember that hex digits 8 through F have their
most significant bits equal to 1.

w fun1(w) fun2(w)

0x00000076

0x87654321

0x000000C9

0xEDCBA987

B. Describe in words the useful computation each of these functions performs.

2.2.7 Truncating Numbers

Suppose that, rather than extending a value with extra bits, we reduce the number
of bits representing a number. This occurs, for example, in the code:

1 int x = 53191;

2 short sx = (short) x; /* -12345 */

3 int y = sx; /* -12345 */

On a typical 32-bit machine, when we cast x to be short, we truncate the
32-bit int to be a 16-bit short int. As we saw before, this 16-bit pattern is the
two’s-complement representation of −12,345. When we cast this back to int,
sign extension will set the high-order 16 bits to ones, yielding the 32-bit two’s-
complement representation of −12,345.

When truncating a w-bit number �x = [xw−1, xw−2, . . . , x0] to a k-bit number,
we drop the high-order w − k bits, giving a bit vector �x′ = [xk−1, xk−2, . . . , x0].
Truncating a number can alter its value—a form of overflow. We now investigate
what numeric value will result. For an unsigned number x, the result of truncating
it to k bits is equivalent to computing x mod 2k. This can be seen by applying the
modulus operation to Equation 2.1:

B2Uw([xw−1, xw−2, . . . , x0]) mod 2k =
[

w−1∑
i=0

xi2
i

]
mod 2k

=
[

k−1∑
i=0

xi2
i

]
mod 2k

=
k−1∑
i=0

xi2
i

= B2Uk([xk−1, xk−2, . . . , x0])

76 Chapter 2 Representing and Manipulating Information

In this derivation, we make use of the property that 2i mod 2k = 0 for any i ≥ k,
and that

∑k−1
i=0 xi2

i ≤ ∑k−1
i=0 2i = 2k − 1 < 2k.

For a two’s-complement number x, a similar argument shows that
B2Tw([xw−1, xw−2, . . . , x0]) mod 2k = B2Uk([xk−1, xk−2, . . . , x0]). That is, x mod
2k can be represented by an unsigned number having bit-level representation
[xk−1, xk−2, . . . , x0]. In general, however, we treat the truncated number as being
signed. This will have numeric value U2Tk(x mod 2k).

Summarizing, the effect of truncation for unsigned numbers is

B2Uk([xk−1, xk−2, . . . , x0]) = B2Uw([xw−1, xw−2, . . . , x0]) mod 2k, (2.9)

while the effect for two’s-complement numbers is

B2Tk([xk−1, xk−2, . . . , x0]) = U2Tk(B2Uw([xw−1, xw−2, . . . , x0]) mod 2k) (2.10)

Practice Problem 2.24
Suppose we truncate a 4-bit value (represented by hex digits 0 through F) to a 3-
bit value (represented as hex digits 0 through 7). Fill in the table below showing
the effect of this truncation for some cases, in terms of the unsigned and two’s-
complement interpretations of those bit patterns.

Hex Unsigned Two’s complement

Original Truncated Original Truncated Original Truncated

0 0 0 0
2 2 2 2
9 1 9 −7
B 3 11 −5
F 7 15 −1

Explain how Equations 2.9 and 2.10 apply to these cases.

2.2.8 Advice on Signed vs. Unsigned

As we have seen, the implicit casting of signed to unsigned leads to some non-
intuitive behavior. Nonintuitive features often lead to program bugs, and ones
involving the nuances of implicit casting can be especially difficult to see. Since the
casting takes place without any clear indication in the code, programmers often
overlook its effects.

The following two practice problems illustrate some of the subtle errors that
can arise due to implicit casting and the unsigned data type.

Section 2.2 Integer Representations 77

Practice Problem 2.25
Consider the following code that attempts to sum the elements of an array a, where
the number of elements is given by parameter length:

1 /* WARNING: This is buggy code */

2 float sum_elements(float a[], unsigned length) {

3 int i;

4 float result = 0;

5

6 for (i = 0; i <= length-1; i++)

7 result += a[i];

8 return result;

9 }

When run with argument length equal to 0, this code should return 0.0. Instead
it encounters a memory error. Explain why this happens. Show how this code can
be corrected.

Practice Problem 2.26
You are given the assignment of writing a function that determines whether one
string is longer than another. You decide to make use of the string library function
strlen having the following declaration:

/* Prototype for library function strlen */

size_t strlen(const char *s);

Here is your first attempt at the function:

/* Determine whether string s is longer than string t */

/* WARNING: This function is buggy */

int strlonger(char *s, char *t) {

return strlen(s) - strlen(t) > 0;

}

When you test this on some sample data, things do not seem to work quite
right. You investigate further and determine that data type size_t is defined (via
typedef) in header file stdio.h to be unsigned int.

A. For what cases will this function produce an incorrect result?

B. Explain how this incorrect result comes about.

C. Show how to fix the code so that it will work reliably.

78 Chapter 2 Representing and Manipulating Information

Aside Security vulnerability in getpeername

In 2002, programmers involved in the FreeBSD open source operating systems project realized that
their implementation of the getpeername library function had a security vulnerability. A simplified
version of their code went something like this:

1 /*

2 * Illustration of code vulnerability similar to that found in

3 * FreeBSD’s implementation of getpeername()

4 */

5

6 /* Declaration of library function memcpy */

7 void *memcpy(void *dest, void *src, size_t n);

8

9 /* Kernel memory region holding user-accessible data */

10 #define KSIZE 1024

11 char kbuf[KSIZE];

12

13 /* Copy at most maxlen bytes from kernel region to user buffer */

14 int copy_from_kernel(void *user_dest, int maxlen) {

15 /* Byte count len is minimum of buffer size and maxlen */

16 int len = KSIZE < maxlen ? KSIZE : maxlen;

17 memcpy(user_dest, kbuf, len);

18 return len;

19 }

In this code, we show the prototype for library function memcpy on line 7, which is designed to copy a
specified number of bytes n from one region of memory to another.

The function copy_from_kernel, starting at line 14, is designed to copy some of the data main-
tained by the operating system kernel to a designated region of memory accessible to the user. Most
of the data structures maintained by the kernel should not be readable by a user, since they may con-
tain sensitive information about other users and about other jobs running on the system, but the region
shown as kbufwas intended to be one that the user could read. The parameter maxlen is intended to be
the length of the buffer allocated by the user and indicated by argument user_dest. The computation
at line 16 then makes sure that no more bytes are copied than are available in either the source or the
destination buffer.

Suppose, however, that some malicious programmer writes code that calls copy_from_kernelwith
a negative value of maxlen. Then the minimum computation on line 16 will compute this value for len,
which will then be passed as the parameter n to memcpy. Note, however, that parameter n is declared as
having data type size_t. This data type is declared (via typedef) in the library file stdio.h. Typically
it is defined to be unsigned int on 32-bit machines. Since argument n is unsigned, memcpy will treat
it as a very large, positive number and attempt to copy that many bytes from the kernel region to the
user’s buffer. Copying that many bytes (at least 231) will not actually work, because the program will
encounter invalid addresses in the process, but the program could read regions of the kernel memory
for which it is not authorized.

Section 2.3 Integer Arithmetic 79

We can see that this problem arises due to the mismatch between data types: in one place the
length parameter is signed; in another place it is unsigned. Such mismatches can be a source of bugs
and, as this example shows, can even lead to security vulnerabilities. Fortunately, there were no reported
cases where a programmer had exploited the vulnerability in FreeBSD. They issued a security advisory,
“FreeBSD-SA-02:38.signed-error,” advising system administrators on how to apply a patch that would
remove the vulnerability. The bug can be fixed by declaring parameter maxlen to copy_from_kernel
to be of type size_t, to be consistent with parameter n of memcpy. We should also declare local variable
len and the return value to be of type size_t.

We have seen multiple ways in which the subtle features of unsigned arith-
metic, and especially the implicit conversion of signed to unsigned, can lead to
errors or vulnerabilities. One way to avoid such bugs is to never use unsigned
numbers. In fact, few languages other than C support unsigned integers. Appar-
ently these other language designers viewed them as more trouble than they are
worth. For example, Java supports only signed integers, and it requires that they
be implemented with two’s-complement arithmetic. The normal right shift oper-
ator >> is guaranteed to perform an arithmetic shift. The special operator >>> is
defined to perform a logical right shift.

Unsigned values are very useful when we want to think of words as just col-
lections of bits with no numeric interpretation. This occurs, for example, when
packing a word with flags describing various Boolean conditions. Addresses are
naturally unsigned, so systems programmers find unsigned types to be helpful.
Unsigned values are also useful when implementing mathematical packages for
modular arithmetic and for multiprecision arithmetic, in which numbers are rep-
resented by arrays of words.

2.3 Integer Arithmetic

Many beginning programmers are surprised to find that adding two positive num-
bers can yield a negative result, and that the comparison x < y can yield a different
result than the comparison x-y < 0. These properties are artifacts of the finite na-
ture of computer arithmetic. Understanding the nuances of computer arithmetic
can help programmers write more reliable code.

2.3.1 Unsigned Addition

Consider two nonnegative integers x and y, such that 0 ≤ x, y ≤ 2w − 1. Each of
these numbers can be represented by w-bit unsigned numbers. If we compute their
sum, however, we have a possible range 0 ≤ x + y ≤ 2w+1 − 2. Representing this
sum could require w + 1 bits. For example, Figure 2.20 shows a plot of the function
x + y when x and y have 4-bit representations. The arguments (shown on the hor-
izontal axes) range from 0 to 15, but the sum ranges from 0 to 30. The shape of the
function is a sloping plane (the function is linear in both dimensions). If we were

80 Chapter 2 Representing and Manipulating Information

32

Integer addition

28

24

20

16

12

8

4

0

20
4 6

8 10 12
14

0

2

4

6

8

10

12

14

Figure 2.20 Integer addition. With a 4-bit word size, the sum could require 5 bits.

to maintain the sum as a w+1-bit number and add it to another value, we may re-
quire w + 2 bits, and so on. This continued “word size inflation” means we cannot
place any bound on the word size required to fully represent the results of arith-
metic operations. Some programming languages, such as Lisp, actually support
infinite precision arithmetic to allow arbitrary (within the memory limits of the
machine, of course) integer arithmetic. More commonly, programming languages
support fixed-precision arithmetic, and hence operations such as “addition” and
“multiplication” differ from their counterpart operations over integers.

Unsigned arithmetic can be viewed as a form of modular arithmetic. Unsigned
addition is equivalent to computing the sum modulo 2w. This value can be com-
puted by simply discarding the high-order bit in the w+1-bit representation of
x + y. For example, consider a 4-bit number representation with x = 9 and y = 12,
having bit representations [1001] and [1100], respectively. Their sum is 21, having
a 5-bit representation [10101]. But if we discard the high-order bit, we get [0101],
that is, decimal value 5. This matches the value 21 mod 16 = 5.

In general, we can see that if x + y < 2w, the leading bit in the w+1-bit
representation of the sum will equal 0, and hence discarding it will not change
the numeric value. On the other hand, if 2w ≤ x + y < 2w+1, the leading bit in

Section 2.3 Integer Arithmetic 81

Figure 2.21
Relation between integer
addition and unsigned
addition. When x + y is
greater than 2w − 1, the
sum overflows.

2w

0

2w�1 Overflow

Normal

x �uy

x �y

the w+1-bit representation of the sum will equal 1, and hence discarding it is
equivalent to subtracting 2w from the sum. These two cases are illustrated in Figure
2.21. This will give us a value in the range 0 ≤ x + y − 2w < 2w+1 − 2w = 2w, which
is precisely the modulo 2w sum of x and y. Let us define the operation +u

w
for

arguments x and y such that 0 ≤ x, y < 2w as

x +u
w

y =
{

x + y, x + y < 2w

x + y − 2w, 2w ≤ x + y < 2w+1 (2.11)

This is precisely the result we get in C when performing addition on two w-bit
unsigned values.

An arithmetic operation is said to overflow when the full integer result cannot
fit within the word size limits of the data type. As Equation 2.11 indicates, overflow
occurs when the two operands sum to 2w or more. Figure 2.22 shows a plot of the
unsigned addition function for word size w = 4. The sum is computed modulo
24 = 16. When x + y < 16, there is no overflow, and x +u

4 y is simply x + y. This is
shown as the region forming a sloping plane labeled “Normal.” When x + y ≥ 16,
the addition overflows, having the effect of decrementing the sum by 16. This is
shown as the region forming a sloping plane labeled “Overflow.”

When executing C programs, overflows are not signaled as errors. At times,
however, we might wish to determine whether overflow has occurred. For exam-
ple, suppose we compute s

.= x +u
w

y, and we wish to determine whether s equals
x + y. We claim that overflow has occurred if and only if s < x (or equivalently,
s < y). To see this, observe that x + y ≥ x, and hence if s did not overflow, we will
surely have s ≥ x. On the other hand, if s did overflow, we have s = x + y − 2w.
Given that y < 2w, we have y − 2w < 0, and hence s = x + (y − 2w) < x. In our
earlier example, we saw that 9 +u

4 12 = 5. We can see that overflow occurred, since
5 < 9.

Practice Problem 2.27
Write a function with the following prototype:

/* Determine whether arguments can be added without overflow */

int uadd_ok(unsigned x, unsigned y);

This function should return 1 if arguments x and y can be added without causing
overflow.

82 Chapter 2 Representing and Manipulating Information

16

14

12

10

8

6

4

2

0

Overflow

Normal

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

Unsigned addition (4–bit word)

Figure 2.22 Unsigned addition. With a 4-bit word size, addition is performed
modulo 16.

Modular addition forms a mathematical structure known as an abelian group,
named after the Danish mathematician Niels Henrik Abel (1802–1829). That is, it
is commutative (that’s where the “abelian” part comes in) and associative; it has
an identity element 0, and every element has an additive inverse. Let us consider
the set of w-bit unsigned numbers with addition operation +u

w
. For every value x,

there must be some value -u
w

x such that -u
w

x +u
w

x = 0. When x = 0, the additive
inverse is clearly 0. For x > 0, consider the value 2w − x. Observe that this number
is in the range 0 < 2w − x < 2w, and (x + 2w − x) mod 2w = 2w mod 2w = 0. Hence,
it is the inverse of x under +u

w
. These two cases lead to the following equation for

0 ≤ x < 2w:

-u
w

x =
{

x, x = 0
2w − x, x > 0

(2.12)

Practice Problem 2.28
We can represent a bit pattern of length w = 4 with a single hex digit. For an
unsigned interpretation of these digits, use Equation 2.12 to fill in the following

Section 2.3 Integer Arithmetic 83

table giving the values and the bit representations (in hex) of the unsigned additive
inverses of the digits shown.

x -u
4 x

Hex Decimal Decimal Hex

0

5

8

D

F

2.3.2 Two’s-Complement Addition

With two’s-complement addition, we must decide what to do when the result is
either too large (positive) or too small (negative) to represent. Given integer
values x and y in the range −2w−1 ≤ x, y ≤ 2w−1 − 1, their sum is in the range
− 2w ≤ x + y ≤ 2w − 2, potentially requiring w + 1 bits to represent exactly. As
before, we avoid ever-expanding data sizes by truncating the representation to w

bits. The result is not as familiar mathematically as modular addition, however.
The w-bit two’s-complement sum of two numbers has the exact same bit-level

representation as the unsigned sum. In fact, most computers use the same machine
instruction to perform either unsigned or signed addition. Thus, we can define
two’s-complement addition for word size w, denoted as +t

w
, on operands x and y

such that − 2w−1 ≤ x, y < 2w−1 as

x +t
w

y
.= U2Tw(T2Uw(x) +u

w
T2Uw(y)) (2.13)

By Equation 2.5, we can write T2Uw(x) as xw−12w + x, and T2Uw(y) as yw−12w +
y. Using the property that +u

w
is simply addition modulo 2w, along with the prop-

erties of modular addition, we then have

x +t
w

y = U2Tw(T2Uw(x) +u
w

T2Uw(y))

= U2Tw[(xw−12w + x + yw−12w + y) mod 2w]

= U2Tw[(x + y) mod 2w]

The terms xw−12w and yw−12w drop out since they equal 0 modulo 2w.
To better understand this quantity, let us define z as the integer sum z

.= x + y,
z′ as z′ .= z mod 2w, and z′′ as z′′ .= U2Tw(z′). The value z′′ is equal to x +t

w
y. We

can divide the analysis into four cases, as illustrated in Figure 2.23:

1. − 2w ≤ z < − 2w−1. Then we will have z′ = z + 2w. This gives 0 ≤ z′ < − 2w−1 +
2w = 2w−1. Examining Equation 2.8, we see that z′ is in the range such that
z′′ = z′. This case is referred to as negative overflow. We have added two
negative numbers x and y (that’s the only way we can have z < − 2w−1) and
obtained a nonnegative result z′′ = x + y + 2w.

84 Chapter 2 Representing and Manipulating Information

Figure 2.23
Relation between integer
and two’s-complement
addition. When x + y is
less than − 2w−1, there is
a negative overflow. When
it is greater than 2w−1 + 1,
there is a positive overflow.

+2w

–2w

0 0

+2w�1 +2w�1

–2w�1 –2w�1

Negative overflow

Positive overflow

Case 4

Case 3

Case 2

Case 1

Normal

x �ty

x �y

2. − 2w−1 ≤ z < 0. Then we will again have z′ = z + 2w, giving − 2w−1 + 2w =
2w−1 ≤ z′ < 2w. Examining Equation 2.8, we see that z′ is in such a range that
z′′ = z′ − 2w, and therefore z′′ = z′ − 2w = z + 2w − 2w = z. That is, our two’s-
complement sum z′′ equals the integer sum x + y.

3. 0 ≤ z < 2w−1. Then we will have z′ = z, giving 0 ≤ z′ < 2w−1, and hence z′′ =
z′ = z. Again, the two’s-complement sum z′′ equals the integer sum x + y.

4. 2w−1 ≤ z < 2w. We will again have z′ = z, giving 2w−1 ≤ z′ < 2w. But in this
range we have z′′ = z′ − 2w, giving z′′ = x + y − 2w. This case is referred to as
positive overflow. We have added two positive numbers x and y (that’s the only
way we can have z ≥ 2w−1) and obtained a negative result z′′ = x + y − 2w.

By the preceding analysis, we have shown that when operation +t
w

is applied
to values x and y in the range −2w−1 ≤ x, y ≤ 2w−1 − 1, we have

x +t
w

y =

⎧⎪⎨
⎪⎩

x + y − 2w, 2w−1 ≤ x + y Positive overflow
x + y, −2w−1 ≤ x + y < 2w−1 Normal
x + y + 2w, x + y < − 2w−1 Negative overflow

(2.14)

As an illustration, Figure 2.24 shows some examples of 4-bit two’s-complement
addition. Each example is labeled by the case to which it corresponds in the
derivation of Equation 2.14. Note that 24 = 16, and hence negative overflow yields
a result 16 more than the integer sum, and positive overflow yields a result 16 less.
We include bit-level representations of the operands and the result. Observe that
the result can be obtained by performing binary addition of the operands and
truncating the result to four bits.

Figure 2.25 illustrates two’s-complement addition for word size w = 4. The
operands range between −8 and 7. When x + y < −8, two’s-complement addition
has a negative underflow, causing the sum to be incremented by 16. When −8 ≤
x + y < 8, the addition yields x + y. When x + y ≥ 8, the addition has a negative
overflow, causing the sum to be decremented by 16. Each of these three ranges
forms a sloping plane in the figure.

Section 2.3 Integer Arithmetic 85

x y x + y x +t
4 y Case

−8 −5 −13 3 1
[1000] [1011] [10011] [0011]

−8 −8 −16 0 1
[1000] [1000] [10000] [0000]

−8 5 −3 −3 2
[1000] [0101] [11101] [1101]

2 5 7 7 3
[0010] [0101] [00111] [0111]

5 5 10 −6 4
[0101] [0101] [01010] [1010]

Figure 2.24 Two’s-complement addition examples. The bit-level representation of
the 4-bit two’s-complement sum can be obtained by performing binary addition of the
operands and truncating the result to 4 bits.

Normal
Negative
overflow

Positive
overflow

Two’s-complement addition (4-bit word)

8

6

4

2

0

�2

�4

�6

�8

�8

�8

�6

�2

�4

0
2

4

6

�6
�4

�2 0
2

4
6

Figure 2.25 Two’s-complement addition. With a 4-bit word size, addition can have a
negative overflow when x + y < −8 and a positive overflow when x + y ≥ 8.

86 Chapter 2 Representing and Manipulating Information

Equation 2.14 also lets us identify the cases where overflow has occurred.
When both x and y are negative but x +t

w
y ≥ 0, we have negative overflow. When

both x and y are positive but x +t
w

y < 0, we have positive overflow.

Practice Problem 2.29
Fill in the following table in the style of Figure 2.24. Give the integer values of
the 5-bit arguments, the values of both their integer and two’s-complement sums,
the bit-level representation of the two’s-complement sum, and the case from the
derivation of Equation 2.14.

x y x + y x +t
5 y Case

[10100] [10001]

[11000] [11000]

[10111] [01000]

[00010] [00101]

[01100] [00100]

Practice Problem 2.30
Write a function with the following prototype:

/* Determine whether arguments can be added without overflow */

int tadd_ok(int x, int y);

This function should return 1 if arguments x and y can be added without causing
overflow.

Practice Problem 2.31
Your coworker gets impatient with your analysis of the overflow conditions for
two’s-complement addition and presents you with the following implementation
of tadd_ok:

/* Determine whether arguments can be added without overflow */

/* WARNING: This code is buggy. */

int tadd_ok(int x, int y) {

int sum = x+y;

return (sum-x == y) && (sum-y == x);

}

You look at the code and laugh. Explain why.

Section 2.3 Integer Arithmetic 87

Practice Problem 2.32
You are assigned the task of writing code for a function tsub_ok, with arguments
x and y, that will return 1 if computing x-y does not cause overflow. Having just
written the code for Problem 2.30, you write the following:

/* Determine whether arguments can be subtracted without overflow */

/* WARNING: This code is buggy. */

int tsub_ok(int x, int y) {

return tadd_ok(x, -y);

}

For what values ofx andywill this function give incorrect results? Writing a correct
version of this function is left as an exercise (Problem 2.74).

2.3.3 Two’s-Complement Negation

We can see that every number x in the range − 2w−1 ≤ x < 2w−1 has an additive in-
verse under +t

w
as follows. First, for x �= − 2w−1, we can see that its additive inverse

is simply −x. That is, we have − 2w−1 < −x < 2w−1 and −x +t
w

x = −x + x = 0. For
x = − 2w−1 = TMinw, on the other hand, −x = 2w−1 cannot be represented as a w-
bit number. We claim that this special value has itself as the additive inverse under
+t

w
. The value of − 2w−1 +t

w
− 2w−1 is given by the third case of Equation 2.14, since

− 2w−1 + − 2w−1 = − 2w. This gives − 2w−1 +t
w

− 2w−1 = − 2w + 2w = 0. From this
analysis, we can define the two’s-complement negation operation -t

w
for x in the

range − 2w−1 ≤ x < 2w−1 as

-t
w

x =
{ − 2w−1, x = − 2w−1

−x, x > − 2w−1 (2.15)

Practice Problem 2.33
We can represent a bit pattern of length w = 4 with a single hex digit. For a two’s-
complement interpretation of these digits, fill in the following table to determine
the additive inverses of the digits shown:

x -t
4 x

Hex Decimal Decimal Hex

0

5

8

D

F

What do you observe about the bit patterns generated by two’s-complement
and unsigned (Problem 2.28) negation?

88 Chapter 2 Representing and Manipulating Information

Web Aside DATA:TNEG Bit-level representation of two’s-complement negation

There are several clever ways to determine the two’s-complement negation of a value represented at the
bit level. These techniques are both useful, such as when one encounters the value 0xfffffffa when
debugging a program, and they lend insight into the nature of the two’s-complement representation.

One technique for performing two’s-complement negation at the bit level is to complement the bits
and then increment the result. In C, we can state that for any integer value x, computing the expressions
-x and ~x + 1 will give identical results.

Here are some examples with a 4-bit word size:

�x ~�x incr(~�x)

[0101] 5 [1010] −6 [1011] −5
[0111] 7 [1000] −8 [1001] −7
[1100] −4 [0011] 3 [0100] 4
[0000] 0 [1111] −1 [0000] 0
[1000] −8 [0111] 7 [1000] −8

For our earlier example, we know that the complement of 0xf is 0x0, and the complement of 0xa
is 0x5, and so 0xfffffffa is the two’s-complement representation of −6.

A second way to perform two’s-complement negation of a number x is based on splitting the bit
vector into two parts. Let k be the position of the rightmost 1, so the bit-level representation of x has the
form [xw−1, xw−2, . . . , xk+1, 1, 0, . . . 0]. (This is possible as long as x �= 0.) The negation is then written
in binary form as [~xw−1, ~xw−2, . . . ~ xk+1, 1, 0, . . . , 0]. That is, we complement each bit to the left of
bit position k.

We illustrate this idea with some 4-bit numbers, where we highlight the rightmost pattern 1, 0, . . . , 0
in italics:

x −x

[1100] −4 [0100] 4
[1000] −8 [1000] −8
[0101] 5 [1011] −5
[0111] 7 [1001] −7

2.3.4 Unsigned Multiplication

Integers x and y in the range 0 ≤ x, y ≤ 2w − 1 can be represented as w-bit un-
signed numbers, but their product x . y can range between 0 and (2w − 1)2 =
22w − 2w+1 + 1. This could require as many as 2w bits to represent. Instead, un-
signed multiplication in C is defined to yield the w-bit value given by the low-order
w bits of the 2w-bit integer product. By Equation 2.9, this can be seen to be equiv-
alent to computing the product modulo 2w. Thus, the effect of the w-bit unsigned
multiplication operation *u

w
is

x *u
w

y = (x . y) mod 2w (2.16)

Section 2.3 Integer Arithmetic 89

2.3.5 Two’s-Complement Multiplication

Integers x and y in the range − 2w−1 ≤ x, y ≤ 2w−1 − 1 can be represented as w-
bit two’s-complement numbers, but their product x . y can range between − 2w−1 .

(2w−1 − 1) = − 22w−2 + 2w−1 and − 2w−1 . − 2w−1 = 22w−2. This could require as
many as 2w bits to represent in two’s-complement form—most cases would fit
into 2w − 1 bits, but the special case of 22w−2 requires the full 2w bits (to include
a sign bit of 0). Instead, signed multiplication in C generally is performed by
truncating the 2w-bit product to w bits. By Equation 2.10, the effect of the w-bit
two’s-complement multiplication operation *t

w
is

x *t
w

y = U2Tw((x . y) mod 2w) (2.17)

We claim that the bit-level representation of the product operation is identical
for both unsigned and two’s-complement multiplication. That is, given bit vectors �x
and �y of length w, the bit-level representation of the unsigned product B2Uw(�x) *u

w

B2Uw(�y) is identical to the bit-level representation of the two’s-complement
product B2Tw(�x) *t

w
B2Tw(�y). This implies that the machine can use a single type

of multiply instruction to multiply both signed and unsigned integers.
As illustrations, Figure 2.26 shows the results of multiplying different 3-bit

numbers. For each pair of bit-level operands, we perform both unsigned and
two’s-complement multiplication, yielding 6-bit products, and then truncate these
to 3 bits. The unsigned truncated product always equals x . y mod 8. The bit-
level representations of both truncated products are identical for both unsigned
and two’s-complement multiplication, even though the full 6-bit representations
differ.

To show that the low-order bits of the two products (unsigned and two’s
complement) are identical, let x = B2Tw(�x) and y = B2Tw(�y) be the two’s-
complement values denoted by these bit patterns, and let x′ = B2Uw(�x) and y′ =
B2Uw(�y) be the unsigned values. From Equation 2.5, we have x′ = x + xw−12w,

Mode x y x . y Truncated x . y

Unsigned 5 [101] 3 [011] 15 [001111] 7 [111]
Two’s comp. −3 [101] 3 [011] −9 [110111] −1 [111]

Unsigned 4 [100] 7 [111] 28 [011100] 4 [100]
Two’s comp. −4 [100] −1 [111] 4 [000100] −4 [100]

Unsigned 3 [011] 3 [011] 9 [001001] 1 [001]
Two’s comp. 3 [011] 3 [011] 9 [001001] 1 [001]

Figure 2.26 Three-bit unsigned and two’s-complement multiplication examples.
Although the bit-level representations of the full products may differ, those of the
truncated products are identical.

90 Chapter 2 Representing and Manipulating Information

and y′ = y + yw−12w. Computing the product of these values modulo 2w gives the
following:

(x′ . y′) mod 2w = [(x + xw−12w) . (y + yw−12w)] mod 2w (2.18)

= [x . y + (xw−1y + yw−1x)2w + xw−1yw−122w] mod 2w

= (x . y) mod 2w

All of the terms with weight 2w drop out due to the modulus operator, and so we
have shown that the low-order w bits of x . y and x′ . y′ are identical.

Practice Problem 2.34
Fill in the following table showing the results of multiplying different 3-bit num-
bers, in the style of Figure 2.26:

Mode x y x . y Truncated x . y

Unsigned [100] [101]
Two’s comp. [100] [101]

Unsigned [010] [111]
Two’s comp. [010] [111]

Unsigned [110] [110]
Two’s comp. [110] [110]

We can see that unsigned arithmetic and two’s-complement arithmetic over
w-bit numbers are isomorphic—the operations +u

w
, -u

w
, and *u

w
have the exact same

effect at the bit level as do +t
w

, -t
w

, and *t
w

.

Practice Problem 2.35
You are given the assignment to develop code for a function tmult_ok that will
determine whether two arguments can be multiplied without causing overflow.
Here is your solution:

/* Determine whether arguments can be multiplied without overflow */

int tmult_ok(int x, int y) {

int p = x*y;

/* Either x is zero, or dividing p by x gives y */

return !x || p/x == y;

}

You test this code for a number of values of x and y, and it seems to work
properly. Your coworker challenges you, saying, “If I can’t use subtraction to
test whether addition has overflowed (see Problem 2.31), then how can you use
division to test whether multiplication has overflowed?”

Devise a mathematical justification of your approach, along the following
lines. First, argue that the case x = 0 is handled correctly. Otherwise, consider

Section 2.3 Integer Arithmetic 91

w-bit numbers x (x �= 0), y, p, and q, where p is the result of performing two’s-
complement multiplication on x and y, and q is the result of dividing p by x.

1. Show that x . y, the integer product of x and y, can be written in the form
x . y = p + t2w, where t �= 0 if and only if the computation of p overflows.

2. Show that p can be written in the form p = x . q + r , where |r| < |x|.
3. Show that q = y if and only if r = t = 0.

Practice Problem 2.36
For the case where data type int has 32 bits, devise a version of tmult_ok (Prob-
lem 2.35) that uses the 64-bit precision of data type long long, without using
division.

Aside Security vulnerability in the XDR library

In 2002, it was discovered that code supplied by Sun Microsystems to implement the XDR library, a
widely used facility for sharing data structures between programs, had a security vulnerability arising
from the fact that multiplication can overflow without any notice being given to the program.

Code similar to that containing the vulnerability is shown below:

1 /*

2 * Illustration of code vulnerability similar to that found in

3 * Sun’s XDR library.

4 */

5 void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {

6 /*

7 * Allocate buffer for ele_cnt objects, each of ele_size bytes

8 * and copy from locations designated by ele_src

9 */

10 void *result = malloc(ele_cnt * ele_size);

11 if (result == NULL)

12 /* malloc failed */

13 return NULL;

14 void *next = result;

15 int i;

16 for (i = 0; i < ele_cnt; i++) {

17 /* Copy object i to destination */

18 memcpy(next, ele_src[i], ele_size);

19 /* Move pointer to next memory region */

20 next += ele_size;

21 }

22 return result;

23 }

92 Chapter 2 Representing and Manipulating Information

The function copy_elements is designed to copy ele_cnt data structures, each consisting of ele_
size bytes into a buffer allocated by the function on line 10. The number of bytes required is computed
as ele_cnt * ele_size.

Imagine, however, that a malicious programmer calls this function with ele_cnt being 1,048,577
(220 + 1) and ele_size being 4,096 (212). Then the multiplication on line 10 will overflow, causing only
4096 bytes to be allocated, rather than the 4,294,971,392 bytes required to hold that much data. The loop
starting at line 16 will attempt to copy all of those bytes, overrunning the end of the allocated buffer,
and therefore corrupting other data structures. This could cause the program to crash or otherwise
misbehave.

The Sun code was used by almost every operating system, and in such widely used programs as
Internet Explorer and the Kerberos authentication system. The Computer Emergency Response Team
(CERT), an organization run by the Carnegie Mellon Software Engineering Institute to track security
vulnerabilities and breaches, issued advisory “CA-2002-25,” and many companies rushed to patch their
code. Fortunately, there were no reported security breaches caused by this vulnerability.

A similar vulnerability existed in many implementations of the library function calloc. These have
since been patched.

Practice Problem 2.37
You are given the task of patching the vulnerability in the XDR code shown above.
You decide to eliminate the possibility of the multiplication overflowing (on a 32-
bit machine, at least) by computing the number of bytes to allocate using data type
long long unsigned. You replace the original call to malloc (line 10) as follows:

long long unsigned asize =

ele_cnt * (long long unsigned) ele_size;

void *result = malloc(asize);

A. Does your code provide any improvement over the original?

B. How would you change the code to eliminate the vulnerability, assuming
data type size_t is the same as unsigned int, and these are 32 bits long?

2.3.6 Multiplying by Constants

On most machines, the integer multiply instruction is fairly slow, requiring 10 or
more clock cycles, whereas other integer operations—such as addition, subtrac-
tion, bit-level operations, and shifting—require only 1 clock cycle. As a conse-
quence, one important optimization used by compilers is to attempt to replace
multiplications by constant factors with combinations of shift and addition oper-
ations. We will first consider the case of multiplying by a power of 2, and then
generalize this to arbitrary constants.

Let x be the unsigned integer represented by bit pattern [xw−1, xw−2, . . . , x0].
Then for any k ≥ 0, we claim the bit-level representation of x2k is given by

Section 2.3 Integer Arithmetic 93

[xw−1, xw−2, . . . , x0, 0, . . . , 0], where k zeros have been added to the right. This
property can be derived using Equation 2.1:

B2Uw+k([xw−1, xw−2, . . . , x0, 0, . . . , 0]) =
w−1∑
i=0

xi2
i+k

=
[

w−1∑
i=0

xi2
i

]
. 2k

= x2k

For k < w, we can truncate the shifted bit vector to be of length w, giving
[xw−k−1, xw−k−2, . . . , x0, 0, . . . , 0]. By Equation 2.9, this bit vector has numeric
value x2k mod 2w = x *u

w
2k. Thus, for unsigned variable x, the C expression x << k

is equivalent to x * pwr2k, where pwr2k equals 2k. In particular, we can compute
pwr2k as 1U << k.

By similar reasoning, we can show that for a two’s-complement number x

having bit pattern [xw−1, xw−2, . . . , x0], and any k in the range 0 ≤ k < w, bit
pattern [xw−k−1, . . . , x0, 0, . . . , 0] will be the two’s-complement representation
of x *t

w
2k. Therefore, for signed variable x , the C expression x << k is equivalent

to x * pwr2k, where pwr2k equals 2k.
Note that multiplying by a power of 2 can cause overflow with either unsigned

or two’s-complement arithmetic. Our result shows that even then we will get the
same effect by shifting.

Given that integer multiplication is much more costly than shifting and adding,
many C compilers try to remove many cases where an integer is being multi-
plied by a constant with combinations of shifting, adding, and subtracting. For
example, suppose a program contains the expression x*14. Recognizing that 14 =
23 + 22 + 21, the compiler can rewrite the multiplication as (x<<3) + (x<<2) +
(x<<1), replacing one multiplication with three shifts and two additions. The two
computations will yield the same result, regardless of whether x is unsigned or
two’s complement, and even if the multiplication would cause an overflow. (This
can be shown from the properties of integer arithmetic.) Even better, the compiler
can also use the property 14 = 24 − 21 to rewrite the multiplication as (x<<4) -
(x<<1), requiring only two shifts and a subtraction.

Practice Problem 2.38
As we will see in Chapter 3, the lea instruction can perform computations of
the form (a<<k) + b, where k is either 0, 1, 2, or 3, and b is either 0 or some
program value. The compiler often uses this instruction to perform multiplications
by constant factors. For example, we can compute 3*a as (a<<1) + a.

Considering cases where b is either 0 or equal to a, and all possible values of
k, what multiples of a can be computed with a single lea instruction?

94 Chapter 2 Representing and Manipulating Information

Generalizing from our example, consider the task of generating code for
the expression x * K , for some constant K . The compiler can express the binary
representation of K as an alternating sequence of zeros and ones:

[(0 . . . 0)(1 . . . 1)(0 . . . 0) . . . (1 . . . 1)].

For example, 14 can be written as [(0 . . . 0)(111)(0)]. Consider a run of ones from
bit position n down to bit position m (n ≥ m). (For the case of 14, we have n = 3
and m = 1.) We can compute the effect of these bits on the product using either of
two different forms:

Form A: (x<<n) + (x<<n−1) + . . . + (x<<m)

Form B: (x<<n+1) - (x<<m)

By adding together the results for each run, we are able to compute x * K with-
out any multiplications. Of course, the trade-off between using combinations of
shifting, adding, and subtracting versus a single multiplication instruction depends
on the relative speeds of these instructions, and these can be highly machine de-
pendent. Most compilers only perform this optimization when a small number of
shifts, adds, and subtractions suffice.

Practice Problem 2.39
How could we modify the expression for form B for the case where bit position n

is the most significant bit?

Practice Problem 2.40
For each of the following values of K , find ways to express x * K using only the
specified number of operations, where we consider both additions and subtrac-
tions to have comparable cost. You may need to use some tricks beyond the simple
form A and B rules we have considered so far.

K Shifts Add/Subs Expression

6 2 1
31 1 1
−6 2 1
55 2 2

Practice Problem 2.41
For a run of 1s starting at bit position n down to bit position m (n ≥ m), we saw
that we can generate two forms of code, A and B. How should the compiler decide
which form to use?

Section 2.3 Integer Arithmetic 95

k >> k (Binary) Decimal 12340/2k

0 0011000000110100 12340 12340.0
1 0001100000011010 6170 6170.0
4 0000001100000011 771 771.25
8 0000000000110000 48 48.203125

Figure 2.27 Dividing unsigned numbers by powers of 2. The examples illustrate how
performing a logical right shift by k has the same effect as dividing by 2k and then
rounding toward zero.

2.3.7 Dividing by Powers of Two

Integer division on most machines is even slower than integer multiplication—
requiring 30 or more clock cycles. Dividing by a power of 2 can also be performed
using shift operations, but we use a right shift rather than a left shift. The two dif-
ferent shifts—logical and arithmetic—serve this purpose for unsigned and two’s-
complement numbers, respectively.

Integer division always rounds toward zero. For x ≥ 0 and y > 0, the result
should be �x/y�, where for any real number a, �a� is defined to be the unique
integer a′ such that a′ ≤ a < a′ + 1. As examples, �3.14� = 3, �−3.14� = −4, and
�3� = 3.

Consider the effect of applying a logical right shift by k to an unsigned number.
We claim this gives the same result as dividing by 2k. As examples, Figure 2.27
shows the effects of performing logical right shifts on a 16-bit representation of
12,340 to perform division by 1, 2, 16, and 256. The zeros shifted in from the left are
shown in italics. We also show the result we would obtain if we did these divisions
with real arithmetic. These examples show that the result of shifting consistently
rounds toward zero, as is the convention for integer division.

To show this relation between logical right shifting and dividing by a power
of 2, let x be the unsigned integer represented by bit pattern [xw−1, xw−2, . . . , x0],
and k be in the range 0 ≤ k < w. Let x′ be the unsigned number with w−k-
bit representation [xw−1, xw−2, . . . , xk], and x′′ be the unsigned number with
k-bit representation [xk−1, . . . , x0]. We claim that x′ = �x/2k�. To see this, by
Equation 2.1, we have x = ∑w−1

i=0 xi2
i, x′ = ∑w−1

i=k
xi2

i−k, and x′′ = ∑k−1
i=0 xi2

i. We
can therefore write x as x = 2kx′ + x′′. Observe that 0 ≤ x′′ ≤ ∑k−1

i=0 2i = 2k − 1, and
hence 0 ≤ x′′ < 2k, implying that �x′′/2k� = 0. Therefore, �x/2k� = �x′ + x′′/2k� =
x′ + �x′′/2k� = x′.

Performing a logical right shift of bit vector [xw−1, xw−2, . . . , x0] by k yields
the bit vector

[0, ..., 0, xw−1, xw−2, . . . , xk]

This bit vector has numeric value x′. Therefore, for unsigned variable x, the C
expression x >> k is equivalent to x / pwr2k, where pwr2k equals 2k.

96 Chapter 2 Representing and Manipulating Information

k >> k (Binary) Decimal −12340/2k

0 1100111111001100 −12340 −12340.0
1 1110011111100110 −6170 −6170.0
4 1111110011111100 −772 −771.25
8 1111111111001111 −49 −48.203125

Figure 2.28 Applying arithmetic right shift. The examples illustrate that arithmetic
right shift is similar to division by a power of 2, except that it rounds down rather than
toward zero.

Now consider the effect of performing an arithmetic right shift on a two’s-
complement number. For a positive number, we have 0 as the most significant bit,
and so the effect is the same as for a logical right shift. Thus, an arithmetic right
shift by k is the same as division by 2k for a nonnegative number. As an example of
a negative number, Figure 2.28 shows the effect of applying arithmetic right shift
to a 16-bit representation of −12,340 for different shift amounts. As we can see, the
result is almost the same as dividing by a power of 2. For the case when no rounding
is required (k= 1), the result is correct. But when rounding is required, shifting
causes the result to be rounded downward rather than toward zero, as should be
the convention. For example, the expression -7/2 should yield -3 rather than -4.

Let us better understand the effect of arithmetic right shifting and how we
can use it to perform division by a power of 2. Let x be the two’s-complement
integer represented by bit pattern [xw−1, xw−2, . . . , x0], and k be in the range
0 ≤ k < w. Let x′ be the two’s-complement number represented by the w − k

bits [xw−1, xw−2, . . . , xk], and x′′ be the unsigned number represented by the
low-order k bits [xk−1, . . . , x0]. By a similar analysis as the unsigned case, we
have x = 2kx′ + x′′, and 0 ≤ x′′ < 2k, giving x′ = �x/2k�. Furthermore, observe that
shifting bit vector [xw−1, xw−2, . . . , x0]right arithmetically by k yields the bit vector

[xw−1, . . . , xw−1, xw−1, xw−2, . . . , xk]

which is the sign extension from w − k bits to w bits of [xw−1, xw−2, . . . , xk].
Thus, this shifted bit vector is the two’s-complement representation of �x/2k�.
This analysis confirms our findings from the examples of Figure 2.28.

For x ≥ 0, or when no rounding is required (x′′ = 0), our analysis shows that
this shifted result is the desired value. For x < 0 and y > 0, however, the result of
integer division should be �x/y�, where for any real number a, �a� is defined to
be the unique integer a′ such that a′ − 1 < a ≤ a′. That is, integer division should
round negative results upward toward zero. Thus, right shifting a negative number
by k is not equivalent to dividing it by 2k when rounding occurs. This analysis also
confirms our findings from the example of Figure 2.28.

We can correct for this improper rounding by “biasing” the value before
shifting. This technique exploits the property that �x/y� = �(x + y − 1)/y� for
integers x and y such that y > 0. As examples, when x = −30 and y = 4, we
have x + y − 1 = −27, and �−30/4� = −7 = �−27/4�. When x = −32 and y = 4,

Section 2.3 Integer Arithmetic 97

k Bias −12,340 + Bias (Binary) >> k (Binary) Decimal −12340/2k

0 0 1100111111001100 1100111111001100 −12340 −12340.0
1 1 1100111111001101 1110011111100110 −6170 −6170.0
4 15 1100111111011011 1111110011111101 −771 −771.25
8 255 1101000011001011 1111111111010000 −48 −48.203125

Figure 2.29 Dividing two’s-complement numbers by powers of 2. By adding a bias
before the right shift, the result is rounded toward zero.

we have x + y − 1 = −29, and �−32/4� = −8 = �−29/4�. To see that this relation
holds in general, suppose that x = ky + r , where 0 ≤ r < y, giving (x + y − 1)/y =
k + (r + y − 1)/y, and so �(x + y − 1)/y� = k + �(r + y − 1)/y�. The latter term
will equal 0 when r = 0, and 1 when r > 0. That is, by adding a bias of y − 1 to
x and then rounding the division downward, we will get k when y divides x and
k + 1 otherwise. Thus, for x < 0, if we first add 2k − 1 to x before right shifting, we
will get a correctly rounded result.

This analysis shows that for a two’s-complement machine using arithmetic
right shifts, the C expression

(x<0 ? x+(1<<k)-1 : x) >> k

is equivalent to x/pwr2k, where pwr2k equals 2k.
Figure 2.29 demonstrates how adding the appropriate bias before performing

the arithmetic right shift causes the result to be correctly rounded. In the third
column, we show the result of adding the bias value to −12,340, with the lower k

bits (those that will be shifted off to the right) shown in italics. We can see that
the bits to the left of these may or may not be incremented. For the case where no
rounding is required (k= 1), adding the bias only affects bits that are shifted off.
For the cases where rounding is required, adding the bias causes the upper bits to
be incremented, so that the result will be rounded toward zero.

Practice Problem 2.42
Write a function div16 that returns the value x/16 for integer argument x. Your
function should not use division, modulus, multiplication, any conditionals (if or
?:), any comparison operators (e.g., <, >, or ==), or any loops. You may assume
that data type int is 32 bits long and uses a two’s-complement representation, and
that right shifts are performed arithmetically.

We now see that division by a power of 2 can be implemented using logical or
arithmetic right shifts. This is precisely the reason the two types of right shifts are
available on most machines. Unfortunately, this approach does not generalize to
division by arbitrary constants. Unlike multiplication, we cannot express division
by arbitrary constants K in terms of division by powers of 2.

98 Chapter 2 Representing and Manipulating Information

Practice Problem 2.43
In the following code, we have omitted the definitions of constants M and N:

#define M /* Mystery number 1 */

#define N /* Mystery number 2 */

int arith(int x, int y) {

int result = 0;

result = x*M + y/N; /* M and N are mystery numbers. */

return result;

}

We compiled this code for particular values of M and N. The compiler opti-
mized the multiplication and division using the methods we have discussed. The
following is a translation of the generated machine code back into C:

/* Translation of assembly code for arith */

int optarith(int x, int y) {

int t = x;

x <<= 5;

x -= t;

if (y < 0) y += 7;

y >>= 3; /* Arithmetic shift */

return x+y;

}

What are the values of M and N?

2.3.8 Final Thoughts on Integer Arithmetic

As we have seen, the “integer” arithmetic performed by computers is really a
form of modular arithmetic. The finite word size used to represent numbers limits
the range of possible values, and the resulting operations can overflow. We have
also seen that the two’s-complement representation provides a clever way to be
able to represent both negative and positive values, while using the same bit-level
implementations as are used to perform unsigned arithmetic—operations such as
addition, subtraction, multiplication, and even division have either identical or
very similar bit-level behaviors whether the operands are in unsigned or two’s-
complement form.

We have seen that some of the conventions in the C language can yield some
surprising results, and these can be sources of bugs that are hard to recognize or
understand. We have especially seen that the unsigned data type, while concep-
tually straightforward, can lead to behaviors that even experienced programmers
do not expect. We have also seen that this data type can arise in unexpected ways,
for example, when writing integer constants and when invoking library routines.

Section 2.4 Floating Point 99

Practice Problem 2.44
Assume we are running code on a 32-bit machine using two’s-complement arith-
metic for signed values. Right shifts are performed arithmetically for signed values
and logically for unsigned values. The variables are declared and initialized as
follows:

int x = foo(); /* Arbitrary value */

int y = bar(); /* Arbitrary value */

unsigned ux = x;

unsigned uy = y;

For each of the following C expressions, either (1) argue that it is true (evalu-
ates to 1) for all values of x and y, or (2) give values of x and y for which it is false
(evaluates to 0):

A. (x > 0) || (x-1 < 0)

B. (x & 7) != 7 || (x<<29 < 0)

C. (x * x) >= 0

D. x < 0 || -x <= 0

E. x > 0 || -x >= 0

F. x+y == uy+ux

G. x*~y + uy*ux == -x

2.4 Floating Point

A floating-point representation encodes rational numbers of the form V = x × 2y.
It is useful for performing computations involving very large numbers (|V | � 0),
numbers very close to 0 (|V | � 1), and more generally as an approximation to real
arithmetic.

Up until the 1980s, every computer manufacturer devised its own conventions
for how floating-point numbers were represented and the details of the operations
performed on them. In addition, they often did not worry too much about the
accuracy of the operations, viewing speed and ease of implementation as being
more critical than numerical precision.

All of this changed around 1985 with the advent of IEEE Standard 754, a
carefully crafted standard for representing floating-point numbers and the oper-
ations performed on them. This effort started in 1976 under Intel’s sponsorship
with the design of the 8087, a chip that provided floating-point support for the 8086
processor. They hired William Kahan, a professor at the University of California,
Berkeley, as a consultant to help design a floating-point standard for its future
processors. They allowed Kahan to join forces with a committee generating an
industry-wide standard under the auspices of the Institute of Electrical and Elec-
tronics Engineers (IEEE). The committee ultimately adopted a standard close to

100 Chapter 2 Representing and Manipulating Information

the one Kahan had devised for Intel. Nowadays, virtually all computers support
what has become known as IEEE floating point. This has greatly improved the
portability of scientific application programs across different machines.

Aside The IEEE

The Institute of Electrical and Electronic Engineers (IEEE—pronounced “Eye-Triple-Eee”) is a pro-
fessional society that encompasses all of electronic and computer technology. It publishes journals,
sponsors conferences, and sets up committees to define standards on topics ranging from power trans-
mission to software engineering.

In this section, we will see how numbers are represented in the IEEE floating-
point format. We will also explore issues of rounding, when a number cannot be
represented exactly in the format and hence must be adjusted upward or down-
ward. We will then explore the mathematical properties of addition, multiplica-
tion, and relational operators. Many programmers consider floating point to be
at best uninteresting and at worst arcane and incomprehensible. We will see that
since the IEEE format is based on a small and consistent set of principles, it is
really quite elegant and understandable.

2.4.1 Fractional Binary Numbers

A first step in understanding floating-point numbers is to consider binary numbers
having fractional values. Let us first examine the more familiar decimal notation.
Decimal notation uses a representation of the form dmdm−1 . . . d1d0.d−1d−2 . . . d−n,
where each decimal digit di ranges between 0 and 9. This notation represents a
value d defined as

d =
m∑

i=−n

10i × di

The weighting of the digits is defined relative to the decimal point symbol (‘.’),
meaning that digits to the left are weighted by positive powers of 10, giving integral
values, while digits to the right are weighted by negative powers of 10, giving
fractional values. For example, 12.3410 represents the number 1 × 101 + 2 × 100 +
3 × 10−1 + 4 × 10−2 = 12 34

100 .
By analogy, consider a notation of the form bmbm−1 . . . b1b0.b−1b−2 . . .

b−n−1b−n, where each binary digit, or bit, bi ranges between 0 and 1, as is illustrated
in Figure 2.30. This notation represents a number b defined as

b =
m∑

i=−n

2i × bi (2.19)

The symbol ‘.’ now becomes a binary point, with bits on the left being weighted
by positive powers of 2, and those on the right being weighted by negative powers
of 2. For example, 101.112 represents the number 1 × 22 + 0 × 21 + 1 × 20 + 1 ×
2−1 + 1 × 2−2 = 4 + 0 + 1 + 1

2 + 1
4 = 53

4 .

Section 2.4 Floating Point 101

Figure 2.30
Fractional binary repre-
sentation. Digits to the left
of the binary point have
weights of the form 2i,
while those to the right
have weights of the form
1/2i.

bm bm–1 · · ·

· · ·

b2 b1 b0 b–1

1

1/2

1/4

1/8

1/2n–1

1/2n

2

4

2m–1

2m

b–2 b–3 · · ··

· · ·

b–n–1 b–n

One can readily see from Equation 2.19 that shifting the binary point one
position to the left has the effect of dividing the number by 2. For example, while
101.112 represents the number 53

4 , 10.1112 represents the number 2 + 0 + 1
2 +

1
4 + 1

8 = 2 7
8 . Similarly, shifting the binary point one position to the right has the

effect of multiplying the number by 2. For example, 1011.12 represents the number
8 + 0 + 2 + 1 + 1

2 = 111
2 .

Note that numbers of the form 0.11 . . . 12 represent numbers just below 1. For
example, 0.1111112 represents 63

64 . We will use the shorthand notation 1.0 − ε to
represent such values.

Assuming we consider only finite-length encodings, decimal notation cannot
represent numbers such as 1

3 and 5
7 exactly. Similarly, fractional binary notation

can only represent numbers that can be written x × 2y. Other values can only be
approximated. For example, the number 1

5 can be represented exactly as the frac-
tional decimal number 0.20. As a fractional binary number, however, we cannot
represent it exactly and instead must approximate it with increasing accuracy by
lengthening the binary representation:

Representation Value Decimal

0.02
0
2 0.010

0.012
1
4 0.2510

0.0102
2
8 0.2510

0.00112
3

16 0.187510

0.001102
6

32 0.187510

0.0011012
13
64 0.20312510

0.00110102
26
128 0.20312510

0.001100112
51

256 0.1992187510

102 Chapter 2 Representing and Manipulating Information

Practice Problem 2.45
Fill in the missing information in the following table:

Fractional value Binary representation Decimal representation
1
8 0.001 0.125
3
4
25
16

10.1011
1.001

5.875
3.1875

Practice Problem 2.46
The imprecision of floating-point arithmetic can have disastrous effects. On Febru-
ary 25, 1991, during the first Gulf War, an American Patriot Missile battery in
Dharan, Saudi Arabia, failed to intercept an incoming Iraqi Scud missile. The
Scud struck an American Army barracks and killed 28 soldiers. The U.S. General
Accounting Office (GAO) conducted a detailed analysis of the failure [72] and de-
termined that the underlying cause was an imprecision in a numeric calculation.
In this exercise, you will reproduce part of the GAO’s analysis.

The Patriot system contains an internal clock, implemented as a counter
that is incremented every 0.1 seconds. To determine the time in seconds, the
program would multiply the value of this counter by a 24-bit quantity that was
a fractional binary approximation to 1

10 . In particular, the binary representation
of 1

10 is the nonterminating sequence 0.000110011[0011] . . .2, where the portion in
brackets is repeated indefinitely. The program approximated 0.1, as a value x, by
considering just the first 23 bits of the sequence to the right of the binary point:
x = 0.00011001100110011001100. (See Problem 2.51 for a discussion of how they
could have approximated 0.1 more precisely.)

A. What is the binary representation of 0.1 − x?

B. What is the approximate decimal value of 0.1 − x?

C. The clock starts at 0 when the system is first powered up and keeps counting
up from there. In this case, the system had been running for around 100 hours.
What was the difference between the actual time and the time computed by
the software?

D. The system predicts where an incoming missile will appear based on its
velocity and the time of the last radar detection. Given that a Scud travels
at around 2000 meters per second, how far off was its prediction?

Normally, a slight error in the absolute time reported by a clock reading would
not affect a tracking computation. Instead, it should depend on the relative time
between two successive readings. The problem was that the Patriot software had

Section 2.4 Floating Point 103

been upgraded to use a more accurate function for reading time, but not all of
the function calls had been replaced by the new code. As a result, the tracking
software used the accurate time for one reading and the inaccurate time for the
other [100].

2.4.2 IEEE Floating-Point Representation

Positional notation such as considered in the previous section would not be ef-
ficient for representing very large numbers. For example, the representation of
5 × 2100 would consist of the bit pattern 101 followed by 100 zeros. Instead, we
would like to represent numbers in a form x × 2y by giving the values of x and y.

The IEEE floating-point standard represents a number in a form V = (−1)s ×
M × 2E:

. The sign s determines whether the number is negative (s = 1) or positive
(s = 0), where the interpretation of the sign bit for numeric value 0 is handled
as a special case.

. The significand M is a fractional binary number that ranges either between 1
and 2 − ε or between 0 and 1 − ε.

. The exponent E weights the value by a (possibly negative) power of 2.

The bit representation of a floating-point number is divided into three fields to
encode these values:

. The single sign bit s directly encodes the sign s.

. The k-bit exponent field exp= ek−1 . . . e1e0 encodes the exponent E.

. The n-bit fraction field frac= fn−1 . . . f1f0 encodes the significand M , but the
value encoded also depends on whether or not the exponent field equals 0.

Figure 2.31 shows the packing of these three fields into words for the two
most common formats. In the single-precision floating-point format (a float in
C), fields s, exp, and frac are 1, k = 8, and n = 23 bits each, yielding a 32-
bit representation. In the double-precision floating-point format (a double in
C), fields s, exp, and frac are 1, k = 11, and n = 52 bits each, yielding a 64-bit
representation.

The value encoded by a given bit representation can be divided into three
different cases (the latter having two variants), depending on the value of exp.
These are illustrated in Figure 2.32 for the single-precision format.

Case 1: Normalized Values

This is the most common case. It occurs when the bit pattern of exp is neither
all zeros (numeric value 0) nor all ones (numeric value 255 for single precision,
2047 for double). In this case, the exponent field is interpreted as representing a
signed integer in biased form. That is, the exponent value is E = e − Bias where e

is the unsigned number having bit representation ek−1 . . . e1e0, and Bias is a bias

104 Chapter 2 Representing and Manipulating Information

31

s exp frac

30

Single precision

23 022

63

s exp frac (51:32)

62

Double precision

52 3251

31

frac (31:0)

0

Figure 2.31 Standard floating-point formats. Floating-point numbers are represented
by three fields. For the two most common formats, these are packed in 32-bit (single
precision) or 64-bit (double precision) words.

s 0 0 0 0 0 0 0 0 f

≠ 0

2. Denormalized

s 1 1 1 1 1 1 1 1 0

3a. Infinity

s 1 1 1 1 1 1 1 1

3b. NaN

s ≠ 0 & ≠ 255 f

1. Normalized

Figure 2.32 Categories of single-precision, floating-point values. The value of the
exponent determines whether the number is (1) normalized, (2) denormalized, or a
(3) special value.

value equal to 2k−1 − 1 (127 for single precision and 1023 for double). This yields
exponent ranges from −126 to +127 for single precision and −1022 to +1023 for
double precision.

The fraction field frac is interpreted as representing the fractional value f ,
where 0 ≤ f < 1, having binary representation 0.fn−1 . . . f1f0, that is, with the
binary point to the left of the most significant bit. The significand is defined to be
M = 1 + f . This is sometimes called an implied leading 1 representation, because
we can view M to be the number with binary representation 1.fn−1fn−2 . . . f0. This
representation is a trick for getting an additional bit of precision for free, since we
can always adjust the exponent E so that significand M is in the range 1 ≤ M < 2
(assuming there is no overflow). We therefore do not need to explicitly represent
the leading bit, since it always equals 1.

Section 2.4 Floating Point 105

Case 2: Denormalized Values

When the exponent field is all zeros, the represented number is in denormalized
form. In this case, the exponent value is E = 1 − Bias, and the significand value is
M = f , that is, the value of the fraction field without an implied leading 1.

Aside Why set the bias this way for denormalized values?

Having the exponent value be 1 − Bias rather than simply −Bias might seem counterintuitive. We will
see shortly that it provides for smooth transition from denormalized to normalized values.

Denormalized numbers serve two purposes. First, they provide a way to
represent numeric value 0, since with a normalized number we must always have
M ≥ 1, and hence we cannot represent 0. In fact the floating-point representation
of +0.0 has a bit pattern of all zeros: the sign bit is 0, the exponent field is all
zeros (indicating a denormalized value), and the fraction field is all zeros, giving
M = f = 0. Curiously, when the sign bit is 1, but the other fields are all zeros, we
get the value −0.0. With IEEE floating-point format, the values −0.0 and +0.0
are considered different in some ways and the same in others.

A second function of denormalized numbers is to represent numbers that are
very close to 0.0. They provide a property known as gradual underflow in which
possible numeric values are spaced evenly near 0.0.

Case 3: Special Values

A final category of values occurs when the exponent field is all ones. When the
fraction field is all zeros, the resulting values represent infinity, either +∞ when
s = 0, or −∞ when s = 1. Infinity can represent results that overflow, as when we
multiply two very large numbers, or when we divide by zero. When the fraction
field is nonzero, the resulting value is called a “NaN ,” short for “Not a Number.”
Such values are returned as the result of an operation where the result cannot be
given as a real number or as infinity, as when computing

√−1 or ∞ − ∞. They
can also be useful in some applications for representing uninitialized data.

2.4.3 Example Numbers

Figure 2.33 shows the set of values that can be represented in a hypothetical 6-bit
format having k = 3 exponent bits and n = 2 fraction bits. The bias is 23−1 − 1 =
3. Part A of the figure shows all representable values (other than NaN). The
two infinities are at the extreme ends. The normalized numbers with maximum
magnitude are ±14. The denormalized numbers are clustered around 0. These
can be seen more clearly in part B of the figure, where we show just the numbers
between −1.0 and +1.0. The two zeros are special cases of denormalized numbers.
Observe that the representable numbers are not uniformly distributed—they are
denser nearer the origin.

Figure 2.34 shows some examples for a hypothetical 8-bit floating-point format
having k = 4 exponent bits and n = 3 fraction bits. The bias is 24−1 − 1 = 7. The

106 Chapter 2 Representing and Manipulating Information

�10

�0.8 �0.6 �0.4 �0.2 �0.2

�0�0

�0.4 �0.6 �0.8 �10�1

�5 0 �5 �10 ����

Denormalized Normalized Infinity

Denormalized Normalized Infinity

(a) Complete range

(b) Values between �1.0 and �1.0

Figure 2.33 Representable values for 6-bit floating-point format. There are k = 3
exponent bits and n = 2 fraction bits. The bias is 3.

Exponent Fraction Value

Description Bit representation e E 2E f M 2E × M V Decimal

Zero 0 0000 000 0 −6 1
64

0
8

0
8

0
512 0 0.0

Smallest pos. 0 0000 001 0 −6 1
64

1
8

1
8

1
512

1
512 0.001953

0 0000 010 0 −6 1
64

2
8

2
8

2
512

1
256 0.003906

0 0000 011 0 −6 1
64

3
8

3
8

3
512

3
512 0.005859

...
Largest denorm. 0 0000 111 0 −6 1

64
7
8

7
8

7
512

7
512 0.013672

Smallest norm. 0 0001 000 1 −6 1
64

0
8

8
8

8
512

1
64 0.015625

0 0001 001 1 −6 1
64

1
8

9
8

9
512

9
512 0.017578

...
0 0110 110 6 −1 1

2
6
8

14
8

14
16

7
8 0.875

0 0110 111 6 −1 1
2

7
8

15
8

15
16

15
16 0.9375

One 0 0111 000 7 0 1 0
8

8
8

8
8 1 1.0

0 0111 001 7 0 1 1
8

9
8

9
8

9
8 1.125

0 0111 010 7 0 1 2
8

10
8

10
8

5
4 1.25

...
0 1110 110 14 7 128 6

8
14
8

1792
8 224 224.0

Largest norm. 0 1110 111 14 7 128 7
8

15
8

1920
8 240 240.0

Infinity 0 1111 000 — — — — — — ∞ —

Figure 2.34 Example nonnegative values for 8-bit floating-point format. There are
k = 4 exponent bits and n = 3 fraction bits. The bias is 7.

Section 2.4 Floating Point 107

figure is divided into three regions representing the three classes of numbers. The
different columns show how the exponent field encodes the exponent E, while the
fraction field encodes the significand M , and together they form the represented
value V = 2E × M . Closest to 0 are the denormalized numbers, starting with 0
itself. Denormalized numbers in this format have E = 1 − 7 = −6, giving a weight
2E = 1

64 . The fractions f and significands M range over the values 0, 1
8 , . . . , 7

8 ,
giving numbers V in the range 0 to 1

64 × 7
8 = 7

512 .
The smallest normalized numbers in this format also have E = 1 − 7 = −6,

and the fractions also range over the values 0, 1
8 , . . . 7

8 . However, the significands
then range from 1 + 0 = 1 to 1 + 7

8 = 15
8 , giving numbers V in the range 8

512 = 1
64

to 15
512 .

Observe the smooth transition between the largest denormalized number 7
512

and the smallest normalized number 8
512 . This smoothness is due to our definition

of E for denormalized values. By making it 1 − Bias rather than −Bias, we com-
pensate for the fact that the significand of a denormalized number does not have
an implied leading 1.

As we increase the exponent, we get successively larger normalized values,
passing through 1.0 and then to the largest normalized number. This number has
exponent E = 7, giving a weight 2E = 128. The fraction equals 7

8 , giving a signifi-
cand M = 15

8 . Thus, the numeric value is V = 240. Going beyond this overflows to
+∞.

One interesting property of this representation is that if we interpret the bit
representations of the values in Figure 2.34 as unsigned integers, they occur in
ascending order, as do the values they represent as floating-point numbers. This is
no accident—the IEEE format was designed so that floating-point numbers could
be sorted using an integer sorting routine. A minor difficulty occurs when dealing
with negative numbers, since they have a leading 1, and they occur in descending
order, but this can be overcome without requiring floating-point operations to
perform comparisons (see Problem 2.83).

Practice Problem 2.47
Consider a 5-bit floating-point representation based on the IEEE floating-point
format, with one sign bit, two exponent bits (k = 2), and two fraction bits (n = 2).
The exponent bias is 22−1 − 1 = 1.

The table that follows enumerates the entire nonnegative range for this 5-bit
floating-point representation. Fill in the blank table entries using the following
directions:

e: The value represented by considering the exponent field to be an unsigned
integer

E: The value of the exponent after biasing

2E: The numeric weight of the exponent

f : The value of the fraction

108 Chapter 2 Representing and Manipulating Information

M : The value of the significand

2E × M : The (unreduced) fractional value of the number

V : The reduced fractional value of the number

Decimal: The decimal representation of the number

Express the values of 2E, f , M , 2E × M , and V either as integers (when possible)
or as fractions of the form x

y
, where y is a power of 2. You need not fill in entries

marked “—”.

Bits e E 2E f M 2E × M V Decimal

0 00 00

0 00 01

0 00 10

0 00 11

0 01 00

0 01 01 1 0 1 1
4

5
4

5
4

5
4 1.25

0 01 10

0 01 11

0 10 00

0 10 01

0 10 10

0 10 11

0 11 00 — — — — — — —
0 11 01 — — — — — — —
0 11 10 — — — — — — —
0 11 11 — — — — — — —

Figure 2.35 shows the representations and numeric values of some important
single- and double-precision floating-point numbers. As with the 8-bit format
shown in Figure 2.34, we can see some general properties for a floating-point
representation with a k-bit exponent and an n-bit fraction:

. The value +0.0 always has a bit representation of all zeros.

. The smallest positive denormalized value has a bit representation consisting of
a 1 in the least significant bit position and otherwise all zeros. It has a fraction
(and significand) value M = f = 2−n and an exponent value E = − 2k−1 + 2.
The numeric value is therefore V = 2−n− 2k−1+2.

. The largest denormalized value has a bit representation consisting of an
exponent field of all zeros and a fraction field of all ones. It has a fraction
(and significand) value M = f = 1 − 2−n (which we have written 1 − ε) and
an exponent value E = − 2k−1 + 2. The numeric value is therefore V = (1 −
2−n) × 2− 2k−1+2, which is just slightly smaller than the smallest normalized
value.

Section 2.4 Floating Point 109

Single precision Double precision

Description exp frac Value Decimal Value Decimal

Zero 00 . . . 00 0 . . . 00 0 0.0 0 0.0
Smallest denorm. 00 . . . 00 0 . . . 01 2−23 × 2−126 1.4 × 10−45 2−52 × 2−1022 4.9 × 10−324

Largest denorm. 00 . . . 00 1 . . . 11 (1 − ε) × 2−126 1.2 × 10−38 (1 − ε) × 2−1022 2.2 × 10−308

Smallest norm. 00 . . . 01 0 . . . 00 1 × 2−126 1.2 × 10−38 1 × 2−1022 2.2 × 10−308

One 01 . . . 11 0 . . . 00 1 × 20 1.0 1 × 20 1.0
Largest norm. 11 . . . 10 1 . . . 11 (2 − ε) × 2127 3.4 × 1038 (2 − ε) × 21023 1.8 × 10308

Figure 2.35 Examples of nonnegative floating-point numbers.

. The smallest positive normalized value has a bit representation with a 1 in
the least significant bit of the exponent field and otherwise all zeros. It has a
significand value M = 1 and an exponent value E = − 2k−1 + 2. The numeric
value is therefore V = 2− 2k−1+2.

. The value 1.0 has a bit representation with all but the most significant bit of
the exponent field equal to 1 and all other bits equal to 0. Its significand value
is M = 1 and its exponent value is E = 0.

. The largest normalized value has a bit representation with a sign bit of 0, the
least significant bit of the exponent equal to 0, and all other bits equal to 1. It
has a fraction value of f = 1 − 2−n, giving a significand M = 2 − 2−n (which
we have written 2 − ε). It has an exponent value E = 2k−1 − 1, giving a numeric
value V = (2 − 2−n) × 22k−1−1 = (1 − 2−n−1) × 22k−1

.

One useful exercise for understanding floating-point representations is to con-
vert sample integer values into floating-point form. For example, we saw in Figure
2.14 that 12,345 has binary representation [11000000111001]. We create a normal-
ized representation of this by shifting 13 positions to the right of a binary point,
giving 12345 = 1.10000001110012 × 213. To encode this in IEEE single-precision
format, we construct the fraction field by dropping the leading 1 and adding 10
zeros to the end, giving binary representation [10000001110010000000000]. To
construct the exponent field, we add bias 127 to 13, giving 140, which has bi-
nary representation [10001100]. We combine this with a sign bit of 0 to get the
floating-point representation in binary of [01000110010000001110010000000000].
Recall from Section 2.1.4 that we observed the following correlation in the bit-
level representations of the integer value 12345 (0x3039) and the single-precision
floating-point value 12345.0 (0x4640E400):

0 0 0 0 3 0 3 9

00000000000000000011000000111001

4 6 4 0 E 4 0 0

01000110010000001110010000000000

110 Chapter 2 Representing and Manipulating Information

We can now see that the region of correlation corresponds to the low-order
bits of the integer, stopping just before the most significant bit equal to 1 (this bit
forms the implied leading 1), matching the high-order bits in the fraction part of
the floating-point representation.

Practice Problem 2.48
As mentioned in Problem 2.6, the integer 3,510,593 has hexadecimal representa-
tion 0x00359141, while the single-precision, floating-point number 3510593.0 has
hexadecimal representation 0x4A564504. Derive this floating-point representa-
tion and explain the correlation between the bits of the integer and floating-point
representations.

Practice Problem 2.49

A. For a floating-point format with an n-bit fraction, give a formula for the
smallest positive integer that cannot be represented exactly (because it
would require an n+1-bit fraction to be exact). Assume the exponent field
size k is large enough that the range of representable exponents does not
provide a limitation for this problem.

B. What is the numeric value of this integer for single-precision format
(n = 23)?

2.4.4 Rounding

Floating-point arithmetic can only approximate real arithmetic, since the repre-
sentation has limited range and precision. Thus, for a value x, we generally want
a systematic method of finding the “closest” matching value x′ that can be rep-
resented in the desired floating-point format. This is the task of the rounding
operation. One key problem is to define the direction to round a value that is
halfway between two possibilities. For example, if I have $1.50 and want to round
it to the nearest dollar, should the result be $1 or $2? An alternative approach is
to maintain a lower and an upper bound on the actual number. For example, we
could determine representable values x− and x+ such that the value x is guaran-
teed to lie between them: x− ≤ x ≤ x+. The IEEE floating-point format defines
four different rounding modes. The default method finds a closest match, while
the other three can be used for computing upper and lower bounds.

Figure 2.36 illustrates the four rounding modes applied to the problem of
rounding a monetary amount to the nearest whole dollar. Round-to-even (also
called round-to-nearest) is the default mode. It attempts to find a closest match.
Thus, it rounds $1.40 to $1 and $1.60 to $2, since these are the closest whole dollar
values. The only design decision is to determine the effect of rounding values
that are halfway between two possible results. Round-to-even mode adopts the

Section 2.4 Floating Point 111

Mode $1.40 $1.60 $1.50 $2.50 $−1.50

Round-to-even $1 $2 $2 $2 $−2
Round-toward-zero $1 $1 $1 $2 $−1
Round-down $1 $1 $1 $2 $−2
Round-up $2 $2 $2 $3 $−1

Figure 2.36 Illustration of rounding modes for dollar rounding. The first rounds to
a nearest value, while the other three bound the result above or below.

convention that it rounds the number either upward or downward such that the
least significant digit of the result is even. Thus, it rounds both $1.50 and $2.50
to $2.

The other three modes produce guaranteed bounds on the actual value. These
can be useful in some numerical applications. Round-toward-zero mode rounds
positive numbers downward and negative numbers upward, giving a value x̂ such
that |x̂| ≤ |x|. Round-down mode rounds both positive and negative numbers
downward, giving a value x− such that x− ≤ x. Round-up mode rounds both
positive and negative numbers upward, giving a value x+ such that x ≤ x+.

Round-to-even at first seems like it has a rather arbitrary goal—why is there
any reason to prefer even numbers? Why not consistently round values halfway
between two representable values upward? The problem with such a convention
is that one can easily imagine scenarios in which rounding a set of data values
would then introduce a statistical bias into the computation of an average of the
values. The average of a set of numbers that we rounded by this means would
be slightly higher than the average of the numbers themselves. Conversely, if we
always rounded numbers halfway between downward, the average of a set of
rounded numbers would be slightly lower than the average of the numbers them-
selves. Rounding toward even numbers avoids this statistical bias in most real-life
situations. It will round upward about 50% of the time and round downward about
50% of the time.

Round-to-even rounding can be applied even when we are not rounding to
a whole number. We simply consider whether the least significant digit is even
or odd. For example, suppose we want to round decimal numbers to the nearest
hundredth. We would round 1.2349999 to 1.23 and 1.2350001 to 1.24, regardless
of rounding mode, since they are not halfway between 1.23 and 1.24. On the other
hand, we would round both 1.2350000 and 1.2450000 to 1.24, since 4 is even.

Similarly, round-to-even rounding can be applied to binary fractional num-
bers. We consider least significant bit value 0 to be even and 1 to be odd. In general,
the rounding mode is only significant when we have a bit pattern of the form
XX . . . X.YY . . . Y100 . . ., where X and Y denote arbitrary bit values with the
rightmost Y being the position to which we wish to round. Only bit patterns of
this form denote values that are halfway between two possible results. As exam-
ples, consider the problem of rounding values to the nearest quarter (i.e., 2 bits to
the right of the binary point). We would round 10.000112 (2 3

32) down to 10.002 (2),

112 Chapter 2 Representing and Manipulating Information

and 10.001102 (2 3
16) up to 10.012 (2 1

4), because these values are not halfway be-
tween two possible values. We would round 10.111002 (2 7

8) up to 11.002 (3) and
10.101002 (2 5

8) down to 10.102 (2 1
2), since these values are halfway between two

possible results, and we prefer to have the least significant bit equal to zero.

Practice Problem 2.50
Show how the following binary fractional values would be rounded to the nearest
half (1 bit to the right of the binary point), according to the round-to-even rule.
In each case, show the numeric values, both before and after rounding.

A. 10.0102

B. 10.0112

C. 10.1102

D. 11.0012

Practice Problem 2.51
We saw in Problem 2.46 that the Patriot missile software approximated 0.1 as x =
0.000110011001100110011002. Suppose instead that they had used IEEE round-
to-even mode to determine an approximation x′ to 0.1 with 23 bits to the right of
the binary point.

A. What is the binary representation of x′?
B. What is the approximate decimal value of x′ − 0.1?

C. How far off would the computed clock have been after 100 hours of opera-
tion?

D. How far off would the program’s prediction of the position of the Scud
missile have been?

Practice Problem 2.52
Consider the following two 7-bit floating-point representations based on the IEEE
floating point format. Neither has a sign bit—they can only represent nonnegative
numbers.

1. Format A
There are k = 3 exponent bits. The exponent bias is 3.
There are n = 4 fraction bits.

2. Format B
There are k = 4 exponent bits. The exponent bias is 7.
There are n = 3 fraction bits.

Below, you are given some bit patterns in Format A, and your task is to convert
them to the closest value in Format B. If necessary, you should apply the round-to-
even rounding rule. In addition, give the values of numbers given by the Format A

Section 2.4 Floating Point 113

and Format B bit patterns. Give these as whole numbers (e.g., 17) or as fractions
(e.g., 17/64).

Format A Format B

Bits Value Bits Value

011 0000 1 0111 000 1
101 1110

010 1001

110 1111

000 0001

2.4.5 Floating-Point Operations

The IEEE standard specifies a simple rule for determining the result of an arith-
metic operation such as addition or multiplication. Viewing floating-point values
x and y as real numbers, and some operation � defined over real numbers, the
computation should yield Round(x � y), the result of applying rounding to the
exact result of the real operation. In practice, there are clever tricks floating-point
unit designers use to avoid performing this exact computation, since the compu-
tation need only be sufficiently precise to guarantee a correctly rounded result.
When one of the arguments is a special value such as −0, ∞, or NaN , the stan-
dard specifies conventions that attempt to be reasonable. For example, 1/ − 0 is
defined to yield −∞, while 1/ + 0 is defined to yield +∞.

One strength of the IEEE standard’s method of specifying the behavior of
floating-point operations is that it is independent of any particular hardware or
software realization. Thus, we can examine its abstract mathematical properties
without considering how it is actually implemented.

We saw earlier that integer addition, both unsigned and two’s complement,
forms an abelian group. Addition over real numbers also forms an abelian group,
but we must consider what effect rounding has on these properties. Let us define
x +f y to be Round(x + y). This operation is defined for all values of x and y,
although it may yield infinity even when both x and y are real numbers due to
overflow. The operation is commutative, with x +f y = y +f x for all values of x and
y. On the other hand, the operation is not associative. For example, with single-
precision floating point the expression (3.14+1e10)-1e10 evaluates to 0.0—the
value 3.14 is lost due to rounding. On the other hand, the expression 3.14+(1e10-
1e10) evaluates to 3.14. As with an abelian group, most values have inverses
under floating-point addition, that is, x +f −x = 0. The exceptions are infinities
(since +∞ − ∞ = NaN), and NaN’s, since NaN +f x = NaN for any x.

The lack of associativity in floating-point addition is the most important group
property that is lacking. It has important implications for scientific programmers
and compiler writers. For example, suppose a compiler is given the following code
fragment:

x = a + b + c;

y = b + c + d;

114 Chapter 2 Representing and Manipulating Information

The compiler might be tempted to save one floating-point addition by generating
the following code:

t = b + c;

x = a + t;

y = t + d;

However, this computation might yield a different value for x than would the
original, since it uses a different association of the addition operations. In most
applications, the difference would be so small as to be inconsequential. Unfor-
tunately, compilers have no way of knowing what trade-offs the user is willing to
make between efficiency and faithfulness to the exact behavior of the original pro-
gram. As a result, they tend to be very conservative, avoiding any optimizations
that could have even the slightest effect on functionality.

On the other hand, floating-point addition satisfies the following monotonicity
property: if a ≥ b then x + a ≥ x + b for any values of a, b, and x other than NaN .
This property of real (and integer) addition is not obeyed by unsigned or two’s-
complement addition.

Floating-point multiplication also obeys many of the properties one normally
associates with multiplication. Let us define x *f y to be Round(x × y). This oper-
ation is closed under multiplication (although possibly yielding infinity or NaN),
it is commutative, and it has 1.0 as a multiplicative identity. On the other hand,
it is not associative, due to the possibility of overflow or the loss of precision
due to rounding. For example, with single-precision floating point, the expression
(1e20*1e20)*1e-20 evaluates to +∞, while 1e20*(1e20*1e-20) evaluates to
1e20. In addition, floating-point multiplication does not distribute over addition.
For example, with single-precision floating point, the expression 1e20*(1e20-
1e20) evaluates to 0.0, while 1e20*1e20-1e20*1e20 evaluates to NaN.

On the other hand, floating-point multiplication satisfies the following mono-
tonicity properties for any values of a, b, and c other than NaN :

a ≥ b and c ≥ 0 ⇒ a *f c ≥ b *f c

a ≥ b and c ≤ 0 ⇒ a *f c ≤ b *f c

In addition, we are also guaranteed that a *f a ≥ 0, as long as a �= NaN . As we
saw earlier, none of these monotonicity properties hold for unsigned or two’s-
complement multiplication.

This lack of associativity and distributivity is of serious concern to scientific
programmers and to compiler writers. Even such a seemingly simple task as writing
code to determine whether two lines intersect in 3-dimensional space can be a
major challenge.

2.4.6 Floating Point in C

All versions of C provide two different floating-point data types: float and
double. On machines that support IEEE floating point, these data types corre-
spond to single- and double-precision floating point. In addition, the machines use

Section 2.4 Floating Point 115

the round-to-even rounding mode. Unfortunately, since the C standards do not
require the machine to use IEEE floating point, there are no standard methods to
change the rounding mode or to get special values such as −0, +∞, −∞, or NaN .
Most systems provide a combination of include (‘.h’) files and procedure libraries
to provide access to these features, but the details vary from one system to an-
other. For example, the GNU compiler gcc defines program constants INFINITY
(for +∞) and NAN (for NaN) when the following sequence occurs in the program
file:

#define _GNU_SOURCE 1

#include <math.h>

More recent versions of C, including ISO C99, include a third floating-point
data type, long double. For many machines and compilers, this data type is
equivalent to the double data type. For Intel-compatible machines, however, gcc
implements this data type using an 80-bit “extended precision” format, providing
a much larger range and precision than does the standard 64-bit format. The
properties of this format are investigated in Problem 2.85.

Practice Problem 2.53
Fill in the following macro definitions to generate the double-precision values +∞,
−∞, and 0:

#define POS_INFINITY

#define NEG_INFINITY

#define NEG_ZERO

You cannot use any include files (such as math.h), but you can make use of the
fact that the largest finite number that can be represented with double precision
is around 1.8 × 10308.

When casting values between int, float, and double formats, the program
changes the numeric values and the bit representations as follows (assuming a
32-bit int):

. From int to float, the number cannot overflow, but it may be rounded.

. From int or float to double, the exact numeric value can be preserved be-
cause double has both greater range (i.e., the range of representable values),
as well as greater precision (i.e., the number of significant bits).

. From double to float, the value can overflow to +∞ or −∞, since the range
is smaller. Otherwise, it may be rounded, because the precision is smaller.

. From float or double to int the value will be rounded toward zero. For
example, 1.999 will be converted to 1, while −1.999 will be converted to
−1. Furthermore, the value may overflow. The C standards do not specify
a fixed result for this case. Intel-compatible microprocessors designate the

116 Chapter 2 Representing and Manipulating Information

bit pattern [10 . . . 00] (TMinw for word size w) as an integer indefinite value.
Any conversion from floating point to integer that cannot assign a reasonable
integer approximation yields this value. Thus, the expression (int) +1e10
yields -21483648, generating a negative value from a positive one.

Web Aside DATA:IA32-FP Intel IA32 floating-point arithmetic

In the next chapter, we will begin an in-depth study of Intel IA32 processors, the processor found
in many of today’s personal computers. Here we highlight an idiosyncrasy of these machines that can
seriously affect the behavior of programs operating on floating-point numbers when compiled with gcc.

IA32 processors, like most other processors, have special memory elements called registers for
holding floating-point values as they are being computed and used. The unusual feature of IA32 is that
the floating-point registers use a special 80-bit extended-precision format to provide a greater range and
precision than the normal 32-bit single-precision and 64-bit double-precision formats used for values
held in memory. (See Problem 2.85.) All single- and double-precision numbers are converted to this
format as they are loaded from memory into floating-point registers. The arithmetic is always performed
in extended precision. Numbers are converted from extended precision to single- or double-precision
format as they are stored in memory.

This extension to 80 bits for all register data and then contraction to a smaller format for memory
data has some undesirable consequences for programmers. It means that storing a number from a
register to memory and then retrieving it back into the register can cause it to change, due to rounding,
underflow, or overflow. This storing and retrieving is not always visible to the C programmer, leading
to some very peculiar results.

More recent versions of Intel processors, including both IA32 and newer 64-bit machines, provide
direct hardware support for single- and double-precision floating-point operations. The peculiarities
of the historic IA32 approach will diminish in importance with new hardware and with compilers that
generate code based on the newer floating-point instructions.

Aside Ariane 5: the high cost of floating-point overflow

Converting large floating-point numbers to integers is a common source of programming errors. Such
an error had disastrous consequences for the maiden voyage of the Ariane 5 rocket, on June 4, 1996. Just
37 seconds after liftoff, the rocket veered off its flight path, broke up, and exploded. Communication
satellites valued at $500 million were on board the rocket.

A later investigation [69, 39] showed that the computer controlling the inertial navigation system
had sent invalid data to the computer controlling the engine nozzles. Instead of sending flight control
information, it had sent a diagnostic bit pattern indicating that an overflow had occurred during the
conversion of a 64-bit floating-point number to a 16-bit signed integer.

The value that overflowed measured the horizontal velocity of the rocket, which could be more
than 5 times higher than that achieved by the earlier Ariane 4 rocket. In the design of the Ariane 4
software, they had carefully analyzed the numeric values and determined that the horizontal velocity

Section 2.4 Floating Point 117

would never overflow a 16-bit number. Unfortunately, they simply reused this part of the software in
the Ariane 5 without checking the assumptions on which it had been based.

© Fourmy/REA/SABA/Corbis

Practice Problem 2.54
Assume variables x, f, and d are of type int, float, and double, respectively.
Their values are arbitrary, except that neither f nor d equals +∞, −∞, or NaN .
For each of the following C expressions, either argue that it will always be true
(i.e., evaluate to 1) or give a value for the variables such that it is not true (i.e.,
evaluates to 0).

A. x == (int)(double) x

B. x == (int)(float) x

C. d == (double)(float) d

D. f == (float)(double) f

E. f == -(-f)

F. 1.0/2 == 1/2.0

G. d*d >= 0.0

H. (f+d)-f == d

118 Chapter 2 Representing and Manipulating Information

2.5 Summary

Computers encode information as bits, generally organized as sequences of bytes.
Different encodings are used for representing integers, real numbers, and charac-
ter strings. Different models of computers use different conventions for encoding
numbers and for ordering the bytes within multi-byte data.

The C language is designed to accommodate a wide range of different imple-
mentations in terms of word sizes and numeric encodings. Most current machines
have 32-bit word sizes, although high-end machines increasingly have 64-bit words.
Most machines use two’s-complement encoding of integers and IEEE encod-
ing of floating point. Understanding these encodings at the bit level, as well as
understanding the mathematical characteristics of the arithmetic operations, is im-
portant for writing programs that operate correctly over the full range of numeric
values.

When casting between signed and unsigned integers of the same size, most
C implementations follow the convention that the underlying bit pattern does
not change. On a two’s-complement machine, this behavior is characterized by
functions T2Uw and U2Tw, for a w-bit value. The implicit casting of C gives results
that many programmers do not anticipate, often leading to program bugs.

Due to the finite lengths of the encodings, computer arithmetic has properties
quite different from conventional integer and real arithmetic. The finite length can
cause numbers to overflow, when they exceed the range of the representation.
Floating-point values can also underflow, when they are so close to 0.0 that they
are changed to zero.

The finite integer arithmetic implemented by C, as well as most other pro-
gramming languages, has some peculiar properties compared to true integer arith-
metic. For example, the expression x*x can evaluate to a negative number due
to overflow. Nonetheless, both unsigned and two’s-complement arithmetic satisfy
many of the other properties of integer arithmetic, including associativity, com-
mutativity, and distributivity. This allows compilers to do many optimizations. For
example, in replacing the expression 7*x by (x<<3)-x, we make use of the as-
sociative, commutative, and distributive properties, along with the relationship
between shifting and multiplying by powers of 2.

We have seen several clever ways to exploit combinations of bit-level opera-
tions and arithmetic operations. For example, we saw that with two’s-complement
arithmetic ~x+1 is equivalent to -x. As another example, suppose we want a bit
pattern of the form [0, . . . , 0, 1, . . . , 1], consisting of w − k zeros followed by k

ones. Such bit patterns are useful for masking operations. This pattern can be gen-
erated by the C expression (1<<k)-1, exploiting the property that the desired
bit pattern has numeric value 2k − 1. For example, the expression (1<<8)-1 will
generate the bit pattern 0xFF.

Floating-point representations approximate real numbers by encoding num-
bers of the form x × 2y. The most common floating-point representation is defined
by IEEE Standard 754. It provides for several different precisions, with the most
common being single (32 bits) and double (64 bits). IEEE floating point also has
representations for special values representing plus and minus infinity, as well as
not-a-number.

Homework Problems 119

Floating-point arithmetic must be used very carefully, because it has only
limited range and precision, and because it does not obey common mathematical
properties such as associativity.

Bibliographic Notes

Reference books on C [48, 58] discuss properties of the different data types and
operations. (Of these two, only Steele and Harbison [48] cover the newer fea-
tures found in ISO C99.) The C standards do not specify details such as pre-
cise word sizes or numeric encodings. Such details are intentionally omitted to
make it possible to implement C on a wide range of different machines. Several
books have been written giving advice to C programmers [59, 70] that warn about
problems with overflow, implicit casting to unsigned, and some of the other pit-
falls we have covered in this chapter. These books also provide helpful advice
on variable naming, coding styles, and code testing. Seacord’s book on security
issues in C and C++ programs [94], combines information about C programs,
how they are compiled and executed, and how vulnerabilities may arise. Books
on Java (we recommend the one coauthored by James Gosling, the creator of
the language [4]) describe the data formats and arithmetic operations supported
by Java.

Most books on logic design [56, 115] have a section on encodings and arith-
metic operations. Such books describe different ways of implementing arithmetic
circuits. Overton’s book on IEEE floating point [78] provides a detailed descrip-
tion of the format as well as the properties from the perspective of a numerical
applications programmer.

Homework Problems

2.55 ◆
Compile and run the sample code that uses show_bytes (file show-bytes.c) on
different machines to which you have access. Determine the byte orderings used
by these machines.

2.56 ◆
Try running the code for show_bytes for different sample values.

2.57 ◆
Write procedures show_short, show_long, and show_double that print the byte
representations of C objects of types short int, long int, and double, respec-
tively. Try these out on several machines.

2.58 ◆◆
Write a procedure is_little_endian that will return 1 when compiled and run
on a little-endian machine, and will return 0 when compiled and run on a big-
endian machine. This program should run on any machine, regardless of its word
size.

120 Chapter 2 Representing and Manipulating Information

2.59 ◆◆
Write a C expression that will yield a word consisting of the least significant
byte of x, and the remaining bytes of y. For operands x = 0x89ABCDEF and y =
0x76543210, this would give 0x765432EF.

2.60 ◆◆
Suppose we number the bytes in a w-bit word from 0 (least significant) to w/8 − 1
(most significant). Write code for the following C function, which will return an
unsigned value in which byte i of argument x has been replaced by byte b:

unsigned replace_byte (unsigned x, int i, unsigned char b);

Here are some examples showing how the function should work:

replace_byte(0x12345678, 2, 0xAB) --> 0x12AB5678

replace_byte(0x12345678, 0, 0xAB) --> 0x123456AB

Bit-level integer coding rules

In several of the following problems, we will artificially restrict what programming
constructs you can use to help you gain a better understanding of the bit-level,
logic, and arithmetic operations of C. In answering these problems, your code
must follow these rules:

. Assumptions
Integers are represented in two’s-complement form.
Right shifts of signed data are performed arithmetically.
Data type int is w bits long. For some of the problems, you will be given a
specific value for w, but otherwise your code should work as long as w is a
multiple of 8. You can use the expression sizeof(int)<<3 to compute w.

. Forbidden
Conditionals (if or ?:), loops, switch statements, function calls, and macro
invocations.
Division, modulus, and multiplication.
Relative comparison operators (<, >, <=, and >=).
Casting, either explicit or implicit.

. Allowed operations
All bit-level and logic operations.
Left and right shifts, but only with shift amounts between 0 and w − 1.
Addition and subtraction.
Equality (==) and inequality (!=) tests. (Some of the problems do not allow
these.)
Integer constants INT_MIN and INT_MAX.

Even with these rules, you should try to make your code readable by choosing
descriptive variable names and using comments to describe the logic behind your
solutions. As an example, the following code extracts the most significant byte
from integer argument x:

Homework Problems 121

/* Get most significant byte from x */

int get_msb(int x) {

/* Shift by w-8 */

int shift_val = (sizeof(int)-1)<<3;

/* Arithmetic shift */

int xright = x >> shift_val;

/* Zero all but LSB */

return xright & 0xFF;

}

2.61 ◆◆
Write C expressions that evaluate to 1 when the following conditions are true, and
to 0 when they are false. Assume x is of type int.

A. Any bit of x equals 1.

B. Any bit of x equals 0.

C. Any bit in the least significant byte of x equals 1.

D. Any bit in the most significant byte of x equals 0.

Your code should follow the bit-level integer coding rules (page 120), with the
additional restriction that you may not use equality (==) or inequality (!=) tests.

2.62 ◆◆◆
Write a function int_shifts_are_arithmetic() that yields 1 when run on a
machine that uses arithmetic right shifts for int’s, and 0 otherwise. Your code
should work on a machine with any word size. Test your code on several machines.

2.63 ◆◆◆
Fill in code for the following C functions. Function srl performs a logical right
shift using an arithmetic right shift (given by value xsra), followed by other oper-
ations not including right shifts or division. Function sra performs an arithmetic
right shift using a logical right shift (given by value xsrl), followed by other
operations not including right shifts or division. You may use the computation
8*sizeof(int) to determine w, the number of bits in data type int. The shift
amount k can range from 0 to w − 1.

unsigned srl(unsigned x, int k) {

/* Perform shift arithmetically */

unsigned xsra = (int) x >> k;
.
.
.

}

122 Chapter 2 Representing and Manipulating Information

int sra(int x, int k) {

/* Perform shift logically */

int xsrl = (unsigned) x >> k;
.
.
.

}

2.64 ◆
Write code to implement the following function:

/* Return 1 when any odd bit of x equals 1; 0 otherwise.

Assume w=32. */

int any_odd_one(unsigned x);

Your function should follow the bit-level integer coding rules (page 120), except
that you may assume that data type int has w = 32 bits.

2.65 ◆◆◆◆
Write code to implement the following function:

/* Return 1 when x contains an odd number of 1s; 0 otherwise.

Assume w=32. */

int odd_ones(unsigned x);

Your function should follow the bit-level integer coding rules (page 120), except
that you may assume that data type int has w = 32 bits.

Your code should contain a total of at most 12 arithmetic, bit-wise, and logical
operations.

2.66 ◆◆◆
Write code to implement the following function:

/*

* Generate mask indicating leftmost 1 in x. Assume w=32.

* For example 0xFF00 -> 0x8000, and 0x6600 --> 0x4000.

* If x = 0, then return 0.

*/

int leftmost_one(unsigned x);

Your function should follow the bit-level integer coding rules (page 120), except
that you may assume that data type int has w = 32 bits.

Your code should contain a total of at most 15 arithmetic, bit-wise, and logical
operations.

Hint: First transform x into a bit vector of the form [0 . . . 011 . . . 1].

2.67 ◆◆
You are given the task of writing a procedure int_size_is_32() that yields 1
when run on a machine for which an int is 32 bits, and yields 0 otherwise. You are
not allowed to use the sizeof operator. Here is a first attempt:

Homework Problems 123

1 /* The following code does not run properly on some machines */

2 int bad_int_size_is_32() {

3 /* Set most significant bit (msb) of 32-bit machine */

4 int set_msb = 1 << 31;

5 /* Shift past msb of 32-bit word */

6 int beyond_msb = 1 << 32;

7

8 /* set_msb is nonzero when word size >= 32

9 beyond_msb is zero when word size <= 32 */

10 return set_msb && !beyond_msb;

11 }

When compiled and run on a 32-bit SUN SPARC, however, this procedure returns
0. The following compiler message gives us an indication of the problem:

warning: left shift count >= width of type

A. In what way does our code fail to comply with the C standard?

B. Modify the code to run properly on any machine for which data type int is
at least 32 bits.

C. Modify the code to run properly on any machine for which data type int is
at least 16 bits.

2.68 ◆◆
Write code for a function with the following prototype:

/*

* Mask with least signficant n bits set to 1

* Examples: n = 6 --> 0x2F, n = 17 --> 0x1FFFF

* Assume 1 <= n <= w

*/

int lower_one_mask(int n);

Your function should follow the bit-level integer coding rules (page 120). Be
careful of the case n = w.

2.69 ◆◆◆
Write code for a function with the following prototype:

/*

* Do rotating left shift. Assume 0 <= n < w

* Examples when x = 0x12345678 and w = 32:

* n=4 -> 0x23456781, n=20 -> 0x67812345

*/

unsigned rotate_left(unsigned x, int n);

Your function should follow the bit-level integer coding rules (page 120). Be
careful of the case n = 0.

124 Chapter 2 Representing and Manipulating Information

2.70 ◆◆
Write code for the function with the following prototype:

/*

* Return 1 when x can be represented as an n-bit, 2’s complement

* number; 0 otherwise

* Assume 1 <= n <= w

*/

int fits_bits(int x, int n);

Your function should follow the bit-level integer coding rules (page 120).

2.71 ◆
You just started working for a company that is implementing a set of procedures
to operate on a data structure where 4 signed bytes are packed into a 32-bit
unsigned. Bytes within the word are numbered from 0 (least significant) to 3
(most significant). You have been assigned the task of implementing a function
for a machine using two’s-complement arithmetic and arithmetic right shifts with
the following prototype:

/* Declaration of data type where 4 bytes are packed

into an unsigned */

typedef unsigned packed_t;

/* Extract byte from word. Return as signed integer */

int xbyte(packed_t word, int bytenum);

That is, the function will extract the designated byte and sign extend it to be a
32-bit int.

Your predecessor (who was fired for incompetence) wrote the following code:

/* Failed attempt at xbyte */

int xbyte(packed_t word, int bytenum)

{

return (word >> (bytenum << 3)) & 0xFF;

}

A. What is wrong with this code?

B. Give a correct implementation of the function that uses only left and right
shifts, along with one subtraction.

2.72 ◆◆
You are given the task of writing a function that will copy an integer val into a
buffer buf, but it should do so only if enough space is available in the buffer.

Here is the code you write:

/* Copy integer into buffer if space is available */

/* WARNING: The following code is buggy */

Homework Problems 125

void copy_int(int val, void *buf, int maxbytes) {

if (maxbytes-sizeof(val) >= 0)

memcpy(buf, (void *) &val, sizeof(val));

}

This code makes use of the library function memcpy. Although its use is a bit
artificial here, where we simply want to copy an int, it illustrates an approach
commonly used to copy larger data structures.

You carefully test the code and discover that it always copies the value to the
buffer, even when maxbytes is too small.

A. Explain why the conditional test in the code always succeeds. Hint: The
sizeof operator returns a value of type size_t.

B. Show how you can rewrite the conditional test to make it work properly.

2.73 ◆◆
Write code for a function with the following prototype:

/* Addition that saturates to TMin or TMax */

int saturating_add(int x, int y);

Instead of overflowing the way normal two’s-complement addition does, sat-
urating addition returns TMax when there would be positive overflow, and TMin
when there would be negative overflow. Saturating arithmetic is commonly used
in programs that perform digital signal processing.

Your function should follow the bit-level integer coding rules (page 120).

2.74 ◆◆
Write a function with the following prototype:

/* Determine whether arguments can be subtracted without overflow */

int tsub_ok(int x, int y);

This function should return 1 if the computation x− y does not overflow.

2.75 ◆◆◆
Suppose we want to compute the complete 2w-bit representation of x . y, where
both x and y are unsigned, on a machine for which data type unsigned is w bits.
The low-order w bits of the product can be computed with the expression x*y, so
we only require a procedure with prototype

unsigned int unsigned_high_prod(unsigned x, unsigned y);

that computes the high-order w bits of x . y for unsigned variables.
We have access to a library function with prototype

int signed_high_prod(int x, int y);

that computes the high-order w bits of x . y for the case where x and y are in two’s-
complement form. Write code calling this procedure to implement the function
for unsigned arguments. Justify the correctness of your solution.

126 Chapter 2 Representing and Manipulating Information

Hint: Look at the relationship between the signed product x . y and the
unsigned product x′ . y′ in the derivation of Equation 2.18.

2.76 ◆◆
Suppose we are given the task of generating code to multiply integer variable x
by various different constant factors K . To be efficient, we want to use only the
operations +, -, and <<. For the following values of K , write C expressions to
perform the multiplication using at most three operations per expression.

A. K = 17:
B. K = −7:
C. K = 60:
D. K = −112:

2.77 ◆◆
Write code for a function with the following prototype:

/* Divide by power of two. Assume 0 <= k < w-1 */

int divide_power2(int x, int k);

The function should compute x/2k with correct rounding, and it should follow the
bit-level integer coding rules (page 120).

2.78 ◆◆
Write code for a function mul3div4 that, for integer argument x, computes 3*x/4,
but following the bit-level integer coding rules (page 120). Your code should
replicate the fact that the computation 3*x can cause overflow.

2.79 ◆◆◆
Write code for a function threefourthswhich, for integer argument x, computes
the value of 3

4x, rounded toward zero. It should not overflow. Your function should
follow the bit-level integer coding rules (page 120).

2.80 ◆◆
Write C expressions to generate the bit patterns that follow, where ak represents
k repetitions of symbol a. Assume a w-bit data type. Your code may contain
references to parameters j and k, representing the values of j and k, but not a
parameter representing w.

A. 1w−k0k

B. 0w−k−j1k0j

2.81 ◆
We are running programs on a machine where values of type int are 32 bits. They
are represented in two’s complement, and they are right shifted arithmetically.
Values of type unsigned are also 32 bits.

Homework Problems 127

We generate arbitrary values x and y, and convert them to unsigned values as
follows:

/* Create some arbitrary values */

int x = random();

int y = random();

/* Convert to unsigned */

unsigned ux = (unsigned) x;

unsigned uy = (unsigned) y;

For each of the following C expressions, you are to indicate whether or
not the expression always yields 1. If it always yields 1, describe the underlying
mathematical principles. Otherwise, give an example of arguments that make it
yield 0.

A. (x<y) == (-x>-y)

B. ((x+y)<<4) + y-x == 17*y+15*x

C. ~x+~y+1 == ~(x+y)

D. (ux-uy) == -(unsigned)(y-x)

E. ((x >> 2) << 2) <= x

2.82 ◆◆
Consider numbers having a binary representation consisting of an infinite string
of the form 0.y y y y y y . . ., where y is a k-bit sequence. For example, the binary
representation of 1

3 is 0.01010101 . . . (y = 01), while the representation of 1
5 is

0.001100110011 . . . (y = 0011).

A. Let Y = B2Uk(y), that is, the number having binary representation y. Give
a formula in terms of Y and k for the value represented by the infinite string.
Hint: Consider the effect of shifting the binary point k positions to the right.

B. What is the numeric value of the string for the following values of y?

(a) 101
(b) 0110
(c) 010011

2.83 ◆
Fill in the return value for the following procedure, which tests whether its first
argument is less than or equal to its second. Assume the function f2u returns an
unsigned 32-bit number having the same bit representation as its floating-point
argument. You can assume that neither argument is NaN . The two flavors of zero,
+0 and −0, are considered equal.

int float_le(float x, float y) {

unsigned ux = f2u(x);

unsigned uy = f2u(y);

128 Chapter 2 Representing and Manipulating Information

/* Get the sign bits */

unsigned sx = ux >> 31;

unsigned sy = uy >> 31;

/* Give an expression using only ux, uy, sx, and sy */

return ;

}

2.84 ◆
Given a floating-point format with a k-bit exponent and an n-bit fraction, write
formulas for the exponent E, significand M , the fraction f , and the value V for
the quantities that follow. In addition, describe the bit representation.

A. The number 7.0

B. The largest odd integer that can be represented exactly

C. The reciprocal of the smallest positive normalized value

2.85 ◆
Intel-compatible processors also support an “extended precision” floating-point
format with an 80-bit word divided into a sign bit, k = 15 exponent bits, a single
integer bit, and n = 63 fraction bits. The integer bit is an explicit copy of the
implied bit in the IEEE floating-point representation. That is, it equals 1 for
normalized values and 0 for denormalized values. Fill in the following table giving
the approximate values of some “interesting” numbers in this format:

Extended precision

Description Value Decimal

Smallest positive denormalized
Smallest positive normalized
Largest normalized

2.86 ◆
Consider a 16-bit floating-point representation based on the IEEE floating-point
format, with one sign bit, seven exponent bits (k = 7), and eight fraction bits
(n = 8). The exponent bias is 27−1 − 1 = 63.

Fill in the table that follows for each of the numbers given, with the following
instructions for each column:

Hex: The four hexadecimal digits describing the encoded form.
M : The value of the significand. This should be a number of the

form x or x
y

, where x is an integer, and y is an integral
power of 2. Examples include: 0, 67

64 , and 1
256 .

E: The integer value of the exponent.
V : The numeric value represented. Use the notation x or

x × 2z, where x and z are integers.

Homework Problems 129

As an example, to represent the number 7
8 , we would have s = 0, M = 7

4 , and
E = −1. Our number would therefore have an exponent field of 0x3E (decimal
value 63 − 1 = 62) and a significand field 0xC0 (binary 110000002), giving a hex
representation 3EC0.

You need not fill in entries marked “—”.

Description Hex M E V

−0 —
Smallest value > 2
512 —
Largest denormalized
−∞ — — —
Number with hex representation 3BB0 —

2.87 ◆◆
Consider the following two 9-bit floating-point representations based on the IEEE
floating-point format.

1. Format A
There is one sign bit.
There are k = 5 exponent bits. The exponent bias is 15.
There are n = 3 fraction bits.

2. Format B
There is one sign bit.
There are k = 4 exponent bits. The exponent bias is 7.
There are n = 4 fraction bits.

Below, you are given some bit patterns in Format A, and your task is to convert
them to the closest value in Format B. If rounding is necessary, you should round
toward +∞. In addition, give the values of numbers given by the Format A and
Format B bit patterns. Give these as whole numbers (e.g., 17) or as fractions (e.g.,
17/64 or 17/26).

Format A Format B

Bits Value Bits Value

1 01111 001 −9
8 1 0111 0010 −9

8
0 10110 011

1 00111 010

0 00000 111

1 11100 000

0 10111 100

2.88 ◆
We are running programs on a machine where values of type int have a 32-
bit two’s-complement representation. Values of type float use the 32-bit IEEE
format, and values of type double use the 64-bit IEEE format.

130 Chapter 2 Representing and Manipulating Information

We generate arbitrary integer values x, y, and z, and convert them to values
of type double as follows:

/* Create some arbitrary values */

int x = random();

int y = random();

int z = random();

/* Convert to double */

double dx = (double) x;

double dy = (double) y;

double dz = (double) z;

For each of the following C expressions, you are to indicate whether or
not the expression always yields 1. If it always yields 1, describe the underlying
mathematical principles. Otherwise, give an example of arguments that make
it yield 0. Note that you cannot use an IA32 machine running gcc to test your
answers, since it would use the 80-bit extended-precision representation for both
float and double.

A. (float) x == (float) dx

B. dx - dy == (double) (x-y)

C. (dx + dy) + dz == dx + (dy + dz)

D. (dx * dy) * dz == dx * (dy * dz)

E. dx / dx == dz / dz

2.89 ◆
You have been assigned the task of writing a C function to compute a floating-
point representation of 2x. You decide that the best way to do this is to directly
construct the IEEE single-precision representation of the result. When x is too
small, your routine will return 0.0. When x is too large, it will return +∞. Fill in the
blank portions of the code that follows to compute the correct result. Assume the
function u2f returns a floating-point value having an identical bit representation
as its unsigned argument.

float fpwr2(int x)

{

/* Result exponent and fraction */

unsigned exp, frac;

unsigned u;

if (x <) {

/* Too small. Return 0.0 */

exp = ;

frac = ;

} else if (x <) {

Homework Problems 131

/* Denormalized result */

exp = ;

frac = ;

} else if (x <) {

/* Normalized result. */

exp = ;

frac = ;

} else {

/* Too big. Return +oo */

exp = ;

frac = ;

}

/* Pack exp and frac into 32 bits */

u = exp << 23 | frac;

/* Return as float */

return u2f(u);

}

2.90 ◆
Around 250 B.C., the Greek mathematician Archimedes proved that 223

71 < π < 22
7 .

Had he had access to a computer and the standard library<math.h>, he would have
been able to determine that the single-precision floating-point approximation of
π has the hexadecimal representation 0x40490FDB. Of course, all of these are just
approximations, since π is not rational.

A. What is the fractional binary number denoted by this floating-point value?

B. What is the fractional binary representation of 22
7 ? Hint: See Problem 2.82.

C. At what bit position (relative to the binary point) do these two approxima-
tions to π diverge?

Bit-level floating-point coding rules

In the following problems, you will write code to implement floating-point func-
tions, operating directly on bit-level representations of floating-point numbers.
Your code should exactly replicate the conventions for IEEE floating-point oper-
ations, including using round-to-even mode when rounding is required.

Toward this end, we define data type float_bits to be equivalent to un-
signed:

/* Access bit-level representation floating-point number */

typedef unsigned float_bits;

Rather than using data type float in your code, you will use float_bits.
You may use both int and unsigned data types, including unsigned and integer
constants and operations. You may not use any unions, structs, or arrays. Most

132 Chapter 2 Representing and Manipulating Information

significantly, you may not use any floating-point data types, operations, or con-
stants. Instead, your code should perform the bit manipulations that implement
the specified floating-point operations.

The following function illustrates the use of these coding rules. For argument
f , it returns ±0 if f is denormalized (preserving the sign of f) and returns f

otherwise.

/* If f is denorm, return 0. Otherwise, return f */

float_bits float_denorm_zero(float_bits f) {

/* Decompose bit representation into parts */

unsigned sign = f>>31;

unsigned exp = f>>23 & 0xFF;

unsigned frac = f & 0x7FFFFF;

if (exp == 0) {

/* Denormalized. Set fraction to 0 */

frac = 0;

}

/* Reassemble bits */

return (sign << 31) | (exp << 23) | frac;

}

2.91 ◆◆
Following the bit-level floating-point coding rules, implement the function with
the following prototype:

/* Compute -f. If f is NaN, then return f. */

float_bits float_negate(float_bits f);

For floating-point number f , this function computes −f . If f is NaN , your func-
tion should simply return f .

Test your function by evaluating it for all 232 values of argument f and com-
paring the result to what would be obtained using your machine’s floating-point
operations.

2.92 ◆◆
Following the bit-level floating-point coding rules, implement the function with
the following prototype:

/* Compute |f|. If f is NaN, then return f. */

float_bits float_absval(float_bits f);

For floating-point number f , this function computes |f |. If f is NaN , your function
should simply return f .

Test your function by evaluating it for all 232 values of argument f and com-
paring the result to what would be obtained using your machine’s floating-point
operations.

Homework Problems 133

2.93 ◆◆◆
Following the bit-level floating-point coding rules, implement the function with
the following prototype:

/* Compute 2*f. If f is NaN, then return f. */

float_bits float_twice(float_bits f);

For floating-point number f , this function computes 2.0 . f . If f is NaN , your
function should simply return f .

Test your function by evaluating it for all 232 values of argument f and com-
paring the result to what would be obtained using your machine’s floating-point
operations.

2.94 ◆◆◆
Following the bit-level floating-point coding rules, implement the function with
the following prototype:

/* Compute 0.5*f. If f is NaN, then return f. */

float_bits float_half(float_bits f);

For floating-point number f , this function computes 0.5 . f . If f is NaN , your
function should simply return f .

Test your function by evaluating it for all 232 values of argument f and com-
paring the result to what would be obtained using your machine’s floating-point
operations.

2.95 ◆◆◆◆
Following the bit-level floating-point coding rules, implement the function with
the following prototype:

/*

* Compute (int) f.

* If conversion causes overflow or f is NaN, return 0x80000000

*/

int float_f2i(float_bits f);

For floating-point number f , this function computes (int) f . Your function
should round toward zero. If f cannot be represented as an integer (e.g., it is
out of range, or it is NaN), then the function should return 0x80000000.

Test your function by evaluating it for all 232 values of argument f and com-
paring the result to what would be obtained using your machine’s floating-point
operations.

2.96 ◆◆◆◆
Following the bit-level floating-point coding rules, implement the function with
the following prototype:

/* Compute (float) i */

float_bits float_i2f(int i);

134 Chapter 2 Representing and Manipulating Information

For argument i, this function computes the bit-level representation of
(float) i.

Test your function by evaluating it for all 232 values of argument f and com-
paring the result to what would be obtained using your machine’s floating-point
operations.

Solutions to Practice Problems

Solution to Problem 2.1 (page 35)
Understanding the relation between hexadecimal and binary formats will be im-
portant once we start looking at machine-level programs. The method for doing
these conversions is in the text, but it takes a little practice to become familiar.

A. 0x39A7F8 to binary:

Hexadecimal 3 9 A 7 F 8

Binary 0011 1001 1010 0111 1111 1000

B. Binary 1100100101111011 to hexadecimal:

Binary 1100 1001 0111 1011
Hexadecimal C 9 7 B

C. 0xD5E4C to binary:

Hexadecimal D 5 E 4 C

Binary 1101 0101 1110 0100 1100

D. Binary 1001101110011110110101 to hexadecimal:

Binary 10 0110 1110 0111 1011 0101
Hexadecimal 2 6 E 7 B 5

Solution to Problem 2.2 (page 35)
This problem gives you a chance to think about powers of 2 and their hexadecimal
representations.

n 2n (Decimal) 2n (Hexadecimal)

9 512 0x200

19 524,288 0x80000

14 16,384 0x4000

16 65,536 0x10000

17 131,072 0x20000

5 32 0x20

7 128 0x80

Solutions to Practice Problems 135

Solution to Problem 2.3 (page 36)
This problem gives you a chance to try out conversions between hexadecimal and
decimal representations for some smaller numbers. For larger ones, it becomes
much more convenient and reliable to use a calculator or conversion program.

Decimal Binary Hexadecimal

0 0000 0000 0x00

167 = 10 . 16 + 7 1010 0111 0xA7

62 = 3 . 16 + 14 0011 1110 0x3E

188 = 11 . 16 + 12 1011 1100 0xBC

3 . 16 + 7 = 55 0011 0111 0x37

8 . 16 + 8 = 136 1000 1000 0x88

15 . 16 + 3 = 243 1111 0011 0xF3

5 . 16 + 2 = 82 0101 0010 0x52

10 . 16 + 12 = 172 1010 1100 0xAC

14 . 16 + 7 = 231 1110 0111 0xE7

Solution to Problem 2.4 (page 37)
When you begin debugging machine-level programs, you will find many cases
where some simple hexadecimal arithmetic would be useful. You can always
convert numbers to decimal, perform the arithmetic, and convert them back, but
being able to work directly in hexadecimal is more efficient and informative.

A. 0x503c+ 0x8= 0x5044. Adding 8 to hex c gives 4 with a carry of 1.

B. 0x503c− 0x40= 0x4ffc. Subtracting 4 from 3 in the second digit position
requires a borrow from the third. Since this digit is 0, we must also borrow
from the fourth position.

C. 0x503c+ 64 = 0x507c. Decimal 64 (26) equals hexadecimal 0x40.

D. 0x50ea− 0x503c= 0xae. To subtract hexc (decimal 12) from hexa (decimal
10), we borrow 16 from the second digit, giving hex e (decimal 14). In
the second digit, we now subtract 3 from hex d (decimal 13), giving hex a
(decimal 10).

Solution to Problem 2.5 (page 45)
This problem tests your understanding of the byte representation of data and the
two different byte orderings.

Little endian: 21 Big endian: 87
Little endian: 21 43 Big endian: 87 65
Little endian: 21 43 65 Big endian: 87 65 43

Recall that show_bytes enumerates a series of bytes starting from the one with
lowest address and working toward the one with highest address. On a little-
endian machine, it will list the bytes from least significant to most. On a big-endian
machine, it will list bytes from the most significant byte to the least.

136 Chapter 2 Representing and Manipulating Information

Solution to Problem 2.6 (page 46)
This problem is another chance to practice hexadecimal to binary conversion. It
also gets you thinking about integer and floating-point representations. We will
explore these representations in more detail later in this chapter.

A. Using the notation of the example in the text, we write the two strings as
follows:

0 0 3 5 9 1 4 1

00000000001101011001000101000001

4 A 5 6 4 5 0 4

01001010010101100100010100000100

B. With the second word shifted two positions to the right relative to the first,
we find a sequence with 21 matching bits.

C. We find all bits of the integer embedded in the floating-point number, except
for the most significant bit having value 1. Such is the case for the example
in the text as well. In addition, the floating-point number has some nonzero
high-order bits that do not match those of the integer.

Solution to Problem 2.7 (page 46)
It prints 61 62 63 64 65 66. Recall also that the library routine strlen does not
count the terminating null character, and so show_bytes printed only through the
character ‘f’.

Solution to Problem 2.8 (page 49)
This problem is a drill to help you become more familiar with Boolean operations.

Operation Result

a [01101001]
b [01010101]

~a [10010110]
~b [10101010]

a & b [01000001]
a | b [01111101]
a ^ b [00111100]

Solution to Problem 2.9 (page 50)
This problem illustrates how Boolean algebra can be used to describe and reason
about real-world systems. We can see that this color algebra is identical to the
Boolean algebra over bit vectors of length 3.

A. Colors are complemented by complementing the values of R, G, and B.
From this, we can see that White is the complement of Black, Yellow is the
complement of Blue, Magenta is the complement of Green, and Cyan is the
complement of Red.

Solutions to Practice Problems 137

B. We perform Boolean operations based on a bit-vector representation of the
colors. From this we get the following:

Blue (001) | Green (010) = Cyan (011)
Yellow (110) & Cyan (011) = Green (010)

Red (100) ^ Magenta (101) = Blue (001)

Solution to Problem 2.10 (page 51)
This procedure relies on the fact that Exclusive-Or is commutative and associa-
tive, and that a ^ a = 0 for any a.

Step *x *y

Initially a b

Step 1 a a ^ b

Step 2 a ^ (a ^ b) = (a ^ a) ^ b = b a ^ b

Step 3 b b ^ (a ^ b) = (b ^ b) ^ a = a

See Problem 2.11 for a case where this function will fail.

Solution to Problem 2.11 (page 52)
This problem illustrates a subtle and interesting feature of our inplace swap rou-
tine.

A. Both first and last have value k, so we are attempting to swap the middle
element with itself.

B. In this case, arguments x and y to inplace_swap both point to the same
location. When we compute *x ^ *y, we get 0. We then store 0 as the middle
element of the array, and the subsequent steps keep setting this element to
0. We can see that our reasoning in Problem 2.10 implicitly assumed that x
and y denote different locations.

C. Simply replace the test in line 4 of reverse_array to be first < last, since
there is no need to swap the middle element with itself.

Solution to Problem 2.12 (page 53)
Here are the expressions:

A. x & 0xFF

B. x ^ ~0xFF

C. x | 0xFF

These expressions are typical of the kind commonly found in performing low-level
bit operations. The expression ~0xFF creates a mask where the 8 least-significant
bits equal 0 and the rest equal 1. Observe that such a mask will be generated
regardless of the word size. By contrast, the expression 0xFFFFFF00 would only
work on a 32-bit machine.

138 Chapter 2 Representing and Manipulating Information

Solution to Problem 2.13 (page 53)
These problems help you think about the relation between Boolean operations
and typical ways that programmers apply masking operations. Here is the code:

/* Declarations of functions implementing operations bis and bic */

int bis(int x, int m);

int bic(int x, int m);

/* Compute x|y using only calls to functions bis and bic */

int bool_or(int x, int y) {

int result = bis(x,y);

return result;

}

/* Compute x^y using only calls to functions bis and bic */

int bool_xor(int x, int y) {

int result = bis(bic(x,y), bic(y,x));

return result;

}

The bis operation is equivalent to Boolean Or—a bit is set in z if either this
bit is set in x or it is set in m. On the other hand, bic(x, m) is equivalent to x&~m;
we want the result to equal 1 only when the corresponding bit of x is 1 and of
m is 0.

Given that, we can implement | with a single call to bis. To implement ^, we
take advantage of the property

x ^ y = (x & ~y) | (~x & y).

Solution to Problem 2.14 (page 54)
This problem highlights the relation between bit-level Boolean operations and
logic operations in C. A common programming error is to use a bit-level operation
when a logic one is intended, or vice versa.

Expression Value Expression Value

x & y 0x20 x && y 0x01

x | y 0x7F x || y 0x01

~x | ~y 0xDF !x || !y 0x00

x & !y 0x00 x && ~y 0x01

Solution to Problem 2.15 (page 54)
The expression is !(x ^ y).

That is, x^ywill be zero if and only if every bit of xmatches the corresponding
bit of y. We then exploit the ability of ! to determine whether a word contains any
nonzero bit.

There is no real reason to use this expression rather than simply writing x ==
y, but it demonstrates some of the nuances of bit-level and logical operations.

Solutions to Practice Problems 139

Solution to Problem 2.16 (page 56)
This problem is a drill to help you understand the different shift operations.

(Logical) (Arithmetic)
x x << 3 x >> 2 x >> 2

Hex Binary Binary Hex Binary Hex Binary Hex

0xC3 [11000011] [00011000] 0x18 [00110000] 0x30 [11110000] 0xF0

0x75 [01110101] [10101000] 0xA8 [00011101] 0x1D [00011101] 0x1D

0x87 [10000111] [00111000] 0x38 [00100001] 0x21 [11100001] 0xE1

0x66 [01100110] [00110000] 0x30 [00011001] 0x19 [00011001] 0x19

Solution to Problem 2.17 (page 61)
In general, working through examples for very small word sizes is a very good way
to understand computer arithmetic.

The unsigned values correspond to those in Figure 2.2. For the two’s-
complement values, hex digits 0 through 7 have a most significant bit of 0, yielding
nonnegative values, while hex digits 8 through F have a most significant bit of 1,
yielding a negative value.

�x
Hexadecimal Binary B2U4(�x) B2T4(�x)

0xE [1110] 23 + 22 + 21 = 14 −23 + 22 + 21 = −2
0x0 [0000] 0 0
0x5 [0101] 22 + 20 = 5 22 + 20 = 5
0x8 [1000] 23 = 8 −23 = −8
0xD [1101] 23 + 22 + 20 = 13 −23 + 22 + 20 = −3
0xF [1111] 23 + 22 + 21 + 20 = 15 −23 + 22 + 21 + 20 = −1

Solution to Problem 2.18 (page 64)
For a 32-bit machine, any value consisting of eight hexadecimal digits beginning
with one of the digits 8 through f represents a negative number. It is quite com-
mon to see numbers beginning with a string of f’s, since the leading bits of a
negative number are all ones. You must look carefully, though. For example, the
number 0x8048337 has only seven digits. Filling this out with a leading zero gives
0x08048337, a positive number.

8048337: 81 ec b8 01 00 00 sub $0x1b8,%esp A. 440

804833d: 8b 55 08 mov 0x8(%ebp),%edx

8048340: 83 c2 14 add $0x14,%edx B. 20

8048343: 8b 85 58 fe ff ff mov 0xfffffe58(%ebp),%eax C. -424

8048349: 03 02 add (%edx),%eax

804834b: 89 85 74 fe ff ff mov %eax,0xfffffe74(%ebp) D. -396

8048351: 8b 55 08 mov 0x8(%ebp),%edx

8048354: 83 c2 44 add $0x44,%edx E. 68

8048357: 8b 85 c8 fe ff ff mov 0xfffffec8(%ebp),%eax F. -312

140 Chapter 2 Representing and Manipulating Information

804835d: 89 02 mov %eax,(%edx)

804835f: 8b 45 10 mov 0x10(%ebp),%eax G. 16

8048362: 03 45 0c add 0xc(%ebp),%eax H. 12

8048365: 89 85 ec fe ff ff mov %eax,0xfffffeec(%ebp) I. -276

804836b: 8b 45 08 mov 0x8(%ebp),%eax

804836e: 83 c0 20 add $0x20,%eax J. 32

8048371: 8b 00 mov (%eax),%eax

Solution to Problem 2.19 (page 67)
The functions T2U and U2T are very peculiar from a mathematical perspective.
It is important to understand how they behave.

We solve this problem by reordering the rows in the solution of Problem 2.17
according to the two’s-complement value and then listing the unsigned value as
the result of the function application. We show the hexadecimal values to make
this process more concrete.

�x (hex) x T2U4(x)

0x8 −8 8
0xD −3 13
0xE −2 14
0xF −1 15
0x0 0 0
0x5 5 5

Solution to Problem 2.20 (page 68)
This exercise tests your understanding of Equation 2.6.

For the first four entries, the values of x are negative and T2U4(x) = x + 24.
For the remaining two entries, the values of x are nonnegative and T2U4(x) = x.

Solution to Problem 2.21 (page 70)
This problem reinforces your understanding of the relation between two’s-
complement and unsigned representations, and the effects of the C promotion
rules. Recall that TMin32 is −2,147,483,648, and that when cast to unsigned it be-
comes 2,147,483,648. In addition, if either operand is unsigned, then the other
operand will be cast to unsigned before comparing.

Expression Type Evaluation

-2147483647-1 == 2147483648U unsigned 1

-2147483647-1 < 2147483647 signed 1

-2147483647-1U < 2147483647 unsigned 0

-2147483647-1 < -2147483647 signed 1

-2147483647-1U < -2147483647 unsigned 1

Solutions to Practice Problems 141

Solution to Problem 2.22 (page 74)
This exercise provides a concrete demonstration of how sign extension preserves
the numeric value of a two’s-complement representation.

A. [1011]: −23 + 21 + 20 = −8 + 2 + 1 = −5
B. [11011]: −24 + 23 + 21 + 20 = −16 + 8 + 2 + 1 = −5
C. [111011]: −25 + 24 + 23 + 21 + 20 = −32 + 16 + 8 + 2 + 1 = −5

Solution to Problem 2.23 (page 74)
The expressions in these functions are common program “idioms” for extracting
values from a word in which multiple bit fields have been packed. They exploit
the zero-filling and sign-extending properties of the different shift operations.
Note carefully the ordering of the cast and shift operations. In fun1, the shifts
are performed on unsigned variable word, and hence are logical. In fun2, shifts
are performed after casting word to int, and hence are arithmetic.

A. w fun1(w) fun2(w)

0x00000076 0x00000076 0x00000076

0x87654321 0x00000021 0x00000021

0x000000C9 0x000000C9 0xFFFFFFC9

0xEDCBA987 0x00000087 0xFFFFFF87

B. Function fun1 extracts a value from the low-order 8 bits of the argument,
giving an integer ranging between 0 and 255. Function fun2 extracts a value
from the low-order 8 bits of the argument, but it also performs sign extension.
The result will be a number between −128 and 127.

Solution to Problem 2.24 (page 76)
The effect of truncation is fairly intuitive for unsigned numbers, but not for two’s-
complement numbers. This exercise lets you explore its properties using very small
word sizes.

Hex Unsigned Two’s complement

Original Truncated Original Truncated Original Truncated

0 0 0 0 0 0
2 2 2 2 2 2
9 1 9 1 −7 1
B 3 11 3 −5 3
F 7 15 7 −1 −1

As Equation 2.9 states, the effect of this truncation on unsigned values is to
simply find their residue, modulo 8. The effect of the truncation on signed values
is a bit more complex. According to Equation 2.10, we first compute the modulo 8
residue of the argument. This will give values 0 through 7 for arguments 0 through
7, and also for arguments −8 through −1. Then we apply function U2T3 to these
residues, giving two repetitions of the sequences 0 through 3 and −4 through −1.

142 Chapter 2 Representing and Manipulating Information

Solution to Problem 2.25 (page 77)
This problem is designed to demonstrate how easily bugs can arise due to the
implicit casting from signed to unsigned. It seems quite natural to pass parameter
length as an unsigned, since one would never want to use a negative length. The
stopping criterion i <= length-1 also seems quite natural. But combining these
two yields an unexpected outcome!

Since parameter length is unsigned, the computation 0 − 1is performed using
unsigned arithmetic, which is equivalent to modular addition. The result is then
UMax. The ≤ comparison is also performed using an unsigned comparison, and
since any number is less than or equal to UMax, the comparison always holds!
Thus, the code attempts to access invalid elements of array a.

The code can be fixed either by declaring length to be an int, or by changing
the test of the for loop to be i < length.

Solution to Problem 2.26 (page 77)
This example demonstrates a subtle feature of unsigned arithmetic, and also the
property that we sometimes perform unsigned arithmetic without realizing it. This
can lead to very tricky bugs.

A. For what cases will this function produce an incorrect result? The function
will incorrectly return 1 when s is shorter than t.

B. Explain how this incorrect result comes about. Since strlen is defined to
yield an unsigned result, the difference and the comparison are both com-
puted using unsigned arithmetic. When s is shorter than t, the difference
strlen(s) - strlen(t) should be negative, but instead becomes a large,
unsigned number, which is greater than 0.

C. Show how to fix the code so that it will work reliably. Replace the test with
the following:

return strlen(s) > strlen(t);

Solution to Problem 2.27 (page 81)
This function is a direct implementation of the rules given to determine whether
or not an unsigned addition overflows.

/* Determine whether arguments can be added without overflow */

int uadd_ok(unsigned x, unsigned y) {

unsigned sum = x+y;

return sum >= x;

}

Solution to Problem 2.28 (page 82)
This problem is a simple demonstration of arithmetic modulo 16. The easiest way
to solve it is to convert the hex pattern into its unsigned decimal value. For nonzero
values of x, we must have (-u

4 x) + x = 16. Then we convert the complemented
value back to hex.

Solutions to Practice Problems 143

x -u
4 x

Hex Decimal Decimal Hex

0 0 0 0

5 5 11 B

8 8 8 8

D 13 3 3

F 15 1 1

Solution to Problem 2.29 (page 86)
This problem is an exercise to make sure you understand two’s-complement
addition.

x y x + y x +t
5 y Case

−12 −15 −27 5 1
[10100] [10001] [100101] [00101]

−8 −8 −16 −16 2
[11000] [11000] [110000] [10000]

−9 8 −1 −1 2
[10111] [01000] [111111] [11111]

2 5 7 7 3
[00010] [00101] [000111] [00111]

12 4 16 −16 4
[01100] [00100] [010000] [10000]

Solution to Problem 2.30 (page 86)
This function is a direct implementation of the rules given to determine whether
or not a two’s-complement addition overflows.

/* Determine whether arguments can be added without overflow */

int tadd_ok(int x, int y) {

int sum = x+y;

int neg_over = x < 0 && y < 0 && sum >= 0;

int pos_over = x >= 0 && y >= 0 && sum < 0;

return !neg_over && !pos_over;

}

Solution to Problem 2.31 (page 86)
Your coworker could have learned, by studying Section 2.3.2, that two’s-
complement addition forms an abelian group, and so the expression (x+y)-x
will evaluate to y regardless of whether or not the addition overflows, and that
(x+y)-y will always evaluate to x.

Solution to Problem 2.32 (page 87)
This function will give correct values, except when y is TMin. In this case, we will
have -y also equal to TMin, and so function tadd_ok will consider there to be

144 Chapter 2 Representing and Manipulating Information

negative overflow any time x is negative. In fact, x-y does not overflow for these
cases.

One lesson to be learned from this exercise is that TMin should be included
as one of the cases in any test procedure for a function.

Solution to Problem 2.33 (page 87)
This problem helps you understand two’s-complement negation using a very small
word size.

For w = 4, we have TMin4 = −8. So −8 is its own additive inverse, while other
values are negated by integer negation.

x -t
4 x

Hex Decimal Decimal Hex

0 0 0 0

5 5 −5 B

8 −8 −8 8

D −3 3 3

F −1 1 1

The bit patterns are the same as for unsigned negation.

Solution to Problem 2.34 (page 90)
This problem is an exercise to make sure you understand two’s-complement
multiplication.

Mode x y x . y Truncated x . y

Unsigned 4 [100] 5 [101] 20 [010100] 4 [100]
Two’s comp. −4 [100] −3 [101] 12 [001100] −4 [100]

Unsigned 2 [010] 7 [111] 14 [001110] 6 [110]
Two’s comp. 2 [010] −1 [111] −2 [111110] −2 [110]

Unsigned 6 [110] 6 [110] 36 [100100] 4 [100]
Two’s comp. −2 [110] −2 [110] 4 [000100] −4 [100]

Solution to Problem 2.35 (page 90)
It’s not realistic to test this function for all possible values of x and y. Even if you
could run 10 billion tests per second, it would require over 58 years to test all
combinations when data type int is 32 bits. On the other hand, it is feasible to test
your code by writing the function with data type short or char and then testing
it exhaustively.

Here’s a more principled approach, following the proposed set of arguments:

1. We know that x . y can be written as a 2w-bit two’s-complement number. Let
u denote the unsigned number represented by the lower w bits, and v denote
the two’s-complement number represented by the upper w bits. Then, based
on Equation 2.3, we can see that x . y = v2w + u.

Solutions to Practice Problems 145

We also know that u = T2Uw(p), since they are unsigned and two’s-
complement numbers arising from the same bit pattern, and so by Equa-
tion 2.5, we can write u = p + pw−12w, where pw−1 is the most significant bit
of p. Letting t = v + pw−1, we have x . y = p + t2w.

When t = 0, we have x . y = p; the multiplication does not overflow. When
t �= 0, we have x . y �= p; the multiplication does overflow.

2. By definition of integer division, dividing p by nonzero x gives a quotient
q and a remainder r such that p = x . q + r , and |r| < |x|. (We use absolute
values here, because the signs of x and r may differ. For example, dividing −7
by 2 gives quotient −3 and remainder −1.)

3. Suppose q = y. Then we have x . y = x . y + r + t2w. From this, we can see
that r + t2w = 0. But |r| < |x| ≤ 2w, and so this identity can hold only if t = 0,
in which case r = 0.

Suppose r = t = 0. Then we will have x . y = x . q, implying that y = q.

When x equals 0, multiplication does not overflow, and so we see that our code
provides a reliable way to test whether or not two’s-complement multiplication
causes overflow.

Solution to Problem 2.36 (page 91)
With 64 bits, we can perform the multiplication without overflowing. We then test
whether casting the product to 32 bits changes the value:

1 /* Determine whether arguments can be multiplied without overflow */

2 int tmult_ok(int x, int y) {

3 /* Compute product without overflow */

4 long long pll = (long long) x*y;

5 /* See if casting to int preserves value */

6 return pll == (int) pll;

7 }

Note that the casting on the right-hand side of line 4 is critical. If we instead
wrote the line as

long long pll = x*y;

the product would be computed as a 32-bit value (possibly overflowing) and then
sign extended to 64 bits.

Solution to Problem 2.37 (page 92)

A. This change does not help at all. Even though the computation of asizewill
be accurate, the call to mallocwill cause this value to be converted to a 32-bit
unsigned number, and so the same overflow conditions will occur.

B. With malloc having a 32-bit unsigned number as its argument, it cannot
possibly allocate a block of more than 232 bytes, and so there is no point
attempting to allocate or copy this much memory. Instead, the function

146 Chapter 2 Representing and Manipulating Information

should abort and return NULL, as illustrated by the following replacement
to the original call to malloc (line 10):

long long unsigned required_size =

ele_cnt * (long long unsigned) ele_size;

size_t request_size = (size_t) required_size;

if (required_size != request_size)

/* Overflow must have occurred. Abort operation */

return NULL;

void *result = malloc(request_size);

if (result == NULL)

/* malloc failed */

return NULL;

Solution to Problem 2.38 (page 93)
In Chapter 3, we will see many examples of the lea instruction in action. The
instruction is provided to support pointer arithmetic, but the C compiler often
uses it as a way to perform multiplication by small constants.

For each value of k, we can compute two multiples: 2k (when b is 0) and 2k + 1
(when b is a). Thus, we can compute multiples 1, 2, 3, 4, 5, 8, and 9.

Solution to Problem 2.39 (page 94)
The expression simply becomes -(x<<m). To see this, let the word size be w so that
n = w−1. Form B states that we should compute (x<<w) - (x<<m), but shifting
x to the left by w will yield the value 0.

Solution to Problem 2.40 (page 94)
This problem requires you to try out the optimizations already described and also
to supply a bit of your own ingenuity.

K Shifts Add/Subs Expression

6 2 1 (x<<2) + (x<<1)

31 1 1 (x<<5) - x

−6 2 1 (x<<1) - (x<<3)

55 2 2 (x<<6) - (x<<3) - x

Observe that the fourth case uses a modified version of form B. We can view
the bit pattern [110111] as having a run of 6 ones with a zero in the middle, and so
we apply the rule for form B, but then we subtract the term corresponding to the
middle zero bit.

Solution to Problem 2.41 (page 94)
Assuming that addition and subtraction have the same performance, the rule is
to choose form A when n = m, either form when n = m + 1, and form B when
n > m + 1.

Solutions to Practice Problems 147

The justification for this rule is as follows. Assume first that m > 1. When
n = m, form A requires only a single shift, while form B requires two shifts
and a subtraction. When n = m + 1, both forms require two shifts and either an
addition or a subtraction. When n > m + 1, form B requires only two shifts and one
subtraction, while form A requires n − m + 1 > 2 shifts and n − m > 1 additions.
For the case of m = 1, we get one fewer shift for both forms A and B, and so the
same rules apply for choosing between the two.

Solution to Problem 2.42 (page 97)
The only challenge here is to compute the bias without any testing or conditional
operations. We use the trick that the expression x >> 31 generates a word with all
ones if x is negative, and all zeros otherwise. By masking off the appropriate bits,
we get the desired bias value.

int div16(int x) {

/* Compute bias to be either 0 (x >= 0) or 15 (x < 0) */

int bias = (x >> 31) & 0xF;

return (x + bias) >> 4;

}

Solution to Problem 2.43 (page 98)
We have found that people have difficulty with this exercise when working di-
rectly with assembly code. It becomes more clear when put in the form shown in
optarith.

We can see that M is 31; x*M is computed as (x<<5)-x.
We can see that N is 8; a bias value of 7 is added when y is negative, and the

right shift is by 3.

Solution to Problem 2.44 (page 99)
These “C puzzle” problems provide a clear demonstration that programmers must
understand the properties of computer arithmetic:

A. (x > 0) || (x-1 < 0)
False. Let x be −2,147,483,648 (TMin32). We will then have x-1 equal to
2147483647 (TMax32).

B. (x & 7) != 7 || (x<<29 < 0)
True. If (x & 7) != 7 evaluates to 0, then we must have bit x2 equal to 1.
When shifted left by 29, this will become the sign bit.

C. (x * x) >= 0
False. When x is 65,535 (0xFFFF), x*x is −131,071 (0xFFFE0001).

D. x < 0 || -x <= 0
True. If x is nonnegative, then -x is nonpositive.

E. x > 0 || -x >= 0
False. Let x be −2,147,483,648 (TMin32). Then both x and -x are negative.

148 Chapter 2 Representing and Manipulating Information

F. x+y == uy+ux
True. Two’s-complement and unsigned addition have the same bit-level be-
havior, and they are commutative.

G. x*~y + uy*ux == -x
True. ~y equals -y-1. uy*ux equals x*y. Thus, the left hand side is equivalent
to x*-y-x+x*y.

Solution to Problem 2.45 (page 102)
Understanding fractional binary representations is an important step to under-
standing floating-point encodings. This exercise lets you try out some simple ex-
amples.

Fractional value Binary representation Decimal representation
1
8 0.001 0.125
3
4 0.11 0.75
25
16 1.1001 1.5625
43
16 10.1011 2.6875
9
8 1.001 1.125
47
8 101.111 5.875
51
16 11.0011 3.1875

One simple way to think about fractional binary representations is to repre-
sent a number as a fraction of the form x

2k . We can write this in binary using the
binary representation of x, with the binary point inserted k positions from the
right. As an example, for 25

16 , we have 2510 = 110012. We then put the binary point
four positions from the right to get 1.10012.

Solution to Problem 2.46 (page 102)
In most cases, the limited precision of floating-point numbers is not a major
problem, because the relative error of the computation is still fairly low. In this
example, however, the system was sensitive to the absolute error.

A. We can see that 0.1 − x has binary representation

0.000000000000000000000001100[1100] . . .2

B. Comparing this to the binary representation of 1
10 , we can see that it is simply

2−20 × 1
10 , which is around 9.54 × 10−8.

C. 9.54 × 10−8 × 100 × 60 × 60 × 10 ≈ 0.343 seconds.

D. 0.343 × 2000 ≈ 687 meters.

Solution to Problem 2.47 (page 107)
Working through floating-point representations for very small word sizes helps
clarify how IEEE floating point works. Note especially the transition between
denormalized and normalized values.

Solutions to Practice Problems 149

Bits e E 2E f M 2E × M V Decimal

0 00 00 0 0 1 0
4

0
4

0
4 0 0.0

0 00 01 0 0 1 1
4

1
4

1
4

1
4 0.25

0 00 10 0 0 1 2
4

2
4

2
4

1
2 0.5

0 00 11 0 0 1 3
4

3
4

3
4

3
4 0.75

0 01 00 1 0 1 0
4

4
4

4
4 1 1.0

0 01 01 1 0 1 1
4

5
4

5
4

5
4 1.25

0 01 10 1 0 1 2
4

6
4

6
4

3
2 1.5

0 01 11 1 0 1 3
4

7
4

7
4

7
4 1.75

0 10 00 2 1 2 0
4

4
4

8
4 2 2.0

0 10 01 2 1 2 1
4

5
4

10
4

5
2 2.5

0 10 10 2 1 2 2
4

6
4

12
4 3 3.0

0 10 11 2 1 2 3
4

7
4

14
4

7
2 3.5

0 11 00 — — — — — — ∞ —
0 11 01 — — — — — — NaN —
0 11 10 — — — — — — NaN —
0 11 11 — — — — — — NaN —

Solution to Problem 2.48 (page 110)
Hexadecimal value 0x359141 is equivalent to binary [1101011001000101000001].
Shifting this right 21 places gives 1.1010110010001010000012 × 221. We form
the fraction field by dropping the leading 1 and adding two 0s, giving
[10101100100010100000100]. The exponent is formed by adding bias 127 to 21,
giving 148 (binary [10010100]). We combine this with a sign field of 0 to give a
binary representation

[01001010010101100100010100000100].

We see that the matching bits in the two representations correspond to the
low-order bits of the integer, up to the most significant bit equal to 1 matching the
high-order 21 bits of the fraction:

0 0 3 5 9 1 4 1

00000000001101011001000101000001

4 A 5 6 4 5 0 4

01001010010101100100010100000100

Solution to Problem 2.49 (page 110)
This exercise helps you think about what numbers cannot be represented exactly
in floating point.

150 Chapter 2 Representing and Manipulating Information

A. The number has binary representation 1, followed by n 0s, followed by 1,
giving value 2n+1 + 1.

B. When n = 23, the value is 224 + 1 = 16,777,217.

Solution to Problem 2.50 (page 112)
Performing rounding by hand helps reinforce the idea of round-to-even with
binary numbers.

Original Rounded

10.0102 2 1
4 10.0 2

10.0112 2 3
8 10.1 2 1

2
10.1102 2 3

4 11.0 3
11.0012 3 1

8 11.0 3

Solution to Problem 2.51 (page 112)

A. Looking at the nonterminating sequence for 1/10, we can see that the
2 bits to the right of the rounding position are 1, and so a better ap-
proximation to 1/10 would be obtained by incrementing x to get x′ =
0.000110011001100110011012, which is larger than 0.1.

B. We can see that x′ − 0.1 has binary representation:

0.0000000000000000000000000[1100].

Comparing this to the binary representation of 1
10 , we can see that it is

2−22 × 1
10 , which is around 2.38 × 10−8.

C. 2.38 × 10−8 × 100 × 60 × 60 × 10 ≈ 0.086 seconds, a factor of 4 less than the
error in the Patriot system.

D. 0.343 × 2000 ≈ 171 meters.

Solution to Problem 2.52 (page 112)
This problem tests a lot of concepts about floating-point representations, including
the encoding of normalized and denormalized values, as well as rounding.

Format A Format B

Bits Value Bits Value Comments

011 0000 1 0111 000 1
101 1110 15

2 1001 111 15
2

010 1001 25
32 0110 100 3

4 Round down

110 1111 31
2 1011 000 16 Round up

000 0001 1
64 0001 000 1

64 Denorm → norm

Solution to Problem 2.53 (page 115)
In general, it is better to use a library macro rather than inventing your own code.
This code seems to work on a variety of machines, however.

Solutions to Practice Problems 151

We assume that the value 1e400 overflows to infinity.

#define POS_INFINITY 1e400

#define NEG_INFINITY (-POS_INFINITY)

#define NEG_ZERO (-1.0/POS_INFINITY)

Solution to Problem 2.54 (page 117)
Exercises such as this one help you develop your ability to reason about floating-
point operations from a programmer’s perspective. Make sure you understand
each of the answers.

A. x == (int)(double) x
Yes, since double has greater precision and range than int.

B. x == (int)(float) x
No. For example, when x is TMax.

C. d == (double)(float) d
No. For example, when d is 1e40, we will get +∞ on the right.

D. f == (float)(double) f
Yes, since double has greater precision and range than float.

E. f == -(-f)
Yes, since a floating-point number is negated by simply inverting its sign bit.

F. 1.0/2 == 1/2.0
Yes, the numerators and denominators will both be converted to floating-
point representations before the division is performed.

G. d*d >= 0.0
Yes, although it may overflow to +∞.

H. (f+d)-f == d
No, for example when f is 1.0e20 and d is 1.0, the expression f+d will be
rounded to 1.0e20, and so the expression on the left-hand side will evaluate
to 0.0, while the right-hand side will be 1.0.

This page intentionally left blank

C H A P T E R 3
Machine-Level Representation
of Programs

3.1 A Historical Perspective 156

3.2 Program Encodings 159

3.3 Data Formats 167

3.4 Accessing Information 168

3.5 Arithmetic and Logical Operations 177

3.6 Control 185

3.7 Procedures 219

3.8 Array Allocation and Access 232

3.9 Heterogeneous Data Structures 241

3.10 Putting It Together: Understanding Pointers 252

3.11 Life in the Real World: Using the gdb Debugger 254

3.12 Out-of-Bounds Memory References and Buffer Overflow 256

3.13 x86-64: Extending IA32 to 64 Bits 267

3.14 Machine-Level Representations of Floating-Point Programs 292

3.15 Summary 293

Bibliographic Notes 294

Homework Problems 294

Solutions to Practice Problems 308

153

154 Chapter 3 Machine-Level Representation of Programs

Computers execute machine code, sequences of bytes encoding the low-level op-
erations that manipulate data, manage memory, read and write data on storage
devices, and communicate over networks. A compiler generates machine code
through a series of stages, based on the rules of the programming language, the
instruction set of the target machine, and the conventions followed by the operat-
ing system. The gcc C compiler generates its output in the form of assembly code,
a textual representation of the machine code giving the individual instructions in
the program. gcc then invokes both an assembler and a linker to generate the exe-
cutable machine code from the assembly code. In this chapter, we will take a close
look at machine code and its human-readable representation as assembly code.

When programming in a high-level language such as C, and even more so in
Java, we are shielded from the detailed, machine-level implementation of our pro-
gram. In contrast, when writing programs in assembly code (as was done in the
early days of computing) a programmer must specify the low-level instructions the
program uses to carry out a computation. Most of the time, it is much more produc-
tive and reliable to work at the higher level of abstraction provided by a high-level
language. The type checking provided by a compiler helps detect many program
errors and makes sure we reference and manipulate data in consistent ways. With
modern, optimizing compilers, the generated code is usually at least as efficient
as what a skilled, assembly-language programmer would write by hand. Best of
all, a program written in a high-level language can be compiled and executed on a
number of different machines, whereas assembly code is highly machine specific.

So why should we spend our time learning machine code? Even though com-
pilers do most of the work in generating assembly code, being able to read and
understand it is an important skill for serious programmers. By invoking the com-
piler with appropriate command-line parameters, the compiler will generate a file
showing its output in assembly-code form. By reading this code, we can under-
stand the optimization capabilities of the compiler and analyze the underlying
inefficiencies in the code. As we will experience in Chapter 5, programmers seek-
ing to maximize the performance of a critical section of code often try different
variations of the source code, each time compiling and examining the generated
assembly code to get a sense of how efficiently the program will run. Furthermore,
there are times when the layer of abstraction provided by a high-level language
hides information about the run-time behavior of a program that we need to un-
derstand. For example, when writing concurrent programs using a thread package,
as covered in Chapter 12, it is important to know what region of memory is used to
hold the different program variables. This information is visible at the assembly-
code level. As another example, many of the ways programs can be attacked,
allowing worms and viruses to infest a system, involve nuances of the way pro-
grams store their run-time control information. Many attacks involve exploiting
weaknesses in system programs to overwrite information and thereby take control
of the system. Understanding how these vulnerabilities arise and how to guard
against them requires a knowledge of the machine-level representation of pro-
grams. The need for programmers to learn assembly code has shifted over the
years from one of being able to write programs directly in assembly to one of
being able to read and understand the code generated by compilers.

Chapter 3 Machine-Level Representation of Programs 155

In this chapter, we will learn the details of two particular assembly languages
and see how C programs get compiled into these forms of machine code. Reading
the assembly code generated by a compiler involves a different set of skills than
writing assembly code by hand. We must understand the transformations typical
compilers make in converting the constructs of C into machine code. Relative to
the computations expressed in the C code, optimizing compilers can rearrange
execution order, eliminate unneeded computations, replace slow operations with
faster ones, and even change recursive computations into iterative ones. Under-
standing the relation between source code and the generated assembly can often
be a challenge—it’s much like putting together a puzzle having a slightly differ-
ent design than the picture on the box. It is a form of reverse engineering—trying
to understand the process by which a system was created by studying the system
and working backward. In this case, the system is a machine-generated assembly-
language program, rather than something designed by a human. This simplifies
the task of reverse engineering, because the generated code follows fairly reg-
ular patterns, and we can run experiments, having the compiler generate code
for many different programs. In our presentation, we give many examples and
provide a number of exercises illustrating different aspects of assembly language
and compilers. This is a subject where mastering the details is a prerequisite to
understanding the deeper and more fundamental concepts. Those who say “I un-
derstand the general principles, I don’t want to bother learning the details” are
deluding themselves. It is critical for you to spend time studying the examples,
working through the exercises, and checking your solutions with those provided.

Our presentation is based on two related machine languages: Intel IA32, the
dominant language of most computers today, and x86-64, its extension to run on
64-bit machines. Our focus starts with IA32. Intel processors have grown from
primitive 16-bit processors in 1978 to the mainstream machines for today’s desk-
top, laptop, and server computers. The architecture has grown correspondingly,
with new features added and with the 16-bit architecture transformed to become
IA32, supporting 32-bit data and addresses. The result is a rather peculiar design
with features that make sense only when viewed from a historical perspective. It
is also laden with features providing backward compatibility that are not used by
modern compilers and operating systems. We will focus on the subset of the fea-
tures used by gcc and Linux. This allows us to avoid much of the complexity and
arcane features of IA32.

Our technical presentation starts with a quick tour to show the relation be-
tween C, assembly code, and machine code. We then proceed to the details of
IA32, starting with the representation and manipulation of data and the imple-
mentation of control. We see how control constructs in C, such as if, while, and
switch statements, are implemented. We then cover the implementation of pro-
cedures, including how the program maintains a run-time stack to support the
passing of data and control between procedures, as well as storage for local vari-
ables. Next, we consider how data structures such as arrays, structures, and unions
are implemented at the machine level. With this background in machine-level pro-
gramming, we can examine the problems of out of bounds memory references and
the vulnerability of systems to buffer overflow attacks. We finish this part of the

156 Chapter 3 Machine-Level Representation of Programs

presentation with some tips on using the gdb debugger for examining the run-time
behavior of a machine-level program.

As we will discuss, the extension of IA32 to 64 bits, termed x86-64, was origi-
nally developed by Advanced Micro Devices (AMD), Intel’s biggest competitor.
Whereas a 32-bit machine can only make use of around 4 gigabytes (232 bytes) of
random-access memory, current 64-bit machines can use up to 256 terabytes (248

bytes). The computer industry is currently in the midst of a transition from 32-
bit to 64-bit machines. Most of the microprocessors in recent server and desktop
machines, as well as in many laptops, support either 32-bit or 64-bit operation.
However, most of the operating systems running on these machines support only
32-bit applications, and so the capabilities of the hardware are not fully utilized.
As memory prices drop, and the desire to perform computations involving very
large data sets increases, 64-bit machines and applications will become common-
place. It is therefore appropriate to take a close look at x86-64. We will see that in
making the transition from 32 to 64 bits, the engineers at AMD also incorporated
features that make the machines better targets for optimizing compilers and that
improve system performance.

We provide Web Asides to cover material intended for dedicated machine-
language enthusiasts. In one, we examine the code generated when code is com-
piled using higher degrees of optimization. Each successive version of the gcc
compiler implements more sophisticated optimization algorithms, and these can
radically transform a program to the point where it is difficult to understand the re-
lation between the original source code and the generated machine-level program.
Another Web Aside gives a brief presentation of ways to incorporate assembly
code into C programs. For some applications, the programmer must drop down
to assembly code to access low-level features of the machine. One approach is to
write entire functions in assembly code and combine them with C functions during
the linking stage. A second is to use gcc’s support for embedding assembly code
directly within C programs. We provide separate Web Asides for two different
machine languages for floating-point code. The “x87” floating-point instructions
have been available since the early days of Intel processors. This implementation
of floating point is particularly arcane, and so we advise that only people deter-
mined to work with floating-point code on older machines attempt to study this
section. The more recent “SSE” instructions were developed to support multi-
media applications, but in their more recent versions (version 2 and later), and
with more recent versions of gcc, SSE has become the preferred method for map-
ping floating point onto both IA32 and x86-64 machines.

3.1 A Historical Perspective

The Intel processor line, colloquially referred to as x86, has followed a long, evo-
lutionary development. It started with one of the first single-chip, 16-bit micropro-
cessors, where many compromises had to be made due to the limited capabilities
of integrated circuit technology at the time. Since then, it has grown to take ad-
vantage of technology improvements as well as to satisfy the demands for higher
performance and for supporting more advanced operating systems.

Section 3.1 A Historical Perspective 157

The list that follows shows some models of Intel processors and some of their
key features, especially those affecting machine-level programming. We use the
number of transistors required to implement the processors as an indication of
how they have evolved in complexity (K denotes 1000, and M denotes 1,000,000).

8086: (1978, 29 K transistors). One of the first single-chip, 16-bit microproces-
sors. The 8088, a variant of the 8086 with an 8-bit external bus, formed
the heart of the original IBM personal computers. IBM contracted with
then-tiny Microsoft to develop the MS-DOS operating system. The orig-
inal models came with 32,768 bytes of memory and two floppy drives (no
hard drive). Architecturally, the machines were limited to a 655,360-byte
address space—addresses were only 20 bits long (1,048,576 bytes address-
able), and the operating system reserved 393,216 bytes for its own use.
In 1980, Intel introduced the 8087 floating-point coprocessor (45 K tran-
sistors) to operate alongside an 8086 or 8088 processor, executing the
floating-point instructions. The 8087 established the floating-point model
for the x86 line, often referred to as “x87.”

80286: (1982, 134 K transistors). Added more (and now obsolete) addressing
modes. Formed the basis of the IBM PC-AT personal computer, the
original platform for MS Windows.

i386: (1985, 275 K transistors). Expanded the architecture to 32 bits. Added the
flat addressing model used by Linux and recent versions of the Windows
family of operating system. This was the first machine in the series that
could support a Unix operating system.

i486: (1989, 1.2 M transistors). Improved performance and integrated the
floating-point unit onto the processor chip but did not significantly change
the instruction set.

Pentium: (1993, 3.1 M transistors). Improved performance, but only added
minor extensions to the instruction set.

PentiumPro: (1995, 5.5 M transistors). Introduced a radically new processor
design, internally known as the P6 microarchitecture. Added a class of
“conditional move” instructions to the instruction set.

Pentium II: (1997, 7 M transistors). Continuation of the P6 microarchitecture.

Pentium III: (1999, 8.2 M transistors). Introduced SSE, a class of instructions
for manipulating vectors of integer or floating-point data. Each datum can
be 1, 2, or 4 bytes, packed into vectors of 128 bits. Later versions of this
chip went up to 24 M transistors, due to the incorporation of the level-2
cache on chip.

Pentium 4: (2000, 42 M transistors). Extended SSE to SSE2, adding new data
types (including double-precision floating point), along with 144 new
instructions for these formats. With these extensions, compilers can use
SSE instructions, rather than x87 instructions, to compile floating-point
code. Introduced the NetBurst microarchitecture, which could operate at
very high clock speeds, but at the cost of high power consumption.

158 Chapter 3 Machine-Level Representation of Programs

Pentium 4E: (2004, 125 M transistors). Added hyperthreading, a method to run
two programs simultaneously on a single processor, as well as EM64T,
Intel’s implementation of a 64-bit extension to IA32 developed by Ad-
vanced Micro Devices (AMD), which we refer to as x86-64.

Core 2: (2006, 291 M transistors). Returned back to a microarchitecture similar
to P6. First multi-core Intel microprocessor, where multiple processors are
implemented on a single chip. Did not support hyperthreading.

Core i7: (2008, 781 M transistors). Incorporated both hyperthreading and
multi-core, with the initial version supporting two executing programs
on each core and up to four cores on each chip.

Each successive processor has been designed to be backward compatible—
able to run code compiled for any earlier version. As we will see, there are many
strange artifacts in the instruction set due to this evolutionary heritage. Intel has
had several names for their processor line, including IA32, for “Intel Architecture
32-bit,” and most recently Intel64, the 64-bit extension to IA32, which we will refer
to as x86-64. We will refer to the overall line by the commonly used colloquial
name “x86,” reflecting the processor naming conventions up through the i486.

Aside Moore’s law

Intel microprocessor complexity
1.0E�09

1.0E�08

1.0E�07

1.0E�06

1.0E�05

1.0E�04
1975 1980

8086

80286
i386

i486 Pentium

Pentium 4

Pentium 4e
Core 2 Duo

Core i7

Pentium II

Pentium III

1985 1990 1995 2000 2005 2010

Year

Tr
an

si
st

or
s PentiumPro

If we plot the number of transistors in the different Intel processors versus the year of introduction, and
use a logarithmic scale for the y-axis, we can see that the growth has been phenomenal. Fitting a line
through the data, we see that the number of transistors increases at an annual rate of approximately
38%, meaning that the number of transistors doubles about every 26 months. This growth has been
sustained over the multiple-decade history of x86 microprocessors.

Section 3.2 Program Encodings 159

In 1965, Gordon Moore, a founder of Intel Corporation, extrapolated from the chip technology
of the day, in which they could fabricate circuits with around 64 transistors on a single chip, to predict
that the number of transistors per chip would double every year for the next 10 years. This predication
became known as Moore’s law. As it turns out, his prediction was just a little bit optimistic, but also too
short-sighted. Over more than 45 years, the semiconductor industry has been able to double transistor
counts on average every 18 months.

Similar exponential growth rates have occurred for other aspects of computer technology—disk
capacities, memory-chip capacities, and processor performance. These remarkable growth rates have
been the major driving forces of the computer revolution.

Over the years, several companies have produced processors that are com-
patible with Intel processors, capable of running the exact same machine-level
programs. Chief among these is Advanced Micro Devices (AMD). For years,
AMD lagged just behind Intel in technology, forcing a marketing strategy where
they produced processors that were less expensive although somewhat lower in
performance. They became more competitive around 2002, being the first to break
the 1-gigahertz clock-speed barrier for a commercially available microprocessor,
and introducing x86-64, the widely adopted 64-bit extension to IA32. Although
we will talk about Intel processors, our presentation holds just as well for the
compatible processors produced by Intel’s rivals.

Much of the complexity of x86 is not of concern to those interested in programs
for the Linux operating system as generated by the gcc compiler. The memory
model provided in the original 8086 and its extensions in the 80286 are obsolete.
Instead, Linux uses what is referred to as flat addressing, where the entire memory
space is viewed by the programmer as a large array of bytes.

As we can see in the list of developments, a number of formats and instructions
have been added to x86 for manipulating vectors of small integers and floating-
point numbers. These features were added to allow improved performance on
multimedia applications, such as image processing, audio and video encoding
and decoding, and three-dimensional computer graphics. In its default invocation
for 32-bit execution, gcc assumes it is generating code for an i386, even though
there are very few of these 1985-era microprocessors running any longer. Only by
giving specific command-line options, or by compiling for 64-bit operation, will
the compiler make use of the more recent extensions.

For the next part of our presentation, we will focus only on the IA32 instruc-
tion set. We will then look at the extension to 64 bits via x86-64 toward the end of
the chapter.

3.2 Program Encodings

Suppose we write a C program as two files p1.c and p2.c. We can then compile
this code on an IA32 machine using a Unix command line:

unix> gcc -O1 -o p p1.c p2.c

160 Chapter 3 Machine-Level Representation of Programs

The command gcc indicates the gcc C compiler. Since this is the default compiler
on Linux, we could also invoke it as simply cc. The command-line option -O1
instructs the compiler to apply level-one optimizations. In general, increasing the
level of optimization makes the final program run faster, but at a risk of increased
compilation time and difficulties running debugging tools on the code. As we will
also see, invoking higher levels of optimization can generate code that is so heavily
transformed that the relationship between the generated machine code and the
original source code is difficult to understand. We will therefore use level-one
optimization as a learning tool and then see what happens as we increase the level
of optimization. In practice, level-two optimization (specified with the option -O2)
is considered a better choice in terms of the resulting program performance.

The gcc command actually invokes a sequence of programs to turn the source
code into executable code. First, the C preprocessor expands the source code to
include any files specified with #include commands and to expand any macros,
specified with #define declarations. Second, the compiler generates assembly-
code versions of the two source files having names p1.s and p2.s. Next, the
assembler converts the assembly code into binary object-code files p1.o and p2.o.
Object code is one form of machine code—it contains binary representations of all
of the instructions, but the addresses of global values are not yet filled in. Finally,
the linker merges these two object-code files along with code implementing library
functions (e.g., printf) and generates the final executable code file p. Executable
code is the second form of machine code we will consider—it is the exact form
of code that is executed by the processor. The relation between these different
forms of machine code and the linking process is described in more detail in
Chapter 7.

3.2.1 Machine-Level Code

As described in Section 1.9.2, computer systems employ several different forms
of abstraction, hiding details of an implementation through the use of a sim-
pler, abstract model. Two of these are especially important for machine-level
programming. First, the format and behavior of a machine-level program is de-
fined by the instruction set architecture, or “ISA,” defining the processor state,
the format of the instructions, and the effect each of these instructions will have
on the state. Most ISAs, including IA32 and x86-64, describe the behavior of
a program as if each instruction is executed in sequence, with one instruction
completing before the next one begins. The processor hardware is far more elab-
orate, executing many instructions concurrently, but they employ safeguards to
ensure that the overall behavior matches the sequential operation dictated by the
ISA. Second, the memory addresses used by a machine-level program are vir-
tual addresses, providing a memory model that appears to be a very large byte
array. The actual implementation of the memory system involves a combination
of multiple hardware memories and operating system software, as described in
Chapter 9.

The compiler does most of the work in the overall compilation sequence,
transforming programs expressed in the relatively abstract execution model pro-

Section 3.2 Program Encodings 161

vided by C into the very elementary instructions that the processor executes. The
assembly-code representation is very close to machine code. Its main feature is
that it is in a more readable textual format, as compared to the binary format of
machine code. Being able to understand assembly code and how it relates to the
original C code is a key step in understanding how computers execute programs.

IA32 machine code differs greatly from the original C code. Parts of the
processor state are visible that normally are hidden from the C programmer:

. The program counter (commonly referred to as the “PC,” and called %eip in
IA32) indicates the address in memory of the next instruction to be executed.

. The integer register file contains eight named locations storing 32-bit values.
These registers can hold addresses (corresponding to C pointers) or integer
data. Some registers are used to keep track of critical parts of the program
state, while others are used to hold temporary data, such as the local variables
of a procedure, and the value to be returned by a function.

. The condition code registers hold status information about the most recently
executed arithmetic or logical instruction. These are used to implement con-
ditional changes in the control or data flow, such as is required to implement
if and while statements.

. A set of floating-point registers store floating-point data.

Whereas C provides a model in which objects of different data types can be
declared and allocated in memory, machine code views the memory as simply
a large, byte-addressable array. Aggregate data types in C such as arrays and
structures are represented in machine code as contiguous collections of bytes.
Even for scalar data types, assembly code makes no distinctions between signed or
unsigned integers, between different types of pointers, or even between pointers
and integers.

The program memory contains the executable machine code for the program,
some information required by the operating system, a run-time stack for managing
procedure calls and returns, and blocks of memory allocated by the user (for
example, by using the malloc library function). As mentioned earlier, the program
memory is addressed using virtual addresses. At any given time, only limited
subranges of virtual addresses are considered valid. For example, although the
32-bit addresses of IA32 potentially span a 4-gigabyte range of address values, a
typical program will only have access to a few megabytes. The operating system
manages this virtual address space, translating virtual addresses into the physical
addresses of values in the actual processor memory.

A single machine instruction performs only a very elementary operation. For
example, it might add two numbers stored in registers, transfer data between
memory and a register, or conditionally branch to a new instruction address. The
compiler must generate sequences of such instructions to implement program
constructs such as arithmetic expression evaluation, loops, or procedure calls and
returns.

162 Chapter 3 Machine-Level Representation of Programs

Aside The ever-changing forms of generated code

In our presentation, we will show the code generated by a particular version of gcc with particular
settings of the command-line options. If you compile code on your own machine, chances are you will be
using a different compiler or a different version of gcc and hence will generate different code. The open-
source community supporting gcc keeps changing the code generator, attempting to generate more
efficient code according to changing code guidelines provided by the microprocessor manufacturers.

Our goal in studying the examples shown in our presentation is to demonstrate how to examine
assembly code and map it back to the constructs found in high-level programming languages. You will
need to adapt these techniques to the style of code generated by your particular compiler.

3.2.2 Code Examples

Suppose we write a C code file code.c containing the following procedure defini-
tion:

1 int accum = 0;

2

3 int sum(int x, int y)

4 {

5 int t = x + y;

6 accum += t;

7 return t;

8 }

To see the assembly code generated by the C compiler, we can use the “-S” option
on the command line:

unix> gcc -O1 -S code.c

This will cause gcc to run the compiler, generating an assembly file code.s, and go
no further. (Normally it would then invoke the assembler to generate an object-
code file.)

The assembly-code file contains various declarations including the set of lines:

sum:

pushl %ebp

movl %esp, %ebp

movl 12(%ebp), %eax

addl 8(%ebp), %eax

addl %eax, accum

popl %ebp

ret

Each indented line in the above code corresponds to a single machine instruction.
For example, the pushl instruction indicates that the contents of register %ebp
should be pushed onto the program stack. All information about local variable
names or data types has been stripped away. We still see a reference to the global

Section 3.2 Program Encodings 163

variable accum, since the compiler has not yet determined where in memory this
variable will be stored.

If we use the ‘-c’ command-line option, gcc will both compile and assemble
the code:

unix> gcc -O1 -c code.c

This will generate an object-code file code.o that is in binary format and hence
cannot be viewed directly. Embedded within the 800 bytes of the file code.o is a
17-byte sequence having hexadecimal representation

55 89 e5 8b 45 0c 03 45 08 01 05 00 00 00 00 5d c3

This is the object-code corresponding to the assembly instructions listed above. A
key lesson to learn from this is that the program actually executed by the machine
is simply a sequence of bytes encoding a series of instructions. The machine has
very little information about the source code from which these instructions were
generated.

Aside How do I find the byte representation of a program?

To generate these bytes, we used a disassembler (to be described shortly) to determine that the code for
sum is 17 bytes long. Then we ran the GNU debugging tool gdb on file code.o and gave it the command

(gdb) x/17xb sum

telling it to examine (abbreviated ‘x’) 17 hex-formatted (also abbreviated ‘x’) bytes (abbreviated ‘b’).
You will find that gdb has many useful features for analyzing machine-level programs, as will be
discussed in Section 3.11.

To inspect the contents of machine-code files, a class of programs known as
disassemblers can be invaluable. These programs generate a format similar to
assembly code from the machine code. With Linux systems, the program objdump
(for “object dump”) can serve this role given the ‘-d’ command-line flag:

unix> objdump -d code.o

The result is (where we have added line numbers on the left and annotations in
italicized text) as follows:

Disassembly of function sum in binary file code.o

1 00000000 <sum>:

Offset Bytes Equivalent assembly language

2 0: 55 push %ebp

3 1: 89 e5 mov %esp,%ebp

4 3: 8b 45 0c mov 0xc(%ebp),%eax

5 6: 03 45 08 add 0x8(%ebp),%eax

6 9: 01 05 00 00 00 00 add %eax,0x0

7 f: 5d pop %ebp

8 10: c3 ret

164 Chapter 3 Machine-Level Representation of Programs

On the left, we see the 17 hexadecimal byte values listed in the byte sequence
earlier, partitioned into groups of 1 to 6 bytes each. Each of these groups is a
single instruction, with the assembly-language equivalent shown on the right.

Several features about machine code and its disassembled representation are
worth noting:

. IA32 instructions can range in length from 1 to 15 bytes. The instruction
encoding is designed so that commonly used instructions and those with fewer
operands require a smaller number of bytes than do less common ones or ones
with more operands.

. The instruction format is designed in such a way that from a given starting
position, there is a unique decoding of the bytes into machine instructions.
For example, only the instruction pushl %ebp can start with byte value 55.

. The disassembler determines the assembly code based purely on the byte
sequences in the machine-code file. It does not require access to the source or
assembly-code versions of the program.

. The disassembler uses a slightly different naming convention for the instruc-
tions than does the assembly code generated by gcc. In our example, it has
omitted the suffix ‘l’ from many of the instructions. These suffixes are size
designators and can be omitted in most cases.

Generating the actual executable code requires running a linker on the set
of object-code files, one of which must contain a function main. Suppose in file
main.c we had the following function:

1 int main()

2 {

3 return sum(1, 3);

4 }

Then, we could generate an executable program prog as follows:

unix> gcc -O1 -o prog code.o main.c

The file prog has grown to 9,123 bytes, since it contains not just the code for our
two procedures but also information used to start and terminate the program as
well as to interact with the operating system. We can also disassemble the file prog:

unix> objdump -d prog

The disassembler will extract various code sequences, including the following:

Disassembly of function sum in executable file prog

1 08048394 <sum>:

Offset Bytes Equivalent assembly language

2 8048394: 55 push %ebp

3 8048395: 89 e5 mov %esp,%ebp

4 8048397: 8b 45 0c mov 0xc(%ebp),%eax

Section 3.2 Program Encodings 165

5 804839a: 03 45 08 add 0x8(%ebp),%eax

6 804839d: 01 05 18 a0 04 08 add %eax,0x804a018

7 80483a3: 5d pop %ebp

8 80483a4: c3 ret

This code is almost identical to that generated by the disassembly of code.c. One
important difference is that the addresses listed along the left are different—the
linker has shifted the location of this code to a different range of addresses. A
second difference is that the linker has determined the location for storing global
variable accum. On line 6 of the disassembly for code.o, the address of accumwas
listed as 0. In the disassembly of prog, the address has been set to 0x804a018. This
is shown in the assembly-code rendition of the instruction. It can also be seen in the
last 4 bytes of the instruction, listed from least-significant to most as 18 a0 04 08.

3.2.3 Notes on Formatting

The assembly code generated by gcc is difficult for a human to read. On one hand,
it contains information with which we need not be concerned, while on the other
hand, it does not provide any description of the program or how it works. For
example, suppose the file simple.c contains the following code:

1 int simple(int *xp, int y)

2 {

3 int t = *xp + y;

4 *xp = t;

5 return t;

6 }

When gcc is run with flags ‘-S’ and ‘-O1’, it generates the following file for
simple.s:

.file "simple.c"

.text

.globl simple

.type simple, @function

simple:

pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %edx

movl 12(%ebp), %eax

addl (%edx), %eax

movl %eax, (%edx)

popl %ebp

ret

.size simple, .-simple

.ident "GCC: (Ubuntu 4.3.2-1ubuntu11) 4.3.2"

.section .note.GNU-stack,"",@progbits

166 Chapter 3 Machine-Level Representation of Programs

All of the lines beginning with ‘.’ are directives to guide the assembler and
linker. We can generally ignore these. On the other hand, there are no explanatory
remarks about what the instructions do or how they relate to the source code.

To provide a clearer presentation of assembly code, we will show it in a form
that omits most of the directives, while including line numbers and explanatory
annotations. For our example, an annotated version would appear as follows:

1 simple:

2 pushl %ebp Save frame pointer

3 movl %esp, %ebp Create new frame pointer

4 movl 8(%ebp), %edx Retrieve xp

5 movl 12(%ebp), %eax Retrieve y

6 addl (%edx), %eax Add *xp to get t

7 movl %eax, (%edx) Store t at xp

8 popl %ebp Restore frame pointer

9 ret Return

We typically show only the lines of code relevant to the point being discussed.
Each line is numbered on the left for reference and annotated on the right by a
brief description of the effect of the instruction and how it relates to the computa-
tions of the original C code. This is a stylized version of the way assembly-language
programmers format their code.

Aside ATT versus Intel assembly-code formats

In our presentation, we show assembly code in ATT (named after “AT&T,” the company that operated
Bell Laboratories for many years) format, the default format for gcc, objdump, and the other tools we
will consider. Other programming tools, including those from Microsoft as well as the documentation
from Intel, show assembly code in Intel format. The two formats differ in a number of ways. As an
example, gcc can generate code in Intel format for the sum function using the following command line:

unix> gcc -O1 -S -masm=intel code.c

This gives the following assembly code:

Assembly code for simple in Intel format

1 simple:

2 push ebp

3 mov ebp, esp

4 mov edx, DWORD PTR [ebp+8]

5 mov eax, DWORD PTR [ebp+12]

6 add eax, DWORD PTR [edx]

7 mov DWORD PTR [edx], eax

8 pop ebp

9 ret

Section 3.3 Data Formats 167

We see that the Intel and ATT formats differ in the following ways:

. The Intel code omits the size designation suffixes. We see instruction mov instead of movl.

. The Intel code omits the ‘%’ character in front of register names, using esp instead of %esp.

. The Intel code has a different way of describing locations in memory, for example ‘DWORD PTR
[ebp+8]’ rather than ‘8(%ebp)’.

. Instructions with multiple operands list them in the reverse order. This can be very confusing when
switching between the two formats.

Although we will not be using Intel format in our presentation, you will encounter it in IA32 documen-
tation from Intel and Windows documentation from Microsoft.

3.3 Data Formats

Due to its origins as a 16-bit architecture that expanded into a 32-bit one, Intel
uses the term “word” to refer to a 16-bit data type. Based on this, they refer to 32-
bit quantities as “double words.” They refer to 64-bit quantities as “quad words.”
Most instructions we will encounter operate on bytes or double words.

Figure 3.1 shows the IA32 representations used for the primitive data types of
C. Most of the common data types are stored as double words. This includes both
regular and long int’s, whether or not they are signed. In addition, all pointers
(shown here as char *) are stored as 4-byte double words. Bytes are commonly
used when manipulating string data. As we saw in Section 2.1, more recent ex-
tensions of the C language include the data type long long, which is represented
using 8 bytes. IA32 does not support this data type in hardware. Instead, the com-
piler must generate sequences of instructions that operate on these data 32 bits

C declaration Intel data type Assembly code suffix Size (bytes)

char Byte b 1
short Word w 2
int Double word l 4
long int Double word l 4
long long int — — 4
char * Double word l 4
float Single precision s 4
double Double precision l 8
long double Extended precision t 10/12

Figure 3.1 Sizes of C data types in IA32. IA32 does not provide hardware support
for 64-bit integer arithmetic. Compiling code with long long data requires generating
sequences of operations to perform the arithmetic in 32-bit chunks.

168 Chapter 3 Machine-Level Representation of Programs

at a time. Floating-point numbers come in three different forms: single-precision
(4-byte) values, corresponding to C data type float; double-precision (8-byte)
values, corresponding to C data type double; and extended-precision (10-byte)
values. gcc uses the data type long double to refer to extended-precision floating-
point values. It also stores them as 12-byte quantities to improve memory system
performance, as will be discussed later. Using the long double data type (intro-
duced in ISO C99) gives us access to the extended-precision capability of x86.
For most other machines, this data type will be represented using the same 8-byte
format of the ordinary double data type.

As the table indicates, most assembly-code instructions generated by gcc have
a single-character suffix denoting the size of the operand. For example, the data
movement instruction has three variants: movb (move byte), movw (move word),
and movl (move double word). The suffix ‘l’ is used for double words, since 32-bit
quantities are considered to be “long words,” a holdover from an era when 16-bit
word sizes were standard. Note that the assembly code uses the suffix ‘l’ to denote
both a 4-byte integer as well as an 8-byte double-precision floating-point number.
This causes no ambiguity, since floating point involves an entirely different set of
instructions and registers.

3.4 Accessing Information

An IA32 central processing unit (CPU) contains a set of eight registers storing
32-bit values. These registers are used to store integer data as well as pointers.
Figure 3.2 diagrams the eight registers. Their names all begin with %e, but other-
wise, they have peculiar names. With the original 8086, the registers were 16 bits
and each had a specific purpose. The names were chosen to reflect these different
purposes. With flat addressing, the need for specialized registers is greatly reduced.
For the most part, the first six registers can be considered general-purpose regis-

Figure 3.2
IA32 integer registers.
All eight registers can
be accessed as either 16
bits (word) or 32 bits
(double word). The 2 low-
order bytes of the first four
registers can be accessed
independently.

%ah

31 15 8 7 0

%eax %ax %al

%ch%ecx %cx %cl

%dh%edx %dx %dl

%bh%ebx %bx

%esi %si

%edi %di

%esp %sp

%ebp %bp

%bl

Stack pointer

Frame pointer

Section 3.4 Accessing Information 169

ters with no restrictions placed on their use. We said “for the most part,” because
some instructions use fixed registers as sources and/or destinations. In addition,
within procedures there are different conventions for saving and restoring the
first three registers (%eax, %ecx, and %edx) than for the next three (%ebx, %edi,
and %esi). This will be discussed in Section 3.7. The final two registers (%ebp and
%esp) contain pointers to important places in the program stack. They should only
be altered according to the set of standard conventions for stack management.

As indicated in Figure 3.2, the low-order 2 bytes of the first four registers
can be independently read or written by the byte operation instructions. This
feature was provided in the 8086 to allow backward compatibility to the 8008 and
8080—two 8-bit microprocessors that date back to 1974. When a byte instruction
updates one of these single-byte “register elements,” the remaining 3 bytes of the
register do not change. Similarly, the low-order 16 bits of each register can be
read or written by word operation instructions. This feature stems from IA32’s
evolutionary heritage as a 16-bit microprocessor and is also used when operating
on integers with size designator short.

3.4.1 Operand Specifiers

Most instructions have one or more operands, specifying the source values to
reference in performing an operation and the destination location into which to
place the result. IA32 supports a number of operand forms (see Figure 3.3). Source
values can be given as constants or read from registers or memory. Results can be
stored in either registers or memory. Thus, the different operand possibilities can
be classified into three types. The first type, immediate, is for constant values. In
ATT-format assembly code, these are written with a ‘$’ followed by an integer
using standard C notation, for example, $-577 or $0x1F. Any value that fits into
a 32-bit word can be used, although the assembler will use 1- or 2-byte encodings

Type Form Operand value Name

Immediate $Imm Imm Immediate

Register Ea R[Ea] Register

Memory Imm M[Imm] Absolute
Memory (Ea) M[R[Ea]] Indirect
Memory Imm(Eb) M[Imm + R[Eb]] Base + displacement
Memory (Eb,Ei) M[R[Eb] + R[Ei]] Indexed
Memory Imm(Eb,Ei) M[Imm + R[Eb] + R[Ei]] Indexed
Memory (,Ei,s) M[R[Ei] . s] Scaled indexed
Memory Imm(,Ei,s) M[Imm + R[Ei] . s] Scaled indexed
Memory (Eb,Ei,s) M[R[Eb] + R[Ei] . s] Scaled indexed
Memory Imm(Eb,Ei,s) M[Imm + R[Eb] + R[Ei] . s] Scaled indexed

Figure 3.3 Operand forms. Operands can denote immediate (constant) values, register
values, or values from memory. The scaling factor s must be either 1, 2, 4, or 8.

170 Chapter 3 Machine-Level Representation of Programs

when possible. The second type, register, denotes the contents of one of the
registers, either one of the eight 32-bit registers (e.g., %eax) for a double-word
operation, one of the eight 16-bit registers (e.g., %ax) for a word operation, or
one of the eight single-byte register elements (e.g., %al) for a byte operation. In
Figure 3.3, we use the notation Ea to denote an arbitrary register a, and indicate
its value with the reference R[Ea], viewing the set of registers as an array R indexed
by register identifiers.

The third type of operand is a memory reference, in which we access some
memory location according to a computed address, often called the effective ad-
dress. Since we view the memory as a large array of bytes, we use the notation
Mb[Addr] to denote a reference to the b-byte value stored in memory starting at
address Addr. To simplify things, we will generally drop the subscript b.

As Figure 3.3 shows, there are many different addressing modes allowing dif-
ferent forms of memory references. The most general form is shown at the bottom
of the table with syntax Imm(Eb,Ei,s). Such a reference has four components:
an immediate offset Imm, a base register Eb, an index register Ei, and a scale
factor s, where s must be 1, 2, 4, or 8. The effective address is then computed
as Imm + R[Eb] + R[Ei] . s. This general form is often seen when referencing el-
ements of arrays. The other forms are simply special cases of this general form
where some of the components are omitted. As we will see, the more complex
addressing modes are useful when referencing array and structure elements.

Practice Problem 3.1
Assume the following values are stored at the indicated memory addresses and
registers:

Address Value Register Value

0x100 0xFF %eax 0x100

0x104 0xAB %ecx 0x1

0x108 0x13 %edx 0x3

0x10C 0x11

Fill in the following table showing the values for the indicated operands:

Operand Value

%eax

0x104

$0x108

(%eax)

4(%eax)

9(%eax,%edx)

260(%ecx,%edx)

0xFC(,%ecx,4)

(%eax,%edx,4)

Section 3.4 Accessing Information 171

Instruction Effect Description

mov S, D D ← S Move
movb Move byte
movw Move word
movl Move double word

movs S, D D ← SignExtend(S) Move with sign extension
movsbw Move sign-extended byte to word
movsbl Move sign-extended byte to double word
movswl Move sign-extended word to double word

movz S, D D ← ZeroExtend(S) Move with zero extension
movzbw Move zero-extended byte to word
movzbl Move zero-extended byte to double word
movzwl Move zero-extended word to double word

pushl S R[%esp] ← R[%esp] − 4; Push double word
M[R[%esp]] ← S

popl D D ← M[R[%esp]]; Pop double word
R[%esp] ← R[%esp] + 4

Figure 3.4 Data movement instructions.

3.4.2 Data Movement Instructions

Among the most heavily used instructions are those that copy data from one
location to another. The generality of the operand notation allows a simple data
movement instruction to perform what in many machines would require a number
of instructions. Figure 3.4 lists the important data movement instructions. As can
be seen, we group the many different instructions into instruction classes, where
the instructions in a class perform the same operation, but with different operand
sizes. For example, the mov class consists of three instructions: movb, movw, and
movl. All three of these instructions perform the same operation; they differ only
in that they operate on data of size 1, 2, and 4 bytes, respectively.

The instructions in the mov class copy their source values to their destinations.
The source operand designates a value that is immediate, stored in a register, or
stored in memory. The destination operand designates a location that is either a
register or a memory address. IA32 imposes the restriction that a move instruction
cannot have both operands refer to memory locations. Copying a value from one
memory location to another requires two instructions—the first to load the source
value into a register, and the second to write this register value to the destination.
Referring to Figure 3.2, the register operands for these instructions can be any
of the eight 32-bit registers (%eax–%ebp) for movl, any of the eight 16-bit regis-
ters (%ax–%bp) for movw, and any of the single-byte register elements (%ah–%bh,
%al–%bl) for movb. The following mov instruction examples show the five

172 Chapter 3 Machine-Level Representation of Programs

possible combinations of source and destination types. Recall that the source
operand comes first and the destination second:

1 movl $0x4050,%eax Immediate--Register, 4 bytes

2 movw %bp,%sp Register--Register, 2 bytes

3 movb (%edi,%ecx),%ah Memory--Register, 1 byte

4 movb $-17,(%esp) Immediate--Memory, 1 byte

5 movl %eax,-12(%ebp) Register--Memory, 4 bytes

Both the movs and the movz instruction classes serve to copy a smaller amount
of source data to a larger data location, filling in the upper bits by either sign
expansion (movs) or by zero expansion (movz). With sign expansion, the upper
bits of the destination are filled in with copies of the most significant bit of the
source value. With zero expansion, the upper bits are filled with zeros. As can be
seen, there are three instructions in each of these classes, covering all cases of 1-
and 2-byte source sizes and 2- and 4-byte destination sizes (omitting the redundant
combinations movsww and movzww, of course).

Aside Comparing byte movement instructions

Observe that the three byte-movement instructions movb, movsbl, and movzbl differ from each other
in subtle ways. Here is an example:

Assume initially that %dh = CD, %eax = 98765432

1 movb %dh,%al %eax = 987654CD

2 movsbl %dh,%eax %eax = FFFFFFCD

3 movzbl %dh,%eax %eax = 000000CD

In these examples, all set the low-order byte of register %eax to the second byte of %edx. The movb
instruction does not change the other 3 bytes. The movsbl instruction sets the other 3 bytes to either all
ones or all zeros, depending on the high-order bit of the source byte. The movzbl instruction sets the
other 3 bytes to all zeros in any case.

The final two data movement operations are used to push data onto and pop
data from the program stack. As we will see, the stack plays a vital role in the
handling of procedure calls. By way of background, a stack is a data structure
where values can be added or deleted, but only according to a “last-in, first-out”
discipline. We add data to a stack via a push operation and remove it via a pop op-
eration, with the property that the value popped will always be the value that was
most recently pushed and is still on the stack. A stack can be implemented as an
array, where we always insert and remove elements from one end of the array. This
end is called the top of the stack. With IA32, the program stack is stored in some
region of memory. As illustrated in Figure 3.5, the stack grows downward such that
the top element of the stack has the lowest address of all stack elements. (By con-
vention, we draw stacks upside down, with the stack “top” shown at the bottom
of the figure). The stack pointer %esp holds the address of the top stack element.

Section 3.4 Accessing Information 173

%eax

%edx

%esp

0x108

0

0x123

0x108

%eax

%edx

%esp

0x108

0x104

0

0x123

0x104

%eax

%edx

%esp

0x123

0x123

pushl %eax popl %edx

0x108

Initially

Stack “bottom”

Increasing
address

Stack “top”

Stack “bottom”

0x123 0x123

Stack “top”
Stack “top”

0x108

Stack “bottom”

Figure 3.5 Illustration of stack operation. By convention, we draw stacks upside
down, so that the “top” of the stack is shown at the bottom. IA32 stacks grow toward
lower addresses, so pushing involves decrementing the stack pointer (register %esp) and
storing to memory, while popping involves reading from memory and incrementing the
stack pointer.

The pushl instruction provides the ability to push data onto the stack, while
the popl instruction pops it. Each of these instructions takes a single operand—the
data source for pushing and the data destination for popping.

Pushing a double-word value onto the stack involves first decrementing the
stack pointer by 4 and then writing the value at the new top of stack address.
Therefore, the behavior of the instruction pushl %ebp is equivalent to that of the
pair of instructions

subl $4,%esp Decrement stack pointer

movl %ebp,(%esp) Store %ebp on stack

except that the pushl instruction is encoded in the machine code as a single byte,
whereas the pair of instructions shown above requires a total of 6 bytes. The first
two columns in Figure 3.5 illustrate the effect of executing the instruction pushl
%eaxwhen %esp is 0x108 and %eax is 0x123. First %esp is decremented by 4, giving
0x104, and then 0x123 is stored at memory address 0x104.

Popping a double word involves reading from the top of stack location and
then incrementing the stack pointer by 4. Therefore, the instruction popl %eax is
equivalent to the following pair of instructions:

movl (%esp),%eax Read %eax from stack

addl $4,%esp Increment stack pointer

The third column of Figure 3.5 illustrates the effect of executing the instruction
popl %edx immediately after executing the pushl. Value 0x123 is read from

174 Chapter 3 Machine-Level Representation of Programs

memory and written to register %edx. Register %esp is incremented back to 0x108.
As shown in the figure, the value 0x123 remains at memory location 0x104 until it
is overwritten (e.g., by another push operation). However, the stack top is always
considered to be the address indicated by %esp. Any value stored beyond the stack
top is considered invalid.

Since the stack is contained in the same memory as the program code and
other forms of program data, programs can access arbitrary positions within the
stack using the standard memory addressing methods. For example, assuming the
topmost element of the stack is a double word, the instruction movl 4(%esp),%edx
will copy the second double word from the stack to register %edx.

Practice Problem 3.2
For each of the following lines of assembly language, determine the appropriate
instruction suffix based on the operands. (For example, mov can be rewritten as
movb, movw, or movl.)

1 mov %eax, (%esp)

2 mov (%eax), %dx

3 mov $0xFF, %bl

4 mov (%esp,%edx,4), %dh

5 push $0xFF

6 mov %dx, (%eax)

7 pop %edi

Practice Problem 3.3
Each of the following lines of code generates an error message when we invoke
the assembler. Explain what is wrong with each line.

1 movb $0xF, (%bl)

2 movl %ax, (%esp)

3 movw (%eax),4(%esp)

4 movb %ah,%sh

5 movl %eax,$0x123

6 movl %eax,%dx

7 movb %si, 8(%ebp)

3.4.3 Data Movement Example

As an example of code that uses data movement instructions, consider the
data exchange routine shown in Figure 3.6, both as C code and as assembly code
generated by gcc. We omit the portion of the assembly code that allocates space on
the run-time stack on procedure entry and deallocates it prior to return. The details
of this set-up and completion code will be covered when we discuss procedure
linkage. The code we are left with is called the “body.”

Section 3.4 Accessing Information 175

New to C? Some examples of pointers

Function exchange (Figure 3.6) provides a good illustration of the use of pointers in C. Argument xp
is a pointer to an integer, while y is an integer itself. The statement

int x = *xp;

indicates that we should read the value stored in the location designated by xp and store it as a local
variable named x. This read operation is known as pointer dereferencing. The C operator * performs
pointer dereferencing.

The statement

*xp = y;

does the reverse—it writes the value of parameter y at the location designated by xp. This is also a form
of pointer dereferencing (and hence the operator *), but it indicates a write operation since it is on the
left-hand side of the assignment.

The following is an example of exchange in action:

int a = 4;

int b = exchange(&a, 3);

printf("a = %d, b = %d\n", a, b);

This code will print

a = 3, b = 4

The C operator & (called the “address of” operator) creates a pointer, in this case to the location holding
local variable a. Function exchange then overwrote the value stored in a with 3 but returned 4 as the
function value. Observe how by passing a pointer to exchange, it could modify data held at some remote
location.

When the body of the procedure starts execution, procedure parameters xp
and y are stored at offsets 8 and 12 relative to the address in register %ebp.
Instructions 1 and 2 read parameter xp from memory and store it in register

(a) C code

1 int exchange(int *xp, int y)

2 {

3 int x = *xp;

4

5 *xp = y;

6 return x;

7 }

(b) Assembly code

xp at %ebp+8, y at %ebp+12

1 movl 8(%ebp), %edx Get xp

By copying to %eax below, x becomes the return value

2 movl (%edx), %eax Get x at xp

3 movl 12(%ebp), %ecx Get y

4 movl %ecx, (%edx) Store y at xp

Figure 3.6 C and assembly code for exchange routine body. The stack set-up and completion portions
have been omitted.

176 Chapter 3 Machine-Level Representation of Programs

%edx. Instruction 2 uses register %edx and reads x into register %eax, a direct
implementation of the operation x = *xp in the C program. Later, register %eax
will be used to return a value from this function, and so the return value will be
x. Instruction 3 loads parameter y into register %ecx. Instruction 4 then writes
this value to the memory location designated by xp in register %edx, a direct
implementation of the operation *xp = y. This example illustrates how the mov
instructions can be used to read from memory to a register (instructions 1 to 3),
and to write from a register to memory (instruction 4.)

Two features about this assembly code are worth noting. First, we see that what
we call “pointers” in C are simply addresses. Dereferencing a pointer involves
copying that pointer into a register, and then using this register in a memory
reference. Second, local variables such as x are often kept in registers rather than
stored in memory locations. Register access is much faster than memory access.

Practice Problem 3.4
Assume variables v and p declared with types

src_t v;

dest_t *p;

where src_t and dest_t are data types declared with typedef. We wish to use
the appropriate data movement instruction to implement the operation

*p = (dest_t) v;

where v is stored in the appropriately named portion of register %eax (i.e., %eax,
%ax, or %al), while pointer p is stored in register %edx.

For the following combinations of src_t and dest_t, write a line of assembly
code that does the appropriate transfer. Recall that when performing a cast that
involves both a size change and a change of “signedness” in C, the operation
should change the signedness first (Section 2.2.6).

src_t dest_t Instruction

int int movl %eax, (%edx)

char int

char unsigned

unsigned char int

int char

unsigned unsigned char

unsigned int

Practice Problem 3.5
You are given the following information. A function with prototype

void decode1(int *xp, int *yp, int *zp);

Section 3.5 Arithmetic and Logical Operations 177

is compiled into assembly code. The body of the code is as follows:

xp at %ebp+8, yp at %ebp+12, zp at %ebp+16

1 movl 8(%ebp), %edi

2 movl 12(%ebp), %edx

3 movl 16(%ebp), %ecx

4 movl (%edx), %ebx

5 movl (%ecx), %esi

6 movl (%edi), %eax

7 movl %eax, (%edx)

8 movl %ebx, (%ecx)

9 movl %esi, (%edi)

Parameters xp, yp, and zp are stored at memory locations with offsets 8, 12, and
16, respectively, relative to the address in register %ebp.

Write C code for decode1 that will have an effect equivalent to the assembly
code above.

3.5 Arithmetic and Logical Operations

Figure 3.7 lists some of the integer and logic operations. Most of the operations
are given as instruction classes, as they can have different variants with different
operand sizes. (Only leal has no other size variants.) For example, the instruction
class add consists of three addition instructions: addb, addw, and addl, adding
bytes, words, and double words, respectively. Indeed, each of the instruction
classes shown has instructions for operating on byte, word, and double-word data.
The operations are divided into four groups: load effective address, unary, binary,
and shifts. Binary operations have two operands, while unary operations have one
operand. These operands are specified using the same notation as described in
Section 3.4.

3.5.1 Load Effective Address

The load effective address instruction leal is actually a variant of the movl instruc-
tion. It has the form of an instruction that reads from memory to a register, but it
does not reference memory at all. Its first operand appears to be a memory refer-
ence, but instead of reading from the designated location, the instruction copies
the effective address to the destination. We indicate this computation in Figure 3.7
using the C address operator &S. This instruction can be used to generate point-
ers for later memory references. In addition, it can be used to compactly describe
common arithmetic operations. For example, if register %edx contains value x,
then the instruction leal 7(%edx,%edx,4), %eax will set register %eax to 5x + 7.
Compilers often find clever uses of leal that have nothing to do with effective
address computations. The destination operand must be a register.

178 Chapter 3 Machine-Level Representation of Programs

Instruction Effect Description

leal S, D D ← &S Load effective address

inc D D ← D + 1 Increment
dec D D ← D - 1 Decrement
neg D D ← -D Negate
not D D ← ~D Complement

add S, D D ← D + S Add
sub S, D D ← D - S Subtract
imul S, D D ← D * S Multiply
xor S, D D ← D ^ S Exclusive-or
or S, D D ← D | S Or
and S, D D ← D & S And

sal k, D D ← D << k Left shift
shl k, D D ← D << k Left shift (same as sal)
sar k, D D ← D >>A k Arithmetic right shift
shr k, D D ← D >>L k Logical right shift

Figure 3.7 Integer arithmetic operations. The load effective address (leal) instruction
is commonly used to perform simple arithmetic. The remaining ones are more standard
unary or binary operations. We use the notation >>A and >>L to denote arithmetic
and logical right shift, respectively. Note the nonintuitive ordering of the operands with
ATT-format assembly code.

Practice Problem 3.6
Suppose register %eax holds value x and %ecx holds value y. Fill in the table below
with formulas indicating the value that will be stored in register %edx for each of
the given assembly code instructions:

Instruction Result

leal 6(%eax), %edx

leal (%eax,%ecx), %edx

leal (%eax,%ecx,4), %edx

leal 7(%eax,%eax,8), %edx

leal 0xA(,%ecx,4), %edx

leal 9(%eax,%ecx,2), %edx

3.5.2 Unary and Binary Operations

Operations in the second group are unary operations, with the single operand
serving as both source and destination. This operand can be either a register or

Section 3.5 Arithmetic and Logical Operations 179

a memory location. For example, the instruction incl (%esp) causes the 4-byte
element on the top of the stack to be incremented. This syntax is reminiscent of
the C increment (++) and decrement (--) operators.

The third group consists of binary operations, where the second operand
is used as both a source and a destination. This syntax is reminiscent of the C
assignment operators, such as x += y. Observe, however, that the source operand
is given first and the destination second. This looks peculiar for noncommutative
operations. For example, the instruction subl %eax,%edx decrements register
%edx by the value in %eax. (It helps to read the instruction as “Subtract %eax from
%edx.”) The first operand can be either an immediate value, a register, or a memory
location. The second can be either a register or a memory location. As with the
movl instruction, however, the two operands cannot both be memory locations.

Practice Problem 3.7
Assume the following values are stored at the indicated memory addresses and
registers:

Address Value Register Value

0x100 0xFF %eax 0x100

0x104 0xAB %ecx 0x1

0x108 0x13 %edx 0x3

0x10C 0x11

Fill in the following table showing the effects of the following instructions,
both in terms of the register or memory location that will be updated and the
resulting value:

Instruction Destination Value

addl %ecx,(%eax)

subl %edx,4(%eax)

imull $16,(%eax,%edx,4)

incl 8(%eax)

decl %ecx

subl %edx,%eax

3.5.3 Shift Operations

The final group consists of shift operations, where the shift amount is given first,
and the value to shift is given second. Both arithmetic and logical right shifts are
possible. The shift amount is encoded as a single byte, since only shift amounts
between 0 and 31 are possible (only the low-order 5 bits of the shift amount are
considered). The shift amount is given either as an immediate or in the single-
byte register element %cl. (These instructions are unusual in only allowing this
specific register as operand.) As Figure 3.7 indicates, there are two names for the

180 Chapter 3 Machine-Level Representation of Programs

left shift instruction: sal and shl. Both have the same effect, filling from the right
with zeros. The right shift instructions differ in that sar performs an arithmetic
shift (fill with copies of the sign bit), whereas shr performs a logical shift (fill with
zeros). The destination operand of a shift operation can be either a register or a
memory location. We denote the two different right shift operations in Figure 3.7
as >>A (arithmetic) and >>L (logical).

Practice Problem 3.8
Suppose we want to generate assembly code for the following C function:

int shift_left2_rightn(int x, int n)

{

x <<= 2;

x >>= n;

return x;

}

The code that follows is a portion of the assembly code that performs the
actual shifts and leaves the final value in register %eax. Two key instructions have
been omitted. Parameters x and n are stored at memory locations with offsets 8
and 12, respectively, relative to the address in register %ebp.

1 movl 8(%ebp), %eax Get x

2 x <<= 2

3 movl 12(%ebp), %ecx Get n

4 x >>= n

Fill in the missing instructions, following the annotations on the right. The
right shift should be performed arithmetically.

3.5.4 Discussion

We see that most of the instructions shown in Figure 3.7 can be used for either
unsigned or two’s-complement arithmetic. Only right shifting requires instructions
that differentiate between signed versus unsigned data. This is one of the features
that makes two’s-complement arithmetic the preferred way to implement signed
integer arithmetic.

Figure 3.8 shows an example of a function that performs arithmetic operations
and its translation into assembly code. As before, we have omitted the stack set-
up and completion portions. Function arguments x, y, and z are stored in memory
at offsets 8, 12, and 16 relative to the address in register %ebp, respectively.

The assembly code instructions occur in a different order than in the C source
code. Instructions 2 and 3 compute the expression z*48 by a combination of leal
and shift instructions. Line 5 computes the value of x+y. Line 6 computes the and
of t1 and 0xFFFF. The final multiply is computed by line 7. Since the destination
of the multiply is register %eax, this will be the value returned by the function.

Section 3.5 Arithmetic and Logical Operations 181

(a) C code

1 int arith(int x,

2 int y,

3 int z)

4 {

5 int t1 = x+y;

6 int t2 = z*48;

7 int t3 = t1 & 0xFFFF;

8 int t4 = t2 * t3;

9 return t4;

10 }

(b) Assembly code

x at %ebp+8, y at %ebp+12, z at %ebp+16

1 movl 16(%ebp), %eax z

2 leal (%eax,%eax,2), %eax z*3

3 sall $4, %eax t2 = z*48

4 movl 12(%ebp), %edx y

5 addl 8(%ebp), %edx t1 = x+y

6 andl $65535, %edx t3 = t1&0xFFFF

7 imull %edx, %eax Return t4 = t2*t3

Figure 3.8 C and assembly code for arithmetic routine body. The stack set-up and completion portions
have been omitted.

In the assembly code of Figure 3.8, the sequence of values in register %eax
corresponds to program values z, 3*z, z*48, and t4 (as the return value). In gen-
eral, compilers generate code that uses individual registers for multiple program
values and moves program values among the registers.

Practice Problem 3.9
In the following variant of the function of Figure 3.8(a), the expressions have been
replaced by blanks:

1 int arith(int x,

2 int y,

3 int z)

4 {

5 int t1 = ;

6 int t2 = ;

7 int t3 = ;

8 int t4 = ;

9 return t4;

10 }

The portion of the generated assembly code implementing these expressions is as
follows:

x at %ebp+8, y at %ebp+12, z at %ebp+16

1 movl 12(%ebp), %eax

2 xorl 8(%ebp), %eax

3 sarl $3, %eax

4 notl %eax

5 subl 16(%ebp), %eax

Based on this assembly code, fill in the missing portions of the C code.

182 Chapter 3 Machine-Level Representation of Programs

Practice Problem 3.10
It is common to find assembly code lines of the form

xorl %edx,%edx

in code that was generated from C where no Exclusive-Or operations were
present.

A. Explain the effect of this particular Exclusive-Or instruction and what
useful operation it implements.

B. What would be the more straightforward way to express this operation in
assembly code?

C. Compare the number of bytes to encode these two different implementa-
tions of the same operation.

3.5.5 Special Arithmetic Operations

Figure 3.9 describes instructions that support generating the full 64-bit product of
two 32-bit numbers, as well as integer division.

The imull instruction, a member of the imul instruction class listed in Fig-
ure 3.7, is known as a “two-operand” multiply instruction. It generates a 32-bit
product from two 32-bit operands, implementing the operations *u

32 and *t
32 de-

scribed in Sections 2.3.4 and 2.3.5. Recall that when truncating the product to 32
bits, both unsigned multiply and two’s-complement multiply have the same bit-
level behavior. IA32 also provides two different “one-operand” multiply instruc-
tions to compute the full 64-bit product of two 32-bit values—one for unsigned
(mull), and one for two’s-complement (imull) multiplication. For both of these,
one argument must be in register %eax, and the other is given as the instruction

Instruction Effect Description

imull S R[%edx]:R[%eax] ← S × R[%eax] Signed full multiply
mull S R[%edx]:R[%eax] ← S × R[%eax] Unsigned full multiply

cltd R[%edx]:R[%eax] ← SignExtend(R[%eax]) Convert to quad word

idivl S R[%edx] ← R[%edx]:R[%eax] mod S; Signed divide
R[%eax] ← R[%edx]:R[%eax] ÷ S

divl S R[%edx] ← R[%edx]:R[%eax] mod S; Unsigned divide
R[%eax] ← R[%edx]:R[%eax] ÷ S

Figure 3.9 Special arithmetic operations. These operations provide full 64-bit multi-
plication and division, for both signed and unsigned numbers. The pair of registers %edx
and %eax are viewed as forming a single 64-bit quad word.

Section 3.5 Arithmetic and Logical Operations 183

source operand. The product is then stored in registers %edx (high-order 32 bits)
and %eax (low-order 32 bits). Although the name imull is used for two distinct
multiplication operations, the assembler can tell which one is intended by counting
the number of operands.

As an example, suppose we have signed numbers x and y stored at positions
8 and 12 relative to %ebp, and we want to store their full 64-bit product as 8 bytes
on top of the stack. The code would proceed as follows:

x at %ebp+8, y at %ebp+12

1 movl 12(%ebp), %eax Put y in %eax

2 imull 8(%ebp) Multiply by x

3 movl %eax, (%esp) Store low-order 32 bits

4 movl %edx, 4(%esp) Store high-order 32 bits

Observe that the locations in which we store the two registers are correct for
a little-endian machine—the high-order bits in register %edx are stored at offset
4 relative to the low-order bits in %eax. With the stack growing toward lower
addresses, that means that the low-order bits are at the top of the stack.

Our earlier table of arithmetic operations (Figure 3.7) does not list any divi-
sion or modulus operations. These operations are provided by the single-operand
divide instructions similar to the single-operand multiply instructions. The signed
division instruction idivl takes as dividend the 64-bit quantity in registers %edx
(high-order 32 bits) and %eax (low-order 32 bits). The divisor is given as the in-
struction operand. The instruction stores the quotient in register %eax and the
remainder in register %edx.

As an example, suppose we have signed numbers x and y stored at positions 8
and 12 relative to %ebp, and we want to store values x/y and x mod y on the stack.
gcc generates the following code:

x at %ebp+8, y at %ebp+12

1 movl 8(%ebp), %edx Put x in %edx

2 movl %edx, %eax Copy x to %eax

3 sarl $31, %edx Sign extend x in %edx

4 idivl 12(%ebp) Divide by y

5 movl %eax, 4(%esp) Store x / y

6 movl %edx, (%esp) Store x % y

The move instruction on line 1 and the arithmetic shift on line 3 have the
combined effect of setting register %edx to either all zeros or all ones depending
on the sign of x, while the move instruction on line 2 copies x into %eax. Thus, we
have the combined registers %edx and %eax storing a 64-bit, sign-extended version
of x. Following the idivl instruction, the quotient and remainder are copied to
the top two stack locations (instructions 5 and 6).

184 Chapter 3 Machine-Level Representation of Programs

A more conventional method of setting up the divisor makes use of the cltd1

instruction. This instruction sign extends %eax into %edx. With this instruction, the
code sequence shown above becomes

x at %ebp+8, y at %ebp+12

1 movl 8(%ebp),%eax Load x into %eax

2 cltd Sign extend into %edx

3 idivl 12(%ebp) Divide by y

4 movl %eax, 4(%esp) Store x / y

5 movl %edx, (%esp) Store x % y

We can see that the first two instructions have the same overall effect as the first
three instructions in our earlier code sequence. Different versions of gcc generate
these two different ways of setting up the dividend for integer division.

Unsigned division makes use of the divl instruction. Typically register %edx
is set to 0 beforehand.

Practice Problem 3.11
Modify the assembly code shown for signed division so that it computes the
unsigned quotient and remainder of numbers x and y and stores the results on
the stack.

Practice Problem 3.12
Consider the following C function prototype, where num_t is a data type declared
using typedef:

void store_prod(num_t *dest, unsigned x, num_t y) {

*dest = x*y;

}

gcc generates the following assembly code implementing the body of the compu-
tation:

dest at %ebp+8, x at %ebp+12, y at %ebp+16

1 movl 12(%ebp), %eax

2 movl 20(%ebp), %ecx

3 imull %eax, %ecx

4 mull 16(%ebp)

5 leal (%ecx,%edx), %edx

6 movl 8(%ebp), %ecx

7 movl %eax, (%ecx)

8 movl %edx, 4(%ecx)

1. This instruction is called cdq in the Intel documentation, one of the few cases where the ATT-format
name for an instruction bears no relation to the Intel name.

Section 3.6 Control 185

Observe that this code requires two memory reads to fetch argument y (lines 2
and 4), two multiplies (lines 3 and 4), and two memory writes to store the result
(lines 7 and 8).

A. What data type is num_t?

B. Describe the algorithm used to compute the product and argue that it is
correct.

3.6 Control

So far, we have only considered the behavior of straight-line code, where instruc-
tions follow one another in sequence. Some constructs in C, such as conditionals,
loops, and switches, require conditional execution, where the sequence of opera-
tions that gets performed depends on the outcomes of tests applied to the data.
Machine code provides two basic low-level mechanisms for implementing condi-
tional behavior: it tests data values and then either alters the control flow or the
data flow based on the result of these tests.

Data-dependent control flow is the more general and more common approach
for implementing conditional behavior, and so we will examine this first. Normally,
both statements in C and instructions in machine code are executed sequentially,
in the order they appear in the program. The execution order of a set of machine-
code instructions can be altered with a jump instruction, indicating that control
should pass to some other part of the program, possibly contingent on the result
of some test. The compiler must generate instruction sequences that build upon
this low-level mechanism to implement the control constructs of C.

In our presentation, we first cover the machine-level mechanisms and then
show how the different control constructs of C are implemented with them. We
then return to the use of conditional data transfer to implement data-dependent
behavior.

3.6.1 Condition Codes

In addition to the integer registers, the CPU maintains a set of single-bit condition
code registers describing attributes of the most recent arithmetic or logical opera-
tion. These registers can then be tested to perform conditional branches. The most
useful condition codes are:

CF: Carry Flag. The most recent operation generated a carry out of the most
significant bit. Used to detect overflow for unsigned operations.

ZF: Zero Flag. The most recent operation yielded zero.

SF: Sign Flag. The most recent operation yielded a negative value.

OF: Overflow Flag. The most recent operation caused a two’s-complement
overflow—either negative or positive.

186 Chapter 3 Machine-Level Representation of Programs

Instruction Based on Description

cmp S2, S1 S1 - S2 Compare
cmpb Compare byte
cmpw Compare word
cmpl Compare double word

test S2, S1 S1 & S2 Test

testb Test byte
testw Test word
testl Test double word

Figure 3.10 Comparison and test instructions. These instructions set the condition
codes without updating any other registers.

For example, suppose we used one of the add instructions to perform the
equivalent of the C assignment t=a+b, where variables a, b, and t are integers.
Then the condition codes would be set according to the following C expressions:

CF: (unsigned) t < (unsigned) a Unsigned overflow
ZF: (t == 0) Zero
SF: (t < 0) Negative
OF: (a < 0 == b < 0) && (t < 0 != a < 0) Signed overflow

The leal instruction does not alter any condition codes, since it is intended
to be used in address computations. Otherwise, all of the instructions listed in
Figure 3.7 cause the condition codes to be set. For the logical operations, such as
Xor, the carry and overflow flags are set to 0. For the shift operations, the carry
flag is set to the last bit shifted out, while the overflow flag is set to 0. For reasons
that we will not delve into, the inc and dec instructions set the overflow and zero
flags, but they leave the carry flag unchanged.

In addition to the setting of condition codes by the instructions of Figure 3.7,
there are two instruction classes (having 8, 16, and 32-bit forms) that set condition
codes without altering any other registers; these are listed in Figure 3.10. The
cmp instructions set the condition codes according to the differences of their two
operands. They behave in the same way as the sub instructions, except that they
set the condition codes without updating their destinations. With ATT format,
the operands are listed in reverse order, making the code difficult to read. These
instructions set the zero flag if the two operands are equal. The other flags can
be used to determine ordering relations between the two operands. The test
instructions behave in the same manner as the and instructions, except that they
set the condition codes without altering their destinations. Typically, the same
operand is repeated (e.g., testl %eax,%eax to see whether %eax is negative, zero,
or positive), or one of the operands is a mask indicating which bits should be
tested.

Section 3.6 Control 187

Instruction Synonym Effect Set condition

sete D setz D ← ZF Equal / zero
setne D setnz D ← ~ZF Not equal / not zero

sets D D ← SF Negative
setns D D ← ~SF Nonnegative

setg D setnle D ← ~(SF ^ OF) & ~ZF Greater (signed >)
setge D setnl D ← ~(SF ^ OF) Greater or equal (signed >=)
setl D setnge D ← SF ^ OF Less (signed <)
setle D setng D ← (SF ^ OF) | ZF Less or equal (signed <=)

seta D setnbe D ← ~CF & ~ZF Above (unsigned >)
setae D setnb D ← ~CF Above or equal (unsigned >=)
setb D setnae D ← CF Below (unsigned <)
setbe D setna D ← CF | ZF Below or equal (unsigned <=)

Figure 3.11 The set instructions. Each instruction sets a single byte to 0 or 1 based
on some combination of the condition codes. Some instructions have “synonyms,” i.e.,
alternate names for the same machine instruction.

3.6.2 Accessing the Condition Codes

Rather than reading the condition codes directly, there are three common ways
of using the condition codes: (1) we can set a single byte to 0 or 1 depending
on some combination of the condition codes, (2) we can conditionally jump to
some other part of the program, or (3) we can conditionally transfer data. For the
first case, the instructions described in Figure 3.11 set a single byte to 0 or to 1
depending on some combination of the condition codes. We refer to this entire
class of instructions as the set instructions; they differ from one another based on
which combinations of condition codes they consider, as indicated by the different
suffixes for the instruction names. It is important to recognize that the suffixes for
these instructions denote different conditions and not different operand sizes. For
example, instructions setl and setb denote “set less” and “set below,” not “set
long word” or “set byte.”

A set instruction has either one of the eight single-byte register elements
(Figure 3.2) or a single-byte memory location as its destination, setting this byte
to either 0 or 1. To generate a 32-bit result, we must also clear the high-order 24
bits. A typical instruction sequence to compute the C expression a < b, where a
and b are both of type int, proceeds as follows:

a is in %edx, b is in %eax

1 cmpl %eax, %edx Compare a:b

2 setl %al Set low order byte of %eax to 0 or 1

3 movzbl %al, %eax Set remaining bytes of %eax to 0

The movzbl instruction clears the high-order 3 bytes of %eax.

188 Chapter 3 Machine-Level Representation of Programs

For some of the underlying machine instructions, there are multiple possible
names, which we list as “synonyms.” For example, both setg (for “set greater”)
and setnle (for “set not less or equal”) refer to the same machine instruction.
Compilers and disassemblers make arbitrary choices of which names to use.

Although all arithmetic and logical operations set the condition codes, the de-
scriptions of the different set instructions apply to the case where a comparison
instruction has been executed, setting the condition codes according to the com-
putation t = a-b. More specifically, let a, b, and t be the integers represented in
two’s-complement form by variables a, b, and t, respectively, and so t = a -t

w
b,

where w depends on the sizes associated with a and b.
Consider the sete, or “set when equal” instruction. When a = b, we will

have t = 0, and hence the zero flag indicates equality. Similarly, consider testing
for signed comparison with the setl, or “set when less,” instruction. When no
overflow occurs (indicated by having OF set to 0), we will have a < b when a -t

w
b <

0, indicated by having SF set to 1, and a ≥ b when a -t
w

b ≥ 0, indicated by having
SF set to 0. On the other hand, when overflow occurs, we will have a < b when
a -t

w
b > 0 (positive overflow) and a > b when a -t

w
b < 0 (negative overflow). We

cannot have overflow when a = b. Thus, when OF is set to 1, we will have a < b if
and only if SF is set to 0. Combining these cases, the Exclusive-Or of the overflow
and sign bits provides a test for whether a < b. The other signed comparison tests
are based on other combinations of SF ^ OF and ZF.

For the testing of unsigned comparisons, we now let a and b be the integers
represented in unsigned form by variables a and b. In performing the computation
t = a-b, the carry flag will be set by the cmp instruction when the a − b < 0, and
so the unsigned comparisons use combinations of the carry and zero flags.

It is important to note how machine code distinguishes between signed and
unsigned values. Unlike in C, it does not associate a data type with each program
value. Instead, it mostly uses the same instructions for the two cases, because
many arithmetic operations have the same bit-level behavior for unsigned and
two’s-complement arithmetic. Some circumstances require different instructions
to handle signed and unsigned operations, such as using different versions of
right shifts, division and multiplication instructions, and different combinations
of condition codes.

Practice Problem 3.13
The following C code

int comp(data_t a, data_t b) {

return a COMP b;

}

shows a general comparison between arguments a and b, where we can set the
data type of the arguments by declaring data_t with a typedef declaration, and
we can set the comparison by defining COMP with a #define declaration.

Suppose a is in %edx and b is in %eax. For each of the following instruction
sequences, determine which data types data_t and which comparisons COMP could

Section 3.6 Control 189

cause the compiler to generate this code. (There can be multiple correct answers;
you should list them all.)

A. cmpl %eax, %edx

setl %al

B. cmpw %ax, %dx

setge %al

C. cmpb %al, %dl

setb %al

D. cmpl %eax, %edx

setne %al

Practice Problem 3.14
The following C code

int test(data_t a) {

return a TEST 0;

}

shows a general comparison between argument a and 0, where we can set the
data type of the argument by declaring data_t with a typedef, and the nature
of the comparison by declaring TEST with a #define declaration. For each of the
following instruction sequences, determine which data types data_t and which
comparisons TEST could cause the compiler to generate this code. (There can be
multiple correct answers; list all correct ones.)

A. testl %eax, %eax

setne %al

B. testw %ax, %ax

sete %al

C. testb %al, %al

setg %al

D. testw %ax, %ax

seta %al

3.6.3 Jump Instructions and Their Encodings

Under normal execution, instructions follow each other in the order they are
listed. A jump instruction can cause the execution to switch to a completely
new position in the program. These jump destinations are generally indicated in

190 Chapter 3 Machine-Level Representation of Programs

Instruction Synonym Jump condition Description

jmp Label 1 Direct jump
jmp *Operand 1 Indirect jump

je Label jz ZF Equal / zero
jne Label jnz ~ZF Not equal / not zero

js Label SF Negative
jns Label ~SF Nonnegative

jg Label jnle ~(SF ^ OF) & ~ZF Greater (signed >)
jge Label jnl ~(SF ^ OF) Greater or equal (signed >=)
jl Label jnge SF ^ OF Less (signed <)
jle Label jng (SF ^ OF) | ZF Less or equal (signed <=)

ja Label jnbe ~CF & ~ZF Above (unsigned >)
jae Label jnb ~CF Above or equal (unsigned >=)
jb Label jnae CF Below (unsigned <)
jbe Label jna CF | ZF Below or equal (unsigned <=)

Figure 3.12 The jump instructions. These instructions jump to a labeled destination
when the jump condition holds. Some instructions have “synonyms,” alternate names
for the same machine instruction.

assembly code by a label. Consider the following (very contrived) assembly-code
sequence:

1 movl $0,%eax Set %eax to 0

2 jmp .L1 Goto .L1

3 movl (%eax),%edx Null pointer dereference

4 .L1:

5 popl %edx

The instruction jmp .L1 will cause the program to skip over the movl instruc-
tion and instead resume execution with the popl instruction. In generating the
object-code file, the assembler determines the addresses of all labeled instruc-
tions and encodes the jump targets (the addresses of the destination instructions)
as part of the jump instructions.

Figure 3.12 shows the different jump instructions. The jmp instruction jumps
unconditionally. It can be either a direct jump, where the jump target is encoded
as part of the instruction, or an indirect jump, where the jump target is read from
a register or a memory location. Direct jumps are written in assembly by giving
a label as the jump target, e.g., the label “.L1” in the code shown. Indirect jumps
are written using ‘*’ followed by an operand specifier using one of the formats
described in Section 3.4.1. As examples, the instruction

jmp *%eax

uses the value in register %eax as the jump target, and the instruction

jmp *(%eax)

Section 3.6 Control 191

reads the jump target from memory, using the value in %eax as the read
address.

The remaining jump instructions in the table are conditional—they either
jump or continue executing at the next instruction in the code sequence, depending
on some combination of the condition codes. The names of these instructions
and the conditions under which they jump match those of the set instructions
(see Figure 3.11). As with the set instructions, some of the underlying machine
instructions have multiple names. Conditional jumps can only be direct.

Although we will not concern ourselves with the detailed format of machine
code, understanding how the targets of jump instructions are encoded will become
important when we study linking in Chapter 7. In addition, it helps when inter-
preting the output of a disassembler. In assembly code, jump targets are written
using symbolic labels. The assembler, and later the linker, generate the proper
encodings of the jump targets. There are several different encodings for jumps,
but some of the most commonly used ones are PC relative. That is, they encode
the difference between the address of the target instruction and the address of the
instruction immediately following the jump. These offsets can be encoded using 1,
2, or 4 bytes. A second encoding method is to give an “absolute” address, using 4
bytes to directly specify the target. The assembler and linker select the appropriate
encodings of the jump destinations.

As an example of PC-relative addressing, the following fragment of assembly
code was generated by compiling a file silly.c. It contains two jumps: the jle
instruction on line 1 jumps forward to a higher address, while the jg instruction
on line 8 jumps back to a lower one.

1 jle .L2 if <=, goto dest2

2 .L5: dest1:

3 movl %edx, %eax

4 sarl %eax

5 subl %eax, %edx

6 leal (%edx,%edx,2), %edx

7 testl %edx, %edx

8 jg .L5 if >, goto dest1

9 .L2: dest2:

10 movl %edx, %eax

The disassembled version of the “.o” format generated by the assembler is as
follows:

1 8: 7e 0d jle 17 <silly+0x17> Target = dest2

2 a: 89 d0 mov %edx,%eax dest1:

3 c: d1 f8 sar %eax

4 e: 29 c2 sub %eax,%edx

5 10: 8d 14 52 lea (%edx,%edx,2),%edx

6 13: 85 d2 test %edx,%edx

7 15: 7f f3 jg a <silly+0xa> Target = dest1

8 17: 89 d0 mov %edx,%eax dest2:

192 Chapter 3 Machine-Level Representation of Programs

In the annotations generated by the disassembler on the right, the jump targets
are indicated as 0x17 for the jump instruction on line 1 and 0xa for the jump
instruction on line 7. Looking at the byte encodings of the instructions, however,
we see that the target of the first jump instruction is encoded (in the second byte)
as 0xd (decimal 13). Adding this to 0xa (decimal 10), the address of the following
instruction, we get jump target address 0x17 (decimal 23), the address of the
instruction on line 8.

Similarly, the target of the second jump instruction is encoded as 0xf3 (dec-
imal −13) using a single-byte, two’s-complement representation. Adding this to
0x17 (decimal 23), the address of the instruction on line 8, we get 0xa (decimal
10), the address of the instruction on line 2.

As these examples illustrate, the value of the program counter when perform-
ing PC-relative addressing is the address of the instruction following the jump, not
that of the jump itself. This convention dates back to early implementations, when
the processor would update the program counter as its first step in executing an
instruction.

The following shows the disassembled version of the program after linking:

1 804839c: 7e 0d jle 80483ab <silly+0x17>

2 804839e: 89 d0 mov %edx,%eax

3 80483a0: d1 f8 sar %eax

4 80483a2: 29 c2 sub %eax,%edx

5 80483a4: 8d 14 52 lea (%edx,%edx,2),%edx

6 80483a7: 85 d2 test %edx,%edx

7 80483a9: 7f f3 jg 804839e <silly+0xa>

8 80483ab: 89 d0 mov %edx,%eax

The instructions have been relocated to different addresses, but the encodings
of the jump targets in lines 1 and 7 remain unchanged. By using a PC-relative
encoding of the jump targets, the instructions can be compactly encoded (requiring
just 2 bytes), and the object code can be shifted to different positions in memory
without alteration.

Practice Problem 3.15
In the following excerpts from a disassembled binary, some of the information has
been replaced by Xs. Answer the following questions about these instructions.

A. What is the target of the je instruction below? (You don’t need to know
anything about the call instruction here.)

804828f: 74 05 je XXXXXXX

8048291: e8 1e 00 00 00 call 80482b4

B. What is the target of the jb instruction below?

8048357: 72 e7 jb XXXXXXX

8048359: c6 05 10 a0 04 08 01 movb $0x1,0x804a010

Section 3.6 Control 193

C. What is the address of the mov instruction?

XXXXXXX: 74 12 je 8048391

XXXXXXX: b8 00 00 00 00 mov $0x0,%eax

D. In the code that follows, the jump target is encoded in PC-relative form as a 4-
byte, two’s-complement number. The bytes are listed from least significant to
most, reflecting the little-endian byte ordering of IA32. What is the address
of the jump target?

80482bf: e9 e0 ff ff ff jmp XXXXXXX

80482c4: 90 nop

E. Explain the relation between the annotation on the right and the byte coding
on the left.

80482aa: ff 25 fc 9f 04 08 jmp *0x8049ffc

To implement the control constructs of C via conditional control transfer, the
compiler must use the different types of jump instructions we have just seen. We
will go through the most common constructs, starting from simple conditional
branches, and then consider loops and switch statements.

3.6.4 Translating Conditional Branches

The most general way to translate conditional expressions and statements from C
into machine code is to use combinations of conditional and unconditional jumps.
(As an alternative, we will see in Section 3.6.6 that some conditionals can be
implemented by conditional transfers of data rather than control.) For example,
Figure 3.13(a) shows the C code for a function that computes the absolute value
of the difference of two numbers.2 gcc generates the assembly code shown as
Figure 3.13(c). We have created a version in C, called gotodiff (Figure 3.13(b)),
that more closely follows the control flow of this assembly code. It uses the goto
statement in C, which is similar to the unconditional jump of assembly code. The
statement goto x_ge_y on line 4 causes a jump to the label x_ge_y (since it occurs
when x ≥ y) on line 7, skipping the computation of y-xon line 5. If the test fails, the
program computes the result as y-x and then transfers unconditionally to the end
of the code. Using goto statements is generally considered a bad programming
style, since their use can make code very difficult to read and debug. We use them
in our presentation as a way to construct C programs that describe the control
flow of assembly-code programs. We call this style of programming “goto code.”

The assembly-code implementation first compares the two operands (line 3),
setting the condition codes. If the comparison result indicates that x is greater

2. Actually, it can return a negative value if one of the subtractions overflows. Our interest here is to
demonstrate machine code, not to implement robust code.

194 Chapter 3 Machine-Level Representation of Programs

(a) Original C code

1 int absdiff(int x, int y) {

2 if (x < y)

3 return y - x;

4 else

5 return x - y;

6 }

(b) Equivalent goto version

1 int gotodiff(int x, int y) {

2 int result;

3 if (x >= y)

4 goto x_ge_y;

5 result = y - x;

6 goto done;

7 x_ge_y:

8 result = x - y;

9 done:

10 return result;

11 }

(c) Generated assembly code

x at %ebp+8, y at %ebp+12

1 movl 8(%ebp), %edx Get x

2 movl 12(%ebp), %eax Get y

3 cmpl %eax, %edx Compare x:y

4 jge .L2 if >= goto x_ge_y

5 subl %edx, %eax Compute result = y-x

6 jmp .L3 Goto done

7 .L2: x_ge_y:

8 subl %eax, %edx Compute result = x-y

9 movl %edx, %eax Set result as return value

10 .L3: done: Begin completion code

Figure 3.13 Compilation of conditional statements. C procedure absdiff (part (a))
contains an if-else statement. The generated assembly code is shown (part (c)), along
with a C procedure gotodiff (part (b)) that mimics the control flow of the assembly
code. The stack set-up and completion portions of the assembly code have been omitted.

than or equal to y, it then jumps to a block of code that computes x-y (line 8).
Otherwise, it continues with the execution of code that computes y-x (line 5). In
both cases, the computed result is stored in register %eax, and the program reaches
line 10, at which point it executes the stack completion code (not shown).

The general form of an if-else statement in C is given by the template

if (test-expr)
then-statement

else

else-statement

where test-expr is an integer expression that evaluates either to 0 (interpreted as
meaning “false”) or to a nonzero value (interpreted as meaning “true”). Only one
of the two branch statements (then-statement or else-statement) is executed.

Section 3.6 Control 195

For this general form, the assembly implementation typically adheres to the
following form, where we use C syntax to describe the control flow:

t = test-expr;
if (!t)

goto false;

then-statement
goto done;

false:

else-statement
done:

That is, the compiler generates separate blocks of code for then-statement and
else-statement. It inserts conditional and unconditional branches to make sure the
correct block is executed.

Practice Problem 3.16
When given the C code

1 void cond(int a, int *p)

2 {

3 if (p && a > 0)

4 *p += a;

5 }

gcc generates the following assembly code for the body of the function:

a %ebp+8, p at %ebp+12

1 movl 8(%ebp), %edx

2 movl 12(%ebp), %eax

3 testl %eax, %eax

4 je .L3

5 testl %edx, %edx

6 jle .L3

7 addl %edx, (%eax)

8 .L3:

A. Write a goto version in C that performs the same computation and mimics
the control flow of the assembly code, in the style shown in Figure 3.13(b).
You might find it helpful to first annotate the assembly code as we have done
in our examples.

B. Explain why the assembly code contains two conditional branches, even
though the C code has only one if statement.

196 Chapter 3 Machine-Level Representation of Programs

Practice Problem 3.17
An alternate rule for translating if statements into goto code is as follows:

t = test-expr;
if (t)

goto true;

else-statement
goto done;

true:

then-statement
done:

A. Rewrite the goto version of absdiff based on this alternate rule.

B. Can you think of any reasons for choosing one rule over the other?

Practice Problem 3.18
Starting with C code of the form

1 int test(int x, int y) {

2 int val = ;

3 if () {

4 if ()

5 val = ;

6 else

7 val = ;

8 } else if ()

9 val = ;

10 return val;

11 }

gcc generates the following assembly code:

x at %ebp+8, y at %ebp+12

1 movl 8(%ebp), %eax

2 movl 12(%ebp), %edx

3 cmpl $-3, %eax

4 jge .L2

5 cmpl %edx, %eax

6 jle .L3

7 imull %edx, %eax

8 jmp .L4

9 .L3:

10 leal (%edx,%eax), %eax

11 jmp .L4

12 .L2:

Section 3.6 Control 197

13 cmpl $2, %eax

14 jg .L5

15 xorl %edx, %eax

16 jmp .L4

17 .L5:

18 subl %edx, %eax

19 .L4:

Fill in the missing expressions in the C code. To make the code fit into the
C code template, you will need to undo some of the reordering of computations
done by gcc.

3.6.5 Loops

C provides several looping constructs—namely, do-while, while, and for. No
corresponding instructions exist in machine code. Instead, combinations of condi-
tional tests and jumps are used to implement the effect of loops. Most compilers
generate loop code based on the do-while form of a loop, even though this form
is relatively uncommon in actual programs. Other loops are transformed into do-
while form and then compiled into machine code. We will study the translation
of loops as a progression, starting with do-while and then working toward ones
with more complex implementations.

Do-While Loops

The general form of a do-while statement is as follows:

do

body-statement
while (test-expr);

The effect of the loop is to repeatedly execute body-statement, evaluate test-expr,
and continue the loop if the evaluation result is nonzero. Observe that body-
statement is executed at least once.

This general form can be translated into conditionals and goto statements as
follows:

loop:

body-statement
t = test-expr;
if (t)

goto loop;

That is, on each iteration the program evaluates the body statement and then the
test expression. If the test succeeds, we go back for another iteration.

As an example, Figure 3.14(a) shows an implementation of a routine to com-
pute the factorial of its argument, written n!, with a do-while loop. This function
only computes the proper value for n > 0.

198 Chapter 3 Machine-Level Representation of Programs

(a) C code

1 int fact_do(int n)

2 {

3 int result = 1;

4 do {

5 result *= n;

6 n = n-1;

7 } while (n > 1);

8 return result;

9 }

(c) Corresponding assembly-language code

Argument: n at %ebp+8

Registers: n in %edx, result in %eax

1 movl 8(%ebp), %edx Get n

2 movl $1, %eax Set result = 1

3 .L2: loop:

4 imull %edx, %eax Compute result *= n

5 subl $1, %edx Decrement n

6 cmpl $1, %edx Compare n:1

7 jg .L2 If >, goto loop

Return result

(b) Register usage

Register Variable Initially

%eax result 1
%edx n n

Figure 3.14 Code for do-while version of factorial program. The C code, the generated
assembly code, and a table of register usage is shown.

Practice Problem 3.19
A. What is the maximum value of n for which we can represent n! with a 32-bit
int?

B. What about for a 64-bit long long int?

The assembly code shown in Figure 3.14(c) shows a standard implementation
of a do-while loop. Following the initialization of register %edx to hold n and %eax
to hold result, the program begins looping. It first executes the body of the loop,
consisting here of the updates to variables result and n (lines 4–5). It then tests
whether n > 1, and, if so, it jumps back to the beginning of the loop. We see here
that the conditional jump (line 7) is the key instruction in implementing a loop. It
determines whether to continue iterating or to exit the loop.

Determining which registers are used for which program values can be chal-
lenging, especially with loop code. We have shown such a mapping in Figure 3.14.
In this case, the mapping is fairly simple to determine: we can see n getting loaded
into register %edx on line 1, getting decremented on line 5, and being tested on
line 6. We therefore conclude that this register holds n.

We can see register %eax getting initialized to 1 (line 2), and being updated
by multiplication on line 4. Furthermore, since %eax is used to return the function
value, it is often chosen to hold program values that are returned. We therefore
conclude that %eax corresponds to program value result.

Section 3.6 Control 199

Aside Reverse engineering loops

A key to understanding how the generated assembly code relates to the original source code is to find a
mapping between program values and registers. This task was simple enough for the loop of Figure 3.14,
but it can be much more challenging for more complex programs. The C compiler will often rearrange
the computations, so that some variables in the C code have no counterpart in the machine code, and
new values are introduced into the machine code that do not exist in the source code. Moreover, it will
often try to minimize register usage by mapping multiple program values onto a single register.

The process we described for fact_do works as a general strategy for reverse engineering loops.
Look at how registers are initialized before the loop, updated and tested within the loop, and used
after the loop. Each of these provides a clue that can be combined to solve a puzzle. Be prepared for
surprising transformations, some of which are clearly cases where the compiler was able to optimize
the code, and others where it is hard to explain why the compiler chose that particular strategy. In
our experience, gcc often makes transformations that provide no performance benefit and can even
decrease code performance.

Practice Problem 3.20
For the C code

1 int dw_loop(int x, int y, int n) {

2 do {

3 x += n;

4 y *= n;

5 n--;

6 } while ((n > 0) && (y < n));

7 return x;

8 }

gcc generates the following assembly code:

x at %ebp+8, y at %ebp+12, n at %ebp+16

1 movl 8(%ebp), %eax

2 movl 12(%ebp), %ecx

3 movl 16(%ebp), %edx

4 .L2:

5 addl %edx, %eax

6 imull %edx, %ecx

7 subl $1, %edx

8 testl %edx, %edx

9 jle .L5

10 cmpl %edx, %ecx

11 jl .L2

12 .L5:

A. Make a table of register usage, similar to the one shown in Figure 3.14(b).

200 Chapter 3 Machine-Level Representation of Programs

B. Identify test-expr and body-statement in the C code, and the corresponding
lines in the assembly code.

C. Add annotations to the assembly code describing the operation of the pro-
gram, similar to those shown in Figure 3.14(b).

While Loops

The general form of a while statement is as follows:

while (test-expr)
body-statement

It differs from do-while in that test-expr is evaluated and the loop is potentially
terminated before the first execution of body-statement. There are a number of
ways to translate a while loop into machine code. One common approach, also
used by gcc, is to transform the code into a do-while loop by using a conditional
branch to skip the first execution of the body if needed:

if (!test-expr)
goto done;

do

body-statement
while (test-expr);

done:

This, in turn, can be transformed into goto code as

t = test-expr;
if (!t)

goto done;

loop:

body-statement
t = test-expr;
if (t)

goto loop;

done:

Using this implementation strategy, the compiler can often optimize the initial
test, for example determining that the test condition will always hold.

As an example, Figure 3.15 shows an implementation of the factorial func-
tion using a while loop (Figure 3.15(a)). This function correctly computes 0!= 1.
The adjacent function fact_while_goto (Figure 3.15(b)) is a C rendition of the
assembly code generated by gcc. Comparing the code generated for fact_while
(Figure 3.15) to that for fact_do (Figure 3.14), we see that they are nearly iden-
tical. The only difference is the initial test (line 3) and the jump around the loop
(line 4). The compiler closely followed our template for converting a while loop
to a do-while loop, and for translating this loop to goto code.

Section 3.6 Control 201

(a) C code

1 int fact_while(int n)

2 {

3 int result = 1;

4 while (n > 1) {

5 result *= n;

6 n = n-1;

7 }

8 return result;

9 }

(b) Equivalent goto version

1 int fact_while_goto(int n)

2 {

3 int result = 1;

4 if (n <= 1)

5 goto done;

6 loop:

7 result *= n;

8 n = n-1;

9 if (n > 1)

10 goto loop;

11 done:

12 return result;

13 }

(c) Corresponding assembly-language code

Argument: n at %ebp+8

Registers: n in %edx, result in %eax

1 movl 8(%ebp), %edx Get n

2 movl $1, %eax Set result = 1

3 cmpl $1, %edx Compare n:1

4 jle .L7 If <=, goto done

5 .L10: loop:

6 imull %edx, %eax Compute result *= n

7 subl $1, %edx Decrement n

8 cmpl $1, %edx Compare n:1

9 jg .L10 If >, goto loop

10 .L7: done:

Return result

Figure 3.15 C and assembly code for while version of factorial. The fact_while_
goto function illustrates the operation of the assembly code version.

Practice Problem 3.21
For the C code

1 int loop_while(int a, int b)

2 {

3 int result = 1;

4 while (a < b) {

5 result *= (a+b);

6 a++;

7 }

8 return result;

9 }

202 Chapter 3 Machine-Level Representation of Programs

gcc generates the following assembly code:

a at %ebp+8, b at %ebp+12

1 movl 8(%ebp), %ecx

2 movl 12(%ebp), %ebx

3 movl $1, %eax

4 cmpl %ebx, %ecx

5 jge .L11

6 leal (%ebx,%ecx), %edx

7 movl $1, %eax

8 .L12:

9 imull %edx, %eax

10 addl $1, %ecx

11 addl $1, %edx

12 cmpl %ecx, %ebx

13 jg .L12

14 .L11:

In generating this code, gcc makes an interesting transformation that, in
effect, introduces a new program variable.

A. Register %edx is initialized on line 6 and updated within the loop on line 11.
Consider this to be a new program variable. Describe how it relates to the
variables in the C code.

B. Create a table of register usage for this function.

C. Annotate the assembly code to describe how it operates.

D. Write a goto version of the function (in C) that mimics how the assembly
code program operates.

Practice Problem 3.22
A function, fun_a, has the following overall structure:

int fun_a(unsigned x) {

int val = 0;

while () {

;

}

return ;

}

The gcc C compiler generates the following assembly code:

x at %ebp+8

1 movl 8(%ebp), %edx

2 movl $0, %eax

3 testl %edx, %edx

Section 3.6 Control 203

4 je .L7

5 .L10:

6 xorl %edx, %eax

7 shrl %edx Shift right by 1

8 jne .L10

9 .L7:

10 andl $1, %eax

Reverse engineer the operation of this code and then do the following:

A. Use the assembly-code version to fill in the missing parts of the C code.

B. Describe in English what this function computes.

For Loops

The general form of a for loop is as follows:

for (init-expr; test-expr; update-expr)
body-statement

The C language standard states (with one exception, highlighted in Problem 3.24)
that the behavior of such a loop is identical to the following code, which uses a
while loop:

init-expr;
while (test-expr) {

body-statement
update-expr;

}

The program first evaluates the initialization expression init-expr. It enters a loop
where it first evaluates the test condition test-expr, exiting if the test fails, then
executes the body of the loop body-statement, and finally evaluates the update
expression update-expr.

The compiled form of this code is based on the transformation from while to
do-while described previously, first giving a do-while form:

init-expr;
if (!test-expr)
goto done;

do {

body-statement
update-expr;

} while (test-expr);
done:

204 Chapter 3 Machine-Level Representation of Programs

This, in turn, can be transformed into goto code as

init-expr;
t = test-expr;
if (!t)

goto done;

loop:

body-statement
update-expr;
t = test-expr;
if (t)

goto loop;

done:

As an example, consider a factorial function written with a for loop:

1 int fact_for(int n)

2 {

3 int i;

4 int result = 1;

5 for (i = 2; i <= n; i++)

6 result *= i;

7 return result;

8 }

As shown, the natural way of writing a factorial function with a for loop is
to multiply factors from 2 up to n, and so this function is quite different from the
code we showed using either a while or a do-while loop.

We can identify the different components of the for loop in this code as
follows:

init-expr i = 2

test-expr i <= n

update-expr i++

body-statement result *= i;

Substituting these components into the template we have shown yields the
following version in goto code:

1 int fact_for_goto(int n)

2 {

3 int i = 2;

4 int result = 1;

5 if (!(i <= n))

6 goto done;

7 loop:

8 result *= i;

9 i++;

Section 3.6 Control 205

10 if (i <= n)

11 goto loop;

12 done:

13 return result;

14 }

Indeed, a close examination of the assembly code produced by gcc closely follows
this template:

Argument: n at %ebp+8

Registers: n in %ecx, i in %edx, result in %eax

1 movl 8(%ebp), %ecx Get n

2 movl $2, %edx Set i to 2 (init)

3 movl $1, %eax Set result to 1

4 cmpl $1, %ecx Compare n:1 (!test)

5 jle .L14 If <=, goto done

6 .L17: loop:

7 imull %edx, %eax Compute result *= i (body)

8 addl $1, %edx Increment i (update)

9 cmpl %edx, %ecx Compare n:i (test)

10 jge .L17 If >=, goto loop

11 .L14: done:

We see from this presentation that all three forms of loops in C—do-while,
while, and for—can be translated by a single strategy, generating code that con-
tains one or more conditional branches. Conditional transfer of control provides
the basic mechanism for translating loops into machine code.

Practice Problem 3.23
A function fun_b has the following overall structure:

int fun_b(unsigned x) {

int val = 0;

int i;

for (; ;) {

}

return val;

}

The gcc C compiler generates the following assembly code:

x at %ebp+8

1 movl 8(%ebp), %ebx

2 movl $0, %eax

3 movl $0, %ecx

4 .L13:

206 Chapter 3 Machine-Level Representation of Programs

5 leal (%eax,%eax), %edx

6 movl %ebx, %eax

7 andl $1, %eax

8 orl %edx, %eax

9 shrl %ebx Shift right by 1

10 addl $1, %ecx

11 cmpl $32, %ecx

12 jne .L13

Reverse engineer the operation of this code and then do the following:

A. Use the assembly-code version to fill in the missing parts of the C code.

B. Describe in English what this function computes.

Practice Problem 3.24
Executing a continue statement in C causes the program to jump to the end of
the current loop iteration. The stated rule for translating a for loop into a while
loop needs some refinement when dealing withcontinue statements. For example,
consider the following code:

/* Example of for loop using a continue statement */

/* Sum even numbers between 0 and 9 */

int sum = 0;

int i;

for (i = 0; i < 10; i++) {

if (i & 1)

continue;

sum += i;

}

A. What would we get if we naively applied our rule for translating the for loop
into a while loop? What would be wrong with this code?

B. How could you replace the continue statement with a goto statement to
ensure that the while loop correctly duplicates the behavior of the for loop?

3.6.6 Conditional Move Instructions

The conventional way to implement conditional operations is through a condi-
tional transfer of control, where the program follows one execution path when
a condition holds and another when it does not. This mechanism is simple and
general, but it can be very inefficient on modern processors.

An alternate strategy is through a conditional transfer of data. This approach
computes both outcomes of a conditional operation, and then selects one based on
whether or not the condition holds. This strategy makes sense only in restricted
cases, but it can then be implemented by a simple conditional move instruction
that is better matched to the performance characteristics of modern processors.

Section 3.6 Control 207

We will examine this strategy and its implementation with more recent versions
of IA32 processors.

Starting with the PentiumPro in 1995, recent generations of IA32 processors
have had conditional move instructions that either do nothing or copy a value
to a register, depending on the values of the condition codes. For years, these
instructions have been largely unused. With its default settings, gcc did not gen-
erate code that used them, because that would prevent backward compatibility,
even though almost all x86 processors manufactured by Intel and its competitors
since 1997 have supported these instructions. More recently, for systems running
on processors that are certain to support conditional moves, such as Intel-based
Apple Macintosh computers (introduced in 2006) and the 64-bit versions of Linux
and Windows, gcc will generate code using conditional moves. By giving special
command-line parameters on other machines, we can indicate to gcc that the tar-
get machine supports conditional move instructions.

As an example, Figure 3.16(a) shows a variant form of the function
absdiff we used in Figure 3.13 to illustrate conditional branching. This version
uses a conditional expression rather than a conditional statement to illustrate
the concepts behind conditional data transfers more clearly, but in fact gcc

(a) Original C code

1 int absdiff(int x, int y) {

2 return x < y ? y-x : x-y;

3 }

(b) Implementation using conditional
assignment

1 int cmovdiff(int x, int y) {

2 int tval = y-x;

3 int rval = x-y;

4 int test = x < y;

5 /* Line below requires

6 single instruction: */

7 if (test) rval = tval;

8 return rval;

9 }

(c) Generated assembly code

x at %ebp+8, y at %ebp+12

1 movl 8(%ebp), %ecx Get x

2 movl 12(%ebp), %edx Get y

3 movl %edx, %ebx Copy y

4 subl %ecx, %ebx Compute y-x

5 movl %ecx, %eax Copy x

6 subl %edx, %eax Compute x-y and set as return value

7 cmpl %edx, %ecx Compare x:y

8 cmovl %ebx, %eax If <, replace return value with y-x

Figure 3.16 Compilation of conditional statements using conditional assignment.
C function absdiff (a) contains a conditional expression. The generated assembly code
is shown (c), along with a C function cmovdiff (b) that mimics the operation of the
assembly code. The stack set-up and completion portions of the assembly code have
been omitted.

208 Chapter 3 Machine-Level Representation of Programs

generates identical code for this version as it does for the version of Figure 3.13. If
we compile this giving gcc the command-line option ‘-march=i686’,3 we generate
the assembly code shown in Figure 3.16(c), having an approximate form shown
by the C function cmovdiff shown in Figure 3.16(b). Studying the C version, we
can see that it computes both y-x and x-y, naming these tval and rval, respec-
tively. It then tests whether x is less than y, and if so, copies tval to rval before
returning rval. The assembly code in Figure 3.16(c) follows the same logic. The
key is that the single cmovl instruction (line 8) of the assembly code implements
the conditional assignment (line 7) of cmovdiff. This instruction has the same
syntax as a mov instruction, except that it only performs the data movement if the
specified condition holds. (The suffix ‘l’ in cmovl stands for “less,” not for “long.”)

To understand why code based on conditional data transfers can outperform
code based on conditional control transfers (as in Figure 3.13), we must understand
something about how modern processors operate. As we will see in Chapters 4
and 5, processors achieve high performance through pipelining, where an instruc-
tion is processed via a sequence of stages, each performing one small portion of
the required operations (e.g., fetching the instruction from memory, determining
the instruction type, reading from memory, performing an arithmetic operation,
writing to memory, and updating the program counter.) This approach achieves
high performance by overlapping the steps of the successive instructions, such
as fetching one instruction while performing the arithmetic operations for a pre-
vious instruction. To do this requires being able to determine the sequence of
instructions to be executed well ahead of time in order to keep the pipeline full
of instructions to be executed. When the machine encounters a conditional jump
(referred to as a “branch”), it often cannot determine yet whether or not the jump
will be followed. Processors employ sophisticated branch prediction logic to try to
guess whether or not each jump instruction will be followed. As long as it can guess
reliably (modern microprocessor designs try to achieve success rates on the order
of 90%), the instruction pipeline will be kept full of instructions. Mispredicting a
jump, on the other hand, requires that the processor discard much of the work it
has already done on future instructions and then begin filling the pipeline with in-
structions starting at the correct location. As we will see, such a misprediction can
incur a serious penalty, say, 20–40 clock cycles of wasted effort, causing a serious
degradation of program performance.

As an example, we ran timings of the absdiff function on an Intel Core i7
processor using both methods of implementing the conditional operation. In a
typical application, the outcome of the test x < y is highly unpredictable, and so
even the most sophisticated branch prediction hardware will guess correctly only
around 50% of the time. In addition, the computations performed in each of the
two code sequences require only a single clock cycle. As a consequence, the branch
misprediction penalty dominates the performance of this function. For the IA32
code with conditional jumps, we found that the function requires around 13 clock

3. In gcc terminology, the Pentium should be considered model “586” and the PentiumPro should be
considered model “686” of the x86 line.

Section 3.6 Control 209

cycles per call when the branching pattern is easily predictable, and around 35
clock cycles per call when the branching pattern is random. From this we can infer
that the branch misprediction penalty is around 44 clock cycles. That means time
required by the function ranges between around 13 and 57 cycles, depending on
whether or not the branch is predicted correctly.

Aside How did you determine this penalty?

Assume the probability of misprediction is p, the time to execute the code without misprediction is TOK,
and the misprediction penalty is TMP. Then the average time to execute the code as a function of p is
Tavg(p) = (1 − p)TOK + p(TOK + TMP) = TOK + pTMP. We are given TOK and Tran, the average time
when p = 0.5, and we want to determine TMP. Substituting into the equation, we get Tran = Tavg(0.5) =
TOK + 0.5TMP, and therefore TMP = 2(Tran − TMP). So, for TOK =13 and Tran =35, we get TMP =44.

On the other hand, the code compiled using conditional moves requires
around 14 clock cycles regardless of the data being tested. The flow of control
does not depend on data, and this makes it easier for the processor to keep its
pipeline full.

Practice Problem 3.25
Running on a Pentium 4, our code required around 16 cycles when the branching
pattern was highly predictable, and around 31 cycles when the pattern was random.

A. What is the approximate miss penalty?

B. How many cycles would the function require when the branch is mispre-
dicted?

Figure 3.17 illustrates some of the conditional move instructions added to the
IA32 instruction set with the introduction of the PentiumPro microprocessor and
supported by most IA32 processors manufactured by Intel and its competitors
since 1997. Each of these instructions has two operands: a source register or mem-
ory location S, and a destination register R. As with the different set (Section 3.6.2)
and jump instructions (Section 3.6.3), the outcome of these instructions depends
on the values of the condition codes. The source value is read from either mem-
ory or the source register, but it is copied to the destination only if the specified
condition holds.

For IA32, the source and destination values can be 16 or 32 bits long. Single-
byte conditional moves are not supported. Unlike the unconditional instructions,
where the operand length is explicitly encoded in the instruction name (e.g., movw
and movl), the assembler can infer the operand length of a conditional move
instruction from the name of the destination register, and so the same instruction
name can be used for all operand lengths.

Unlike conditional jumps, the processor can execute conditional move in-
structions without having to predict the outcome of the test. The processor simply

210 Chapter 3 Machine-Level Representation of Programs

Instruction Synonym Move condition Description

cmove S, R cmovz ZF Equal / zero
cmovne S, R cmovnz ~ZF Not equal / not zero

cmovs S, R SF Negative
cmovns S, R ~SF Nonnegative

cmovg S, R cmovnle ~(SF ^ OF) & ~ZF Greater (signed >)
cmovge S, R cmovnl ~(SF ^ OF) Greater or equal (signed >=)
cmovl S, R cmovnge SF ^ OF Less (signed <)
cmovle S, R cmovng (SF ^ OF) | ZF Less or equal (signed <=)

cmova S, R cmovnbe ~CF & ~ZF Above (unsigned >)
cmovae S, R cmovnb ~CF Above or equal (Unsigned >=)
cmovb S, R cmovnae CF Below (unsigned <)
cmovbe S, R cmovna CF | ZF below or equal (unsigned <=)

Figure 3.17 The conditional move instructions. These instructions copy the source
value S to its destination R when the move condition holds. Some instructions have
“synonyms,” alternate names for the same machine instruction.

reads the source value (possibly from memory), checks the condition code, and
then either updates the destination register or keeps it the same. We will explore
the implementation of conditional moves in Chapter 4.

To understand how conditional operations can be implemented via condi-
tional data transfers, consider the following general form of conditional expression
and assignment:

v = test-expr ? then-expr : else-expr;

With traditional IA32, the compiler generates code having a form shown by the
following abstract code:

if (!test-expr)
goto false;

v = true-expr;
goto done;

false:

v = else-expr;
done:

This code contains two code sequences—one evaluating then-expr and one evalu-
ating else-expr. A combination of conditional and unconditional jumps is used to
ensure that just one of the sequences is evaluated.

Section 3.6 Control 211

For the code based on conditional move, both the then-expr and the else-expr
are evaluated, with the final value chosen based on the evaluation test-expr. This
can be described by the following abstract code:

vt = then-expr;
v = else-expr;
t = test-expr;
if (t) v = vt;

The final statement in this sequence is implemented with a conditional move—
value vt is copied to v only if test condition t holds.

Not all conditional expressions can be compiled using conditional moves.
Most significantly, the abstract code we have shown evaluates both then-expr and
else-expr regardless of the test outcome. If one of those two expressions could
possibly generate an error condition or a side effect, this could lead to invalid
behavior. As an illustration, consider the following C function:

int cread(int *xp) {

return (xp ? *xp : 0);

}

At first, this seems like a good candidate to compile using a conditional move
to read the value designated by pointer xp, as shown in the following assembly
code:

Invalid implementation of function cread

xp in register %edx

1 movl $0, %eax Set 0 as return value

2 testl %edx, %edx Test xp

3 cmovne (%edx), %eax if !0, dereference xp to get return value

This implementation is invalid, however, since the dereferencing of xp by the
cmovne instruction (line 3) occurs even when the test fails, causing a null pointer
dereferencing error. Instead, this code must be compiled using branching code.

A similar case holds when either of the two branches causes a side effect, as
illustrated by the following function:

1 /* Global variable */

2 int lcount = 0;

3 int absdiff_se(int x, int y) {

4 return x < y ? (lcount++, y-x) : x-y;

5 }

This function increments global variable lcount as part of then-expr. Thus,
branching code must be used to ensure this side effect only occurs when the test
condition holds.

Using conditional moves also does not always improve code efficiency. For
example, if either the then-expr or the else-expr evaluation requires a significant

212 Chapter 3 Machine-Level Representation of Programs

computation, then this effort is wasted when the corresponding condition does
not hold. Compilers must take into account the relative performance of wasted
computation versus the potential for performance penalty due to branch mispre-
diction. In truth, they do not really have enough information to make this decision
reliably; for example, they do not know how well the branches will follow pre-
dictable patterns. Our experiments with gcc indicate that it only uses conditional
moves when the two expressions can be computed very easily, for example, with
single add instructions. In our experience, gcc uses conditional control transfers
even in many cases where the cost of branch misprediction would exceed even
more complex computations.

Overall, then, we see that conditional data transfers offer an alternative
strategy to conditional control transfers for implementing conditional operations.
They can only be used in restricted cases, but these cases are fairly common and
provide a much better match to the operation of modern processors.

Practice Problem 3.26
In the following C function, we have left the definition of operation OP incomplete:

#define OP /* Unknown operator */

int arith(int x) {

return x OP 4;

}

When compiled, gcc generates the following assembly code:

Register: x in %edx

1 leal 3(%edx), %eax

2 testl %edx, %edx

3 cmovns %edx, %eax

4 sarl $2, %eax Return value in %eax

A. What operation is OP?

B. Annotate the code to explain how it works.

Practice Problem 3.27
Starting with C code of the form

1 int test(int x, int y) {

2 int val = ;

3 if () {

4 if ()

5 val = ;

6 else

7 val = ;

Section 3.6 Control 213

8 } else if ()

9 val = ;

10 return val;

11 }

gcc, with the command-line setting ‘-march=i686’, generates the following as-
sembly code:

x at %ebp+8, y at %ebp+12

1 movl 8(%ebp), %ebx

2 movl 12(%ebp), %ecx

3 testl %ecx, %ecx

4 jle .L2

5 movl %ebx, %edx

6 subl %ecx, %edx

7 movl %ecx, %eax

8 xorl %ebx, %eax

9 cmpl %ecx, %ebx

10 cmovl %edx, %eax

11 jmp .L4

12 .L2:

13 leal 0(,%ebx,4), %edx

14 leal (%ecx,%ebx), %eax

15 cmpl $-2, %ecx

16 cmovge %edx, %eax

17 .L4:

Fill in the missing expressions in the C code.

3.6.7 Switch Statements

A switch statement provides a multi-way branching capability based on the
value of an integer index. They are particularly useful when dealing with tests
where there can be a large number of possible outcomes. Not only do they make
the C code more readable, they also allow an efficient implementation using a
data structure called a jump table. A jump table is an array where entry i is the
address of a code segment implementing the action the program should take when
the switch index equals i. The code performs an array reference into the jump
table using the switch index to determine the target for a jump instruction. The
advantage of using a jump table over a long sequence of if-else statements is that
the time taken to perform the switch is independent of the number of switch cases.
gcc selects the method of translating a switch statement based on the number of
cases and the sparsity of the case values. Jump tables are used when there are a
number of cases (e.g., four or more) and they span a small range of values.

Figure 3.18(a) shows an example of a C switch statement. This example has a
number of interesting features, including case labels that do not span a contiguous

(a) Switch statement

1 int switch_eg(int x, int n) {

2 int result = x;

3

4 switch (n) {

5

6 case 100:

7 result *= 13;

8 break;

9

10 case 102:

11 result += 10;

12 /* Fall through */

13

14 case 103:

15 result += 11;

16 break;

17

18 case 104:

19 case 106:

20 result *= result;

21 break;

22

23 default:

24 result = 0;

25 }

26

27 return result;

28 }

(b) Translation into extended C

1 int switch_eg_impl(int x, int n) {

2 /* Table of code pointers */

3 static void *jt[7] = {

4 &&loc_A, &&loc_def, &&loc_B,

5 &&loc_C, &&loc_D, &&loc_def,

6 &&loc_D

7 };

8

9 unsigned index = n - 100;

10 int result;

11

12 if (index > 6)

13 goto loc_def;

14

15 /* Multiway branch */

16 goto *jt[index];

17

18 loc_def: /* Default case*/

19 result = 0;

20 goto done;

21

22 loc_C: /* Case 103 */

23 result = x;

24 goto rest;

25

26 loc_A: /* Case 100 */

27 result = x * 13;

28 goto done;

29

30 loc_B: /* Case 102 */

31 result = x + 10;

32 /* Fall through */

33

34 rest: /* Finish case 103 */

35 result += 11;

36 goto done;

37

38 loc_D: /* Cases 104, 106 */

39 result = x * x;

40 /* Fall through */

41

42 done:

43 return result;

44 }

Figure 3.18 Switch statement example with translation into extended C. The translation
shows the structure of jump table jt and how it is accessed. Such tables are supported by gcc
as an extension to the C language.

Section 3.6 Control 215

x at %ebp+8, n at %ebp+12

1 movl 8(%ebp), %edx Get x

2 movl 12(%ebp), %eax Get n

Set up jump table access

3 subl $100, %eax Compute index = n-100

4 cmpl $6, %eax Compare index:6

5 ja .L2 If >, goto loc_def

6 jmp *.L7(,%eax,4) Goto *jt[index]

Default case

7 .L2: loc_def:

8 movl $0, %eax result = 0;

9 jmp .L8 Goto done

Case 103

10 .L5: loc_C:

11 movl %edx, %eax result = x;

12 jmp .L9 Goto rest

Case 100

13 .L3: loc_A:

14 leal (%edx,%edx,2), %eax result = x*3;

15 leal (%edx,%eax,4), %eax result = x+4*result

16 jmp .L8 Goto done

Case 102

17 .L4: loc_B:

18 leal 10(%edx), %eax result = x+10

Fall through

19 .L9: rest:

20 addl $11, %eax result += 11;

21 jmp .L8 Goto done

Cases 104, 106

22 .L6: loc_D

23 movl %edx, %eax result = x

24 imull %edx, %eax result *= x

Fall through

25 .L8: done:

Return result

Figure 3.19 Assembly code for switch statement example in Figure 3.18.

range (there are no labels for cases 101 and 105), cases with multiple labels (cases
104 and 106), and cases that fall through to other cases (case 102) because the code
for the case does not end with a break statement.

Figure 3.19 shows the assembly code generated when compiling switch_eg.
The behavior of this code is shown in C as the procedure switch_eg_impl in
Figure 3.18(b). This code makes use of support provided by gcc for jump tables,

216 Chapter 3 Machine-Level Representation of Programs

as an extension to the C language. The array jt contains seven entries, each of
which is the address of a block of code. These locations are defined by labels in
the code, and indicated in the entries in jt by code pointers, consisting of the labels
prefixed by ‘&&.’ (Recall that the operator & creates a pointer for a data value. In
making this extension, the authors of gcc created a new operator && to create
a pointer for a code location.) We recommend that you study the C procedure
switch_eg_impl and how it relates assembly code version.

Our original C code has cases for values 100, 102–104, and 106, but the switch
variable n can be an arbitrary int. The compiler first shifts the range to between
0 and 6 by subtracting 100 from n, creating a new program variable that we call
index in our C version. It further simplifies the branching possibilities by treating
index as an unsigned value, making use of the fact that negative numbers in a
two’s-complement representation map to large positive numbers in an unsigned
representation. It can therefore test whether index is outside of the range 0–6
by testing whether it is greater than 6. In the C and assembly code, there are
five distinct locations to jump to, based on the value of index. These are: loc_
A (identified in the assembly code as .L3), loc_B (.L4), loc_C (.L5), loc_D (.L6),
and loc_def (.L2), where the latter is the destination for the default case. Each
of these labels identifies a block of code implementing one of the case branches.
In both the C and the assembly code, the program compares index to 6 and jumps
to the code for the default case if it is greater.

The key step in executing a switch statement is to access a code location
through the jump table. This occurs in line 16 in the C code, with a goto statement
that references the jump table jt. This computed goto is supported by gcc as an
extension to the C language. In our assembly-code version, a similar operation
occurs on line 6, where the jmp instruction’s operand is prefixed with ‘*’, indicating
an indirect jump, and the operand specifies a memory location indexed by register
%eax, which holds the value of index. (We will see in Section 3.8 how array
references are translated into machine code.)

Our C code declares the jump table as an array of seven elements, each of
which is a pointer to a code location. These elements span values 0–6 of index,
corresponding to values 100–106 of n. Observe the jump table handles duplicate
cases by simply having the same code label (loc_D) for entries 4 and 6, and it
handles missing cases by using the label for the default case (loc_def) as entries
1 and 5.

In the assembly code, the jump table is indicated by the following declarations,
to which we have added comments:

1 .section .rodata

2 .align 4 Align address to multiple of 4

3 .L7:

4 .long .L3 Case 100: loc_A

5 .long .L2 Case 101: loc_def

6 .long .L4 Case 102: loc_B

7 .long .L5 Case 103: loc_C

Section 3.6 Control 217

8 .long .L6 Case 104: loc_D

9 .long .L2 Case 105: loc_def

10 .long .L6 Case 106: loc_D

These declarations state that within the segment of the object-code file called
“.rodata” (for “Read-Only Data”), there should be a sequence of seven “long”
(4-byte) words, where the value of each word is given by the instruction address
associated with the indicated assembly code labels (e.g., .L3). Label .L7marks the
start of this allocation. The address associated with this label serves as the base
for the indirect jump (line 6).

The different code blocks (C labels loc_A through loc_D and loc_def) im-
plement the different branches of the switch statement. Most of them simply
compute a value for result and then go to the end of the function. Similarly,
the assembly-code blocks compute a value for register %eax and jump to the po-
sition indicated by label .L8 at the end of the function. Only the code for case
labels 102 and 103 do not follow this pattern, to account for the way that case 102
falls through to 103 in the original C code. This is handled in the assembly code
and switch_eg_impl by having separate destinations for the two cases (loc_C
and loc_B in C, .L5 and .L4 in assembly), where both of these blocks then
converge on code that increments result by 11 (labeled rest in C and .L9 in
assembly).

Examining all of this code requires careful study, but the key point is to see
that the use of a jump table allows a very efficient way to implement a multiway
branch. In our case, the program could branch to five distinct locations with a
single jump table reference. Even if we had a switch statement with hundreds of
cases, they could be handled by a single jump table access.

Practice Problem 3.28
In the C function that follows, we have omitted the body of the switch statement.
In the C code, the case labels did not span a contiguous range, and some cases had
multiple labels.

int switch2(int x) {

int result = 0;

switch (x) {

/* Body of switch statement omitted */

}

return result;

}

In compiling the function, gcc generates the assembly code that follows for the
initial part of the procedure and for the jump table. Variable x is initially at offset
8 relative to register %ebp.

218 Chapter 3 Machine-Level Representation of Programs

x at %ebp+8

1 movl 8(%ebp), %eax

Set up jump table access

2 addl $2, %eax

3 cmpl $6, %eax

4 ja .L2

5 jmp *.L8(,%eax,4)

Jump table for switch2

1 .L8:

2 .long .L3

3 .long .L2

4 .long .L4

5 .long .L5

6 .long .L6

7 .long .L6

8 .long .L7

Based on this information, answer the following questions:

A. What were the values of the case labels in the switch statement body?

B. What cases had multiple labels in the C code?

Practice Problem 3.29
For a C function switcher with the general structure

1 int switcher(int a, int b, int c)

2 {

3 int answer;

4 switch(a) {

5 case : /* Case A */

6 c = ;

7 /* Fall through */

8 case : /* Case B */

9 answer = ;

10 break;

11 case : /* Case C */

12 case : /* Case D */

13 answer = ;

14 break;

15 case : /* Case E */

16 answer = ;

17 break;

18 default:

19 answer = ;

20 }

21 return answer;

22 }

gcc generates the assembly code and jump table shown in Figure 3.20.
Fill in the missing parts of the C code. Except for the ordering of case labels

C and D, there is only one way to fit the different cases into the template.

Section 3.7 Procedures 219

a at %ebp+8, b at %ebp+12, c at %ebp+16

1 movl 8(%ebp), %eax

2 cmpl $7, %eax

3 ja .L2

4 jmp *.L7(,%eax,4)

5 .L2:

6 movl 12(%ebp), %eax

7 jmp .L8

8 .L5:

9 movl $4, %eax

10 jmp .L8

11 .L6:

12 movl 12(%ebp), %eax

13 xorl $15, %eax

14 movl %eax, 16(%ebp)

15 .L3:

16 movl 16(%ebp), %eax

17 addl $112, %eax

18 jmp .L8

19 .L4:

20 movl 16(%ebp), %eax

21 addl 12(%ebp), %eax

22 sall $2, %eax

23 .L8:

1 .L7:

2 .long .L3

3 .long .L2

4 .long .L4

5 .long .L2

6 .long .L5

7 .long .L6

8 .long .L2

9 .long .L4

Figure 3.20 Assembly code and jump table for Problem 3.29.

3.7 Procedures

A procedure call involves passing both data (in the form of procedure parame-
ters and return values) and control from one part of a program to another. In
addition, it must allocate space for the local variables of the procedure on entry
and deallocate them on exit. Most machines, including IA32, provide only simple
instructions for transferring control to and from procedures. The passing of data
and the allocation and deallocation of local variables is handled by manipulating
the program stack.

3.7.1 Stack Frame Structure

IA32 programs make use of the program stack to support procedure calls. The
machine uses the stack to pass procedure arguments, to store return information,
to save registers for later restoration, and for local storage. The portion of the stack
allocated for a single procedure call is called a stack frame. Figure 3.21 diagrams
the general structure of a stack frame. The topmost stack frame is delimited by
two pointers, with register %ebp serving as the frame pointer, and register %esp

220 Chapter 3 Machine-Level Representation of Programs

Figure 3.21
Stack frame structure. The
stack is used for passing
arguments, for storing
return information, for
saving registers, and for
local storage.

. . .
. . .

Stack “bottom”

Stack “top”

Argument n

Argument 1

Argument
build area

Return address

Saved registers,
local variables,

and
temporaries

Saved %ebp

�4�4n

�8

Stack pointer
%esp

�4

�4

Frame pointer
%ebp

Earlier frames

Caller’s frame

Current frame

Increasing
address

serving as the stack pointer. The stack pointer can move while the procedure is
executing, and hence most information is accessed relative to the frame pointer.

Suppose procedure P (the caller) calls procedure Q (the callee). The arguments
to Q are contained within the stack frame for P. In addition, when P calls Q,
the return address within P where the program should resume execution when
it returns from Q is pushed onto the stack, forming the end of P’s stack frame. The
stack frame for Q starts with the saved value of the frame pointer (a copy of register
%ebp), followed by copies of any other saved register values.

Section 3.7 Procedures 221

Procedure Q also uses the stack for any local variables that cannot be stored
in registers. This can occur for the following reasons:

. There are not enough registers to hold all of the local data.

. Some of the local variables are arrays or structures and hence must be accessed
by array or structure references.

. The address operator ‘&’ is applied to a local variable, and hence we must be
able to generate an address for it.

In addition, Q uses the stack frame for storing arguments to any procedures it
calls. As illustrated in Figure 3.21, within the called procedure, the first argument
is positioned at offset 8 relative to %ebp, and the remaining arguments (assuming
their data types require no more than 4 bytes) are stored in successive 4-byte
blocks, so that argument i is at offset 4 + 4i relative to %ebp. Larger arguments
(such as structures and larger numeric formats) require larger regions on the stack.

As described earlier, the stack grows toward lower addresses and the stack
pointer %esp points to the top element of the stack. Data can be stored on and
retrieved from the stack using the pushl and popl instructions. Space for data with
no specified initial value can be allocated on the stack by simply decrementing the
stack pointer by an appropriate amount. Similarly, space can be deallocated by
incrementing the stack pointer.

3.7.2 Transferring Control

The instructions supporting procedure calls and returns are shown in the following
table:

Instruction Description

call Label Procedure call
call *Operand Procedure call
leave Prepare stack for return
ret Return from call

The call instruction has a target indicating the address of the instruction
where the called procedure starts. Like jumps, a call can either be direct or indirect.
In assembly code, the target of a direct call is given as a label, while the target of
an indirect call is given by a * followed by an operand specifier using one of the
formats described in Section 3.4.1.

The effect of a call instruction is to push a return address on the stack and
jump to the start of the called procedure. The return address is the address of the
instruction immediately following the call in the program, so that execution will
resume at this location when the called procedure returns. The ret instruction
pops an address off the stack and jumps to this location. The proper use of this
instruction is to have prepared the stack so that the stack pointer points to the
place where the preceding call instruction stored its return address.

222 Chapter 3 Machine-Level Representation of Programs

%eip

%esp

0x080483dc

0xff9bc960

(a) Executing call

%eip

%esp

0x08048394

0xff9bc95c

0x080483e1

(b) After call

%eip

%esp

0x080483e1

0xff9bc960

(c) After ret

Figure 3.22 Illustration of call and ret functions. The call instruction transfers
control to the start of a function, while the ret instruction returns back to the instruction
following the call.

Figure 3.22 illustrates the execution of the call and ret instructions for the
sum and main functions introduced in Section 3.2.2. The following are excerpts of
the disassembled code for the two functions:

Beginning of function sum

1 08048394 <sum>:

2 8048394: 55 push %ebp

. . .

Return from function sum

3 80483a4: c3 ret

. . .

Call to sum from main

4 80483dc: e8 b3 ff ff ff call 8048394 <sum>

5 80483e1: 83 c4 14 add $0x14,%esp

In this code, we can see that the call instruction with address 0x080483dc in
main calls function sum. This status is shown in Figure 3.22(a), with the indicated
values for the stack pointer %esp and the program counter %eip. The effect of
the call is to push the return address 0x080483e1 onto the stack and to jump
to the first instruction in function sum, at address 0x08048394 (Figure 3.22(b)).
The execution of function sum continues until it hits the ret instruction at address
0x080483a4. This instruction pops the value 0x080483e1 from the stack and jumps
to this address, resuming the execution of main just after the call instruction in
sum (Figure 3.22(c)).

The leave instruction can be used to prepare the stack for returning. It is
equivalent to the following code sequence:

1 movl %ebp, %esp Set stack pointer to beginning of frame

2 popl %ebp Restore saved %ebp and set stack ptr to end of caller’s frame

Section 3.7 Procedures 223

Alternatively, this preparation can be performed by an explicit sequence of
move and pop operations. Register %eax is used for returning the value from any
function that returns an integer or pointer.

Practice Problem 3.30
The following code fragment occurs often in the compiled version of library
routines:

1 call next

2 next:

3 popl %eax

A. To what value does register %eax get set?

B. Explain why there is no matching ret instruction to this call.

C. What useful purpose does this code fragment serve?

3.7.3 Register Usage Conventions

The set of program registers acts as a single resource shared by all of the proce-
dures. Although only one procedure can be active at a given time, we must make
sure that when one procedure (the caller) calls another (the callee), the callee
does not overwrite some register value that the caller planned to use later. For
this reason, IA32 adopts a uniform set of conventions for register usage that must
be respected by all procedures, including those in program libraries.

By convention, registers %eax, %edx, and %ecx are classified as caller-save
registers. When procedure Q is called by P, it can overwrite these registers without
destroying any data required by P. On the other hand, registers %ebx, %esi, and
%edi are classified as callee-save registers. This means that Qmust save the values
of any of these registers on the stack before overwriting them, and restore them
before returning, because P (or some higher-level procedure) may need these
values for its future computations. In addition, registers %ebp and %esp must be
maintained according to the conventions described here.

As an example, consider the following code:

1 int P(int x)

2 {

3 int y = x*x;

4 int z = Q(y);

5 return y + z;

6 }

224 Chapter 3 Machine-Level Representation of Programs

Procedure P computes y before calling Q, but it must also ensure that the value
of y is available after Q returns. It can do this by one of two means:

. It can store the value of y in its own stack frame before calling Q; when Q
returns, procedure P can then retrieve the value of y from the stack. In other
words, P, the caller, saves the value.

. It can store the value of y in a callee-save register. If Q, or any procedure
called by Q, wants to use this register, it must save the register value in its
stack frame and restore the value before it returns (in other words, the callee
saves the value). When Q returns to P, the value of y will be in the callee-save
register, either because the register was never altered or because it was saved
and restored.

Either convention can be made to work, as long as there is agreement as to which
function is responsible for saving which value. IA32 follows both approaches,
partitioning the registers into one set that is caller-save, and another set that is
callee-save.

Practice Problem 3.31
The following code sequence occurs right near the beginning of the assembly code
generated by gcc for a C procedure:

1 subl $12, %esp

2 movl %ebx, (%esp)

3 movl %esi, 4(%esp)

4 movl %edi, 8(%esp)

5 movl 8(%ebp), %ebx

6 movl 12(%ebp), %edi

7 movl (%ebx), %esi

8 movl (%edi), %eax

9 movl 16(%ebp), %edx

10 movl (%edx), %ecx

We see that just three registers (%ebx, %esi, and %edi) are saved on the stack
(lines 2–4). The program modifies these and three other registers (%eax, %ecx, and
%edx). At the end of the procedure, the values of registers %edi, %esi, and %ebx
are restored (not shown), while the other three are left in their modified states.

Explain this apparent inconsistency in the saving and restoring of register
states.

3.7.4 Procedure Example

As an example, consider the C functions defined in Figure 3.23, where function
caller includes a call to function swap_add. Figure 3.24 shows the stack frame
structure both just before caller calls function swap_add and while swap_add

Section 3.7 Procedures 225

1 int swap_add(int *xp, int *yp)

2 {

3 int x = *xp;

4 int y = *yp;

5

6 *xp = y;

7 *yp = x;

8 return x + y;

9 }

10

11 int caller()

12 {

13 int arg1 = 534;

14 int arg2 = 1057;

15 int sum = swap_add(&arg1, &arg2);

16 int diff = arg1 - arg2;

17

18 return sum * diff;

19 }

Figure 3.23 Example of procedure definition and call.

Saved %ebp

arg1

arg2

+12

+8

+4

0

+4

0

0

–4

–8

Unused

Stack frame
for caller

Just before call
to swap_add

Frame pointer
%ebp

Frame pointer %ebp

Stack pointer %esp

Stack frame
for swap_add

%esp

Stack pointer

&arg2

&arg1

Saved %ebp

arg1

arg2

Return address

Saved %ebp

Saved %ebx

Unused

In body of
swap_add

&arg2

&arg1

Figure 3.24 Stack frames for caller and swap_add. Procedure swap_add retrieves
its arguments from the stack frame for caller.

is running. Some of the instructions access stack locations relative to the stack
pointer %espwhile others access locations relative to the base pointer %ebp. These
offsets are identified by the lines shown relative to the two pointers.

226 Chapter 3 Machine-Level Representation of Programs

New to C? Passing parameters to a function

Some languages, such as Pascal, provide two different ways to pass parameters to procedures—by
value, where the caller provides the actual parameter value, and by reference, where the caller provides
a pointer to the value. In C, all parameters are passed by value, but we can mimic the effect of a reference
parameter by explicitly generating a pointer to a value and passing this pointer to a procedure. We can
see this with the call by caller to swap_add (Figure 3.23). By passing pointers to arg1 and arg2, caller
provides a way for swap_add to modify these values.

One of the ways in which C++ extends C is the inclusion of reference parameters.

The stack frame for caller includes storage for local variables arg1 and arg2,
at positions −4 and −8 relative to the frame pointer. These variables must be
stored on the stack, since the code must associate an address with them. The
following assembly code from the compiled version of caller shows how it calls
swap_add:

1 caller:

2 pushl %ebp Save old %ebp

3 movl %esp, %ebp Set %ebp as frame pointer

4 subl $24, %esp Allocate 24 bytes on stack

5 movl $534, -4(%ebp) Set arg1 to 534

6 movl $1057, -8(%ebp) Set arg2 to 1057

7 leal -8(%ebp), %eax Compute &arg2

8 movl %eax, 4(%esp) Store on stack

9 leal -4(%ebp), %eax Compute &arg1

10 movl %eax, (%esp) Store on stack

11 call swap_add Call the swap_add function

This code saves a copy of %ebp and sets %ebp to the beginning of the stack frame
(lines 2–3). It then allocates 24 bytes on the stack by decrementing the stack
pointer (recall that the stack grows toward lower addresses). It initializes arg1
and arg2 to 534 and 1057, respectively (lines 5–6), and computes the values of
&arg2 and &arg1 and stores these on the stack to form the arguments to swap_
add (lines 7–10). It stores these arguments relative to the stack pointer, at offsets
0 and +4 for later access by swap_add. It then calls swap_add. Of the 24 bytes
allocated for the stack frame, 8 are used for the local variables, 8 are used for
passing parameters to swap_add, and 8 are not used for anything.

Aside Why does gcc allocate space that never gets used?

We see that the code generated by gcc for caller allocates 24 bytes on the stack even though it only
makes use of 16 of them. We will see many examples of this apparent wastefulness. gcc adheres to
an x86 programming guideline that the total stack space used by the function should be a multiple of
16 bytes. Including the 4 bytes for the saved value of %ebp and the 4 bytes for the return address, caller
uses a total of 32 bytes. The motivation for this convention is to ensure a proper alignment for accessing
data. We will explain the reason for having alignment conventions and how they are implemented in
Section 3.9.3.

Section 3.7 Procedures 227

The compiled code for swap_add has three parts: the “setup,” where the stack
frame is initialized; the “body,” where the actual computation of the procedure is
performed; and the “finish,” where the stack state is restored and the procedure
returns.

The following is the setup code for swap_add. Recall that before reaching this
part of the code, the call instruction will have pushed the return address onto the
stack.

1 swap_add:

2 pushl %ebp Save old %ebp

3 movl %esp, %ebp Set %ebp as frame pointer

4 pushl %ebx Save %ebx

Function swap_add requires register %ebx for temporary storage. Since this is
a callee-save register, it pushes the old value onto the stack as part of the stack
frame setup. At this point, the state of the stack is as shown on the right-hand side
of Figure 3.24. Register %ebp has been shifted to serve as the frame pointer for
swap_add.

The following is the body code for swap_add:

5 movl 8(%ebp), %edx Get xp

6 movl 12(%ebp), %ecx Get yp

7 movl (%edx), %ebx Get x

8 movl (%ecx), %eax Get y

9 movl %eax, (%edx) Store y at xp

10 movl %ebx, (%ecx) Store x at yp

11 addl %ebx, %eax Return value = x+y

This code retrieves its arguments from the stack frame for caller. Since the frame
pointer has shifted, the locations of these arguments has shifted from positions +4
and 0 relative to the old value of %esp to positions +12 and +8 relative to new value
of %ebp. The sum of variables x and y is stored in register %eax to be passed as the
returned value.

The following is the finishing code for swap_add:

12 popl %ebx Restore %ebx

13 popl %ebp Restore %ebp

14 ret Return

This code restores the values of registers %ebx and %ebp, while also resetting
the stack pointer so that it points to the stored return address, so that the ret
instruction transfers control back to caller.

The following code in caller comes immediately after the instruction calling
swap_add:

12 movl -4(%ebp), %edx

13 subl -8(%ebp), %edx

14 imull %edx, %eax

15 leave

16 ret

228 Chapter 3 Machine-Level Representation of Programs

This code retrieves the values of arg1 and arg2 from the stack in order to compute
diff, and uses register %eax as the return value from swap_add. Observe the use of
the leave instruction to reset both the stack and the frame pointer prior to return.
We have seen in our code examples that the code generated by gcc sometimes uses
a leave instruction to deallocate a stack frame, and sometimes it uses one or two
popl instructions. Either approach is acceptable, and the guidelines from Intel and
AMD as to which is preferable change over time.

We can see from this example that the compiler generates code to manage the
stack structure according to a simple set of conventions. Arguments are passed
to a function on the stack, where they can be retrieved using positive offsets
(+8, +12, . . .) relative to %ebp. Space can be allocated on the stack either by
using push instructions or by subtracting offsets from the stack pointer. Before
returning, a function must restore the stack to its original condition by restoring
any callee-saved registers and %ebp, and by resetting %esp so that it points to
the return address. It is important for all procedures to follow a consistent set
of conventions for setting up and restoring the stack in order for the program to
execute properly.

Practice Problem 3.32
A C function fun has the following code body:

*p = d;

return x-c;

The IA32 code implementing this body is as follows:

1 movsbl 12(%ebp),%edx

2 movl 16(%ebp), %eax

3 movl %edx, (%eax)

4 movswl 8(%ebp),%eax

5 movl 20(%ebp), %edx

6 subl %eax, %edx

7 movl %edx, %eax

Write a prototype for function fun, showing the types and ordering of the
arguments p, d, x, and c.

Practice Problem 3.33
Given the C function

1 int proc(void)

2 {

3 int x,y;

4 scanf("%x %x", &y, &x);

5 return x-y;

6 }

Section 3.7 Procedures 229

gcc generates the following assembly code:

1 proc:

2 pushl %ebp

3 movl %esp, %ebp

4 subl $40, %esp

5 leal -4(%ebp), %eax

6 movl %eax, 8(%esp)

7 leal -8(%ebp), %eax

8 movl %eax, 4(%esp)

9 movl $.LC0, (%esp) Pointer to string "%x %x"

10 call scanf

Diagram stack frame at this point

11 movl -4(%ebp), %eax

12 subl -8(%ebp), %eax

13 leave

14 ret

Assume that procedure proc starts executing with the following register val-
ues:

Register Value

%esp 0x800040

%ebp 0x800060

Suppose proc calls scanf (line 10), and that scanf reads values 0x46 and
0x53 from the standard input. Assume that the string “%x %x” is stored at memory
location 0x300070.

A. What value does %ebp get set to on line 3?

B. What value does %esp get set to on line 4?

C. At what addresses are local variables x and y stored?

D. Draw a diagram of the stack frame for proc right after scanf returns. Include
as much information as you can about the addresses and the contents of the
stack frame elements.

E. Indicate the regions of the stack frame that are not used by proc.

3.7.5 Recursive Procedures

The stack and linkage conventions described in the previous section allow pro-
cedures to call themselves recursively. Since each call has its own private space
on the stack, the local variables of the multiple outstanding calls do not interfere
with one another. Furthermore, the stack discipline naturally provides the proper
policy for allocating local storage when the procedure is called and deallocating
it when it returns.

230 Chapter 3 Machine-Level Representation of Programs

1 int rfact(int n)

2 {

3 int result;

4 if (n <= 1)

5 result = 1;

6 else

7 result = n * rfact(n-1);

8 return result;

9 }

Figure 3.25 C code for recursive factorial program.

Figure 3.25 shows the C code for a recursive factorial function. The assembly
code generated by gcc is shown in Figure 3.26. Let us examine how the machine
code will operate when called with argument n. The set-up code (lines 2– 5) creates
a stack frame containing the old version of %ebp, the saved value for callee-save
register %ebx, and 4 bytes to hold the argument when it calls itself recursively, as
illustrated in Figure 3.27. It uses register %ebx to save a copy of n (line 6). It sets the
return value in register %eax to 1 (line 7) in anticipation of the case where n ≤ 1,
in which event it will jump to the completion code.

For the recursive case, it computes n − 1, stores it on the stack, and calls itself
(lines 10–12). Upon completion of the code, we can assume (1) register %eax holds

Argument: n at %ebp+8

Registers: n in %ebx, result in %eax

1 rfact:

2 pushl %ebp Save old %ebp

3 movl %esp, %ebp Set %ebp as frame pointer

4 pushl %ebx Save callee save register %ebx

5 subl $4, %esp Allocate 4 bytes on stack

6 movl 8(%ebp), %ebx Get n

7 movl $1, %eax result = 1

8 cmpl $1, %ebx Compare n:1

9 jle .L53 If <=, goto done

10 leal -1(%ebx), %eax Compute n-1

11 movl %eax, (%esp) Store at top of stack

12 call rfact Call rfact(n-1)

13 imull %ebx, %eax Compute result = return value * n

14 .L53: done:

15 addl $4, %esp Deallocate 4 bytes from stack

16 popl %ebx Restore %ebx

17 popl %ebp Restore %ebp

18 ret Return result

Figure 3.26 Assembly code for the recursive factorial program in Figure 3.25.

Section 3.7 Procedures 231

Figure 3.27
Stack frame for recursive
factorial function. The
state of the frame is shown
just before the recursive
call. +8

+4

0

Stack frame
for calling
procedure

Frame pointer
%ebp

Stack frame
for rfact

n

Return address

Saved %ebp

Saved %ebx

n-1
Stack pointer
%esp

the value of (n − 1)! and (2) callee-save register %ebx holds the parameter n. It
therefore multiplies these two quantities (line 13) to generate the return value of
the function.

For both cases—the terminal condition and the recursive call—the code pro-
ceeds to the completion section (lines 15–17) to restore the stack and callee-saved
register, and then it returns.

We can see that calling a function recursively proceeds just like any other
function call. Our stack discipline provides a mechanism where each invocation
of a function has its own private storage for state information (saved values of
the return location, frame pointer, and callee-save registers). If need be, it can
also provide storage for local variables. The stack discipline of allocation and
deallocation naturally matches the call-return ordering of functions. This method
of implementing function calls and returns even works for more complex patterns,
including mutual recursion (for example, when procedure P calls Q, which in turn
calls P).

Practice Problem 3.34
For a C function having the general structure

int rfun(unsigned x) {

if ()

return ;

unsigned nx = ;

int rv = rfun(nx);

return ;

}

gcc generates the following assembly code (with the setup and completion code
omitted):

1 movl 8(%ebp), %ebx

2 movl $0, %eax

3 testl %ebx, %ebx

4 je .L3

232 Chapter 3 Machine-Level Representation of Programs

5 movl %ebx, %eax

6 shrl %eax Shift right by 1

7 movl %eax, (%esp)

8 call rfun

9 movl %ebx, %edx

10 andl $1, %edx

11 leal (%edx,%eax), %eax

12 .L3:

A. What value does rfun store in the callee-save register %ebx?

B. Fill in the missing expressions in the C code shown above.

C. Describe in English what function this code computes.

3.8 Array Allocation and Access

Arrays in C are one means of aggregating scalar data into larger data types. C
uses a particularly simple implementation of arrays, and hence the translation
into machine code is fairly straightforward. One unusual feature of C is that we
can generate pointers to elements within arrays and perform arithmetic with these
pointers. These are translated into address computations in machine code.

Optimizing compilers are particularly good at simplifying the address compu-
tations used by array indexing. This can make the correspondence between the C
code and its translation into machine code somewhat difficult to decipher.

3.8.1 Basic Principles

For data type T and integer constant N , the declaration

T A[N];

has two effects. First, it allocates a contiguous region of L . N bytes in memory,
where L is the size (in bytes) of data type T . Let us denote the starting location
as xA. Second, it introduces an identifier A that can be used as a pointer to the
beginning of the array. The value of this pointer will be xA. The array elements can
be accessed using an integer index ranging between 0 and N−1. Array element i

will be stored at address xA + L . i.
As examples, consider the following declarations:

char A[12];

char *B[8];

double C[6];

double *D[5];

Section 3.8 Array Allocation and Access 233

These declarations will generate arrays with the following parameters:

Array Element size Total size Start address Element i

A 1 12 xA xA + i

B 4 32 xB xB + 4i

C 8 48 xC xC + 8i

D 4 20 xD xD + 4i

Array A consists of 12 single-byte (char) elements. Array C consists of six
double-precision floating-point values, each requiring 8 bytes. B and D are both
arrays of pointers, and hence the array elements are 4 bytes each.

The memory referencing instructions of IA32 are designed to simplify array
access. For example, suppose E is an array of int’s, and we wish to evaluate E[i],
where the address of E is stored in register %edx and i is stored in register %ecx.
Then the instruction

movl (%edx,%ecx,4),%eax

will perform the address computation xE + 4i, read that memory location, and
copy the result to register %eax. The allowed scaling factors of 1, 2, 4, and 8 cover
the sizes of the common primitive data types.

Practice Problem 3.35
Consider the following declarations:

short S[7];

short *T[3];

short **U[6];

long double V[8];

long double *W[4];

Fill in the following table describing the element size, the total size, and the
address of element i for each of these arrays.

Array Element size Total size Start address Element i

S xS

T xT

U xU

V xV

W xW

3.8.2 Pointer Arithmetic

C allows arithmetic on pointers, where the computed value is scaled according to
the size of the data type referenced by the pointer. That is, if p is a pointer to data

234 Chapter 3 Machine-Level Representation of Programs

of type T , and the value of p is xp, then the expression p+i has value xp + L . i,
where L is the size of data type T .

The unary operators & and * allow the generation and dereferencing of point-
ers. That is, for an expression Expr denoting some object, &Expr is a pointer giving
the address of the object. For an expression AExpr denoting an address, *AExpr
gives the value at that address. The expressions Expr and *&Expr are therefore
equivalent. The array subscripting operation can be applied to both arrays and
pointers. The array reference A[i] is identical to the expression *(A+i). It com-
putes the address of the ith array element and then accesses this memory location.

Expanding on our earlier example, suppose the starting address of integer
array E and integer index i are stored in registers %edx and %ecx, respectively.
The following are some expressions involving E. We also show an assembly-code
implementation of each expression, with the result being stored in register %eax.

Expression Type Value Assembly code

E int * xE movl %edx,%eax

E[0] int M[xE] movl (%edx),%eax

E[i] int M[xE + 4i] movl (%edx,%ecx,4),%eax

&E[2] int * xE + 8 leal 8(%edx),%eax

E+i-1 int * xE + 4i − 4 leal -4(%edx,%ecx,4),%eax

*(E+i-3) int * M[xE + 4i − 12] movl -12(%edx,%ecx,4),%eax

&E[i]-E int i movl %ecx,%eax

In these examples, the leal instruction is used to generate an address, while movl
is used to reference memory (except in the first and last cases, where the former
copies an address and the latter copies the index). The final example shows that
one can compute the difference of two pointers within the same data structure,
with the result divided by the size of the data type.

Practice Problem 3.36
Suppose the address of short integer array S and integer index i are stored in
registers %edx and %ecx, respectively. For each of the following expressions, give
its type, a formula for its value, and an assembly code implementation. The result
should be stored in register %eax if it is a pointer and register element %ax if it is
a short integer.

Expression Type Value Assembly code

S+1

S[3]

&S[i]

S[4*i+1]

S+i-5

Section 3.8 Array Allocation and Access 235

3.8.3 Nested Arrays

The general principles of array allocation and referencing hold even when we
create arrays of arrays. For example, the declaration

int A[5][3];

is equivalent to the declaration

typedef int row3_t[3];

row3_t A[5];

Data type row3_t is defined to be an array of three integers. Array A contains five
such elements, each requiring 12 bytes to store the three integers. The total array
size is then 4 . 5 . 3 = 60 bytes.

Array A can also be viewed as a two-dimensional array with five rows and
three columns, referenced as A[0][0] through A[4][2]. The array elements are
ordered in memory in “row major” order, meaning all elements of row 0, which
can be written A[0], followed by all elements of row 1 (A[1]), and so on.

Row Element Address

A[0] A[0][0] xA

A[0][1] xA + 4
A[0][2] xA + 8

A[1] A[1][0] xA + 12
A[1][1] xA + 16
A[1][2] xA + 20

A[2] A[2][0] xA + 24
A[2][1] xA + 28
A[2][2] xA + 32

A[3] A[3][0] xA + 36
A[3][1] xA + 40
A[3][2] xA + 44

A[4] A[4][0] xA + 48
A[4][1] xA + 52
A[4][2] xA + 56

This ordering is a consequence of our nested declaration. Viewing A as an array of
five elements, each of which is an array of three int’s, we first have A[0], followed
by A[1], and so on.

To access elements of multidimensional arrays, the compiler generates code to
compute the offset of the desired element and then uses one of the mov instructions
with the start of the array as the base address and the (possibly scaled) offset as
an index. In general, for an array declared as

T D[R][C];

236 Chapter 3 Machine-Level Representation of Programs

array element D[i][j] is at memory address

&D[i][j]= xD + L(C . i + j), (3.1)

where L is the size of data type T in bytes. As an example, consider the 5 × 3 integer
array A defined earlier. Suppose xA, i, and j are at offsets 8, 12, and 16 relative to
%ebp, respectively. Then array element A[i][j] can be copied to register %eax by
the following code:

A at %ebp+8, i at %ebp+12,j at %ebp+16

1 movl 12(%ebp), %eax Get i

2 leal (%eax,%eax,2), %eax Compute 3*i

3 movl 16(%ebp), %edx Get j

4 sall $2, %edx Compute j*4

5 addl 8(%ebp), %edx Compute xA + 4j

6 movl (%edx,%eax,4), %eax Read from M[xA + 4j + 12i]

As can be seen, this code computes the element’s address as xA + 4j + 12i =
xA + 4(3i + j) using a combination of shifting, adding, and scaling to avoid more
costly multiplication instructions.

Practice Problem 3.37
Consider the following source code, where M and N are constants declared with
#define:

1 int mat1[M][N];

2 int mat2[N][M];

3

4 int sum_element(int i, int j) {

5 return mat1[i][j] + mat2[j][i];

6 }

In compiling this program, gcc generates the following assembly code:

i at %ebp+8, j at %ebp+12

1 movl 8(%ebp), %ecx

2 movl 12(%ebp), %edx

3 leal 0(,%ecx,8), %eax

4 subl %ecx, %eax

5 addl %edx, %eax

6 leal (%edx,%edx,4), %edx

7 addl %ecx, %edx

8 movl mat1(,%eax,4), %eax

9 addl mat2(,%edx,4), %eax

Use your reverse engineering skills to determine the values of M and N based on
this assembly code.

Section 3.8 Array Allocation and Access 237

3.8.4 Fixed-Size Arrays

The C compiler is able to make many optimizations for code operating on multi-
dimensional arrays of fixed size. For example, suppose we declare data type fix_
matrix to be 16 × 16 arrays of integers as follows:

1 #define N 16

2 typedef int fix_matrix[N][N];

(This example illustrates a good coding practice. Whenever a program uses some
constant as an array dimension or buffer size, it is best to associate a name with
it via a #define declaration, and then use this name consistently, rather than the
numeric value. That way, if an occasion ever arises to change the value, it can be
done by simply modifying the #define declaration.) The code in Figure 3.28(a)
computes element i, k of the product of arrays A and B, according to the formula∑

0≤j<N ai,j
. bj,k. The C compiler generates code that we then recoded into C,

shown as function fix_prod_ele_opt in Figure 3.28(b). This code contains a
number of clever optimizations. It recognizes that the loop will access just the
elements of row i of array A, and so it creates a local pointer variable, which
we have named Arow, to provide direct access to row i of the array. Arow is
initialized to &A[i][0], and so array element A[i][j] can be accessed as Arow[j].
It also recognizes that the loop will access the elements of array B as B[0][k],
B[1][k], . . . , B[15][k] in sequence. These elements occupy positions in memory
starting with the address of array element B[0][k] and spaced 64 bytes apart.
The program can therefore use a pointer variable Bptr to access these successive
locations. In C, this pointer is shown as being incremented by N (16), although in
fact the actual address is incremented by 4 . 16 = 64.

The following is the actual assembly code for the loop. We see that four
variables are maintained in registers within the loop: Arow, Bptr, j, and result.

Registers: Arow in %esi, Bptr in %ecx, j in %edx, result in %ebx

1 .L6: loop:

2 movl (%ecx), %eax Get *Bptr

3 imull (%esi,%edx,4), %eax Multiply by Arow[j]

4 addl %eax, %ebx Add to result

5 addl $1, %edx Increment j

6 addl $64, %ecx Add 64 to Bptr

7 cmpl $16, %edx Compare j:16

8 jne .L6 If !=, goto loop

As can be seen, register %ecx is incremented by 64 within the loop (line 6).
Machine code considers every pointer to be a byte address, and so in compiling
pointer arithmetic, it must scale every increment by the size of the underlying data
type.

238 Chapter 3 Machine-Level Representation of Programs

Practice Problem 3.38
The following C code sets the diagonal elements of one of our fixed-size arrays to
val:

1 /* Set all diagonal elements to val */

2 void fix_set_diag(fix_matrix A, int val) {

3 int i;

4 for (i = 0; i < N; i++)

5 A[i][i] = val;

6 }

When compiled, gcc generates the following assembly code:

A at %ebp+8, val at %ebp+12

1 movl 8(%ebp), %ecx

2 movl 12(%ebp), %edx

3 movl $0, %eax

4 .L14:

5 movl %edx, (%ecx,%eax)

6 addl $68, %eax

7 cmpl $1088, %eax

8 jne .L14

Create a C-code program fix_set_diag_opt that uses optimizations similar
to those in the assembly code, in the same style as the code in Figure 3.28(b). Use
expressions involving the parameter N rather than integer constants, so that your
code will work correctly if N is redefined.

3.8.5 Variable-Size Arrays

Historically, C only supported multidimensional arrays where the sizes (with the
possible exception of the first dimension) could be determined at compile time.
Programmers requiring variable-sized arrays had to allocate storage for these
arrays using functions such as malloc or calloc, and had to explicitly encode
the mapping of multidimensional arrays into single-dimension ones via row-major
indexing, as expressed in Equation 3.1. ISO C99 introduced the capability to have
array dimensions be expressions that are computed as the array is being allocated,
and recent versions of gcc support most of the conventions for variable-sized
arrays in ISO C99.

In the C version of variable-size arrays, we can declare an array
int A[expr1][expr2], either as a local variable or as an argument to a function,
and then the dimensions of the array are determined by evaluating the expres-
sions expr1 and expr2 at the time the declaration is encountered. So, for example,
we can write a function to access element i, j of an n × n array as follows:

1 int var_ele(int n, int A[n][n], int i, int j) {

2 return A[i][j];

3 }

Section 3.8 Array Allocation and Access 239

(a) Original C code

1 /* Compute i,k of fixed matrix product */

2 int fix_prod_ele (fix_matrix A, fix_matrix B, int i, int k) {

3 int j;

4 int result = 0;

5

6 for (j = 0; j < N; j++)

7 result += A[i][j] * B[j][k];

8

9 return result;

10 }

(b) Optimized C code

1 /* Compute i,k of fixed matrix product */

2 int fix_prod_ele_opt(fix_matrix A, fix_matrix B, int i, int k) {

3 int *Arow = &A[i][0];

4 int *Bptr = &B[0][k];

5 int result = 0;

6 int j;

7 for (j = 0; j != N; j++) {

8 result += Arow[j] * *Bptr;

9 Bptr += N;

10 }

11 return result;

12 }

Figure 3.28 Original and optimized code to compute element i, k of matrix product
for fixed-length arrays. The compiler performs these optimizations automatically.

The parameter n must precede the parameter A[n][n], so that the function can
compute the array dimensions as the parameter is encountered.

gcc generates code for this referencing function as

n at %ebp+8, A at %ebp+12, i at %ebp+16, j at %ebp+20

1 movl 8(%ebp), %eax Get n

2 sall $2, %eax Compute 4*n

3 movl %eax, %edx Copy 4*n

4 imull 16(%ebp), %edx Compute 4*n*i

5 movl 20(%ebp), %eax Get j

6 sall $2, %eax Compute 4*j

7 addl 12(%ebp), %eax Compute xA + 4 ∗ j

8 movl (%eax,%edx), %eax Read from xA + 4 ∗ (n ∗ i + j)

As the annotations show, this code computes the address of element i, j as xA +
4(n . i + j). The address computation is similar to that of the fixed-size array
(page 236), except that (1) the positions of the arguments on the stack are shifted
due to the addition of parameter n, and (2) a multiply instruction is used (line 4) to

240 Chapter 3 Machine-Level Representation of Programs

1 /* Compute i,k of variable matrix product */

2 int var_prod_ele(int n, int A[n][n], int B[n][n], int i, int k) {

3 int j;

4 int result = 0;

5

6 for (j = 0; j < n; j++)

7 result += A[i][j] * B[j][k];

8

9 return result;

10 }

Figure 3.29 Code to compute element i, k of matrix product for variable-sized
arrays. The compiler performs optimizations similar to those for fixed-size arrays.

compute n . i, rather than an leal instruction to compute 3i. We see therefore that
referencing variable-size arrays requires only a slight generalization over fixed-
size ones. The dynamic version must use a multiplication instruction to scale i by
n, rather than a series of shifts and adds. In some processors, this multiplication
can incur a significant performance penalty, but it is unavoidable in this case.

When variable-sized arrays are referenced within a loop, the compiler can
often optimize the index computations by exploiting the regularity of the access
patterns. For example, Figure 3.29 shows C code to compute element i, k of the
product of two n × n arrays A and B. The compiler generates code similar to what
we saw for fixed-size arrays. In fact, the code bears close resemblance to that of
Figure 3.28(b), except that it scales Bptr, the pointer to element B[j][k], by the
variable value n rather than the fixed value N on each iteration.

The following is the assembly code for the loop of var_prod_ele:

n stored at %ebp+8

Registers: Arow in %esi, Bptr in %ecx, j in %edx,

result in %ebx, %edi holds 4*n

1 .L30: loop:

2 movl (%ecx), %eax Get *Bptr

3 imull (%esi,%edx,4), %eax Multiply by Arow[j]

4 addl %eax, %ebx Add to result

5 addl $1, %edx Increment j

6 addl %edi, %ecx Add 4*n to Bptr

7 cmpl %edx, 8(%ebp) Compare n:j

8 jg .L30 If >, goto loop

We see that the program makes use of both a scaled value 4n (register%edi) for
incrementing Bptr and the actual value of n stored at offset 8 from %ebp to check
the loop bounds. The need for two values does not show up in the C code, due to
the scaling of pointer arithmetic. The code retrieves the value of n from memory on
each iteration to check for loop termination (line 7). This is an example of register
spilling: there are not enough registers to hold all of the needed temporary data,
and hence the compiler must keep some local variables in memory. In this case
the compiler chose to spill n, because it is a “read-only” value—it does not change

Section 3.9 Heterogeneous Data Structures 241

value within the loop. IA32 must often spill loop values to memory, since the
processor has so few registers. In general, reading from memory can be done more
readily than writing to memory, and so spilling read-only variables is preferable.
See Problem 3.61 regarding how to improve this code to avoid register spilling.

3.9 Heterogeneous Data Structures

C provides two mechanisms for creating data types by combining objects of dif-
ferent types: structures, declared using the keyword struct, aggregate multiple
objects into a single unit; unions, declared using the keyword union, allow an
object to be referenced using several different types.

3.9.1 Structures

The C struct declaration creates a data type that groups objects of possibly
different types into a single object. The different components of a structure are
referenced by names. The implementation of structures is similar to that of arrays
in that all of the components of a structure are stored in a contiguous region of
memory, and a pointer to a structure is the address of its first byte. The compiler
maintains information about each structure type indicating the byte offset of
each field. It generates references to structure elements using these offsets as
displacements in memory referencing instructions.

New to C? Representing an object as a struct

The struct data type constructor is the closest thing C provides to the objects of C++ and Java. It
allows the programmer to keep information about some entity in a single data structure, and reference
that information with names.

For example, a graphics program might represent a rectangle as a structure:

struct rect {

int llx; /* X coordinate of lower-left corner */

int lly; /* Y coordinate of lower-left corner */

int color; /* Coding of color */

int width; /* Width (in pixels) */

int height; /* Height (in pixels) */

};

We could declare a variable r of type struct rect and set its field values as follows:

struct rect r;

r.llx = r.lly = 0;

r.color = 0xFF00FF;

r.width = 10;

r.height = 20;

where the expression r.llx selects field llx of structure r.

242 Chapter 3 Machine-Level Representation of Programs

Alternatively, we can both declare the variable and initialize its fields with a single statement:

struct rect r = { 0, 0, 0xFF00FF, 10, 20 };

It is common to pass pointers to structures from one place to another rather than copying them.
For example, the following function computes the area of a rectangle, where a pointer to the rectangle
struct is passed to the function:

int area(struct rect *rp)

{

return (*rp).width * (*rp).height;

}

The expression (*rp).width dereferences the pointer and selects the width field of the resulting
structure. Parentheses are required, because the compiler would interpret the expression *rp.width as
*(rp.width), which is not valid. This combination of dereferencing and field selection is so common
that C provides an alternative notation using ->. That is, rp->width is equivalent to the expression
(*rp).width. For example, we could write a function that rotates a rectangle counterclockwise by
90 degrees as

void rotate_left(struct rect *rp)

{

/* Exchange width and height */

int t = rp->height;

rp->height = rp->width;

rp->width = t;

/* Shift to new lower-left corner */

rp->llx -= t;

}

The objects of C++ and Java are more elaborate than structures in C, in that they also associate
a set of methods with an object that can be invoked to perform computation. In C, we would simply
write these as ordinary functions, such as the functions area and rotate_left shown above.

As an example, consider the following structure declaration:

struct rec {

int i;

int j;

int a[3];

int *p;

};

This structure contains four fields: two 4-byte int’s, an array consisting of three
4-byte int’s, and a 4-byte integer pointer, giving a total of 24 bytes:

Offset

Contents i

0 4 8 20 24

j a[0] a[1] a[2] p

Section 3.9 Heterogeneous Data Structures 243

Observe that array a is embedded within the structure. The numbers along the
top of the diagram give the byte offsets of the fields from the beginning of the
structure.

To access the fields of a structure, the compiler generates code that adds the
appropriate offset to the address of the structure. For example, suppose variable r
of type struct rec * is in register %edx. Then the following code copies element
r->i to element r->j:

1 movl (%edx), %eax Get r->i

2 movl %eax, 4(%edx) Store in r->j

Since the offset of field i is 0, the address of this field is simply the value of r. To
store into field j, the code adds offset 4 to the address of r.

To generate a pointer to an object within a structure, we can simply add the
field’s offset to the structure address. For example, we can generate the pointer
&(r->a[1]) by adding offset 8 + 4 . 1 = 12. For pointer r in register %eax and
integer variable i in register %edx, we can generate the pointer value &(r->a[i])
with the single instruction

Registers: r in %edx, i in %eax

1 leal 8(%edx,%eax,4), %eax Set %eax to &r->a[i]

As a final example, the following code implements the statement

r->p = &r->a[r->i + r->j];

starting with r in register %edx:

1 movl 4(%edx), %eax Get r->j

2 addl (%edx), %eax Add r->i

3 leal 8(%edx,%eax,4), %eax Compute &r->a[r->i + r->j]

4 movl %eax, 20(%edx) Store in r->p

As these examples show, the selection of the different fields of a structure is
handled completely at compile time. The machine code contains no information
about the field declarations or the names of the fields.

Practice Problem 3.39
Consider the following structure declaration:

struct prob {

int *p;

struct {

int x;

int y;

} s;

struct prob *next;

};

244 Chapter 3 Machine-Level Representation of Programs

This declaration illustrates that one structure can be embedded within another,
just as arrays can be embedded within structures, and arrays can be embedded
within arrays.

The following procedure (with some expressions omitted) operates on this
structure:

void sp_init(struct prob *sp)

{

sp->s.x = ;

sp->p = ;

sp->next = ;

}

A. What are the offsets (in bytes) of the following fields?

p:
s.x:
s.y:
next:

B. How many total bytes does the structure require?

C. The compiler generates the following assembly code for the body of sp_
init:

sp at %ebp+8

1 movl 8(%ebp), %eax

2 movl 8(%eax), %edx

3 movl %edx, 4(%eax)

4 leal 4(%eax), %edx

5 movl %edx, (%eax)

6 movl %eax, 12(%eax)

On the basis of this information, fill in the missing expressions in the code
for sp_init.

3.9.2 Unions

Unions provide a way to circumvent the type system of C, allowing a single object
to be referenced according to multiple types. The syntax of a union declaration is
identical to that for structures, but its semantics are very different. Rather than
having the different fields reference different blocks of memory, they all reference
the same block.

Consider the following declarations:

struct S3 {

char c;

int i[2];

Section 3.9 Heterogeneous Data Structures 245

double v;

};

union U3 {

char c;

int i[2];

double v;

};

When compiled on an IA32 Linux machine, the offsets of the fields, as well as the
total size of data types S3 and U3, are as shown in the following table:

Type c i v Size

S3 0 4 12 20
U3 0 0 0 8

(We will see shortly why i has offset 4 in S3 rather than 1, and we will discuss
why the results would be different for a machine running Microsoft Windows.)
For pointer p of type union U3 *, references p->c, p->i[0], and p->v would all
reference the beginning of the data structure. Observe also that the overall size of
a union equals the maximum size of any of its fields.

Unions can be useful in several contexts. However, they can also lead to nasty
bugs, since they bypass the safety provided by the C type system. One application
is when we know in advance that the use of two different fields in a data structure
will be mutually exclusive. Then, declaring these two fields as part of a union rather
than a structure will reduce the total space allocated.

For example, suppose we want to implement a binary tree data structure
where each leaf node has a double data value, while each internal node has
pointers to two children, but no data. If we declare this as

struct NODE_S {

struct NODE_S *left;

struct NODE_S *right;

double data;

};

then every node requires 16 bytes, with half the bytes wasted for each type of node.
On the other hand, if we declare a node as

union NODE_U {

struct {

union NODE_U *left;

union NODE_U *right;

} internal;

double data;

};

246 Chapter 3 Machine-Level Representation of Programs

then every node will require just 8 bytes. If n is a pointer to a node of type union
NODE *, we would reference the data of a leaf node as n->data, and the children
of an internal node as n->internal.left and n->internal.right.

With this encoding, however, there is no way to determine whether a given
node is a leaf or an internal node. A common method is to introduce an enumer-
ated type defining the different possible choices for the union, and then create a
structure containing a tag field and the union:

typedef enum { N_LEAF, N_INTERNAL } nodetype_t;

struct NODE_T {

nodetype_t type;

union {

struct {

struct NODE_T *left;

struct NODE_T *right;

} internal;

double data;

} info;

};

This structure requires a total of 12 bytes: 4 for type, and either 4 each for
info.internal.left and info.internal.right, or 8 for info.data. In this
case, the savings gain of using a union is small relative to the awkwardness of
the resulting code. For data structures with more fields, the savings can be more
compelling.

Unions can also be used to access the bit patterns of different data types.
For example, the following code returns the bit representation of a float as an
unsigned:

1 unsigned float2bit(float f)

2 {

3 union {

4 float f;

5 unsigned u;

6 } temp;

7 temp.f = f;

8 return temp.u;

9 };

In this code, we store the argument in the union using one data type, and access it
using another. Interestingly, the code generated for this procedure is identical to
that for the following procedure:

1 unsigned copy(unsigned u)

2 {

3 return u;

4 }

Section 3.9 Heterogeneous Data Structures 247

The body of both procedures is just a single instruction:

1 movl 8(%ebp), %eax

This demonstrates the lack of type information in machine code. The argu-
ment will be at offset 8 relative to %ebp regardless of whether it is a float or an
unsigned. The procedure simply copies its argument as the return value without
modifying any bits.

When using unions to combine data types of different sizes, byte-ordering
issues can become important. For example, suppose we write a procedure that will
create an 8-byte double using the bit patterns given by two 4-byte unsigned’s:

1 double bit2double(unsigned word0, unsigned word1)

2 {

3 union {

4 double d;

5 unsigned u[2];

6 } temp;

7

8 temp.u[0] = word0;

9 temp.u[1] = word1;

10 return temp.d;

11 }

On a little-endian machine such as IA32, argument word0 will become the
low-order 4 bytes of d, while word1 will become the high-order 4 bytes. On a big-
endian machine, the role of the two arguments will be reversed.

Practice Problem 3.40
Suppose you are given the job of checking that a C compiler generates the proper
code for structure and union access. You write the following structure declaration:

typedef union {

struct {

short v;

short d;

int s;

} t1;

struct {

int a[2];

char *p;

} t2;

} u_type;

You write a series of functions of the form

void get(u_type *up, TYPE *dest) {

*dest = EXPR;

}

248 Chapter 3 Machine-Level Representation of Programs

with different access expressions EXPR, and with destination data type TYPE set
according to type associated with EXPR. You then examine the code generated
when compiling the functions to see if they match your expectations.

Suppose in these functions that up and dest are loaded into registers %eax and
%edx, respectively. Fill in the following table with data type TYPE and sequences
of 1–3 instructions to compute the expression and store the result at dest. Try to
use just registers %eax and %edx, using register %ecx when these do not suffice.

EXPR TYPE Code

up->t1.s int movl 4(%eax), %eax

movl %eax, (%edx)

up->t1.v

&up->t1.d

up->t2.a

up->t2.a[up->t1.s]

*up->t2.p

3.9.3 Data Alignment

Many computer systems place restrictions on the allowable addresses for the
primitive data types, requiring that the address for some type of object must be a
multiple of some value K (typically 2, 4, or 8). Such alignment restrictions simplify
the design of the hardware forming the interface between the processor and the
memory system. For example, suppose a processor always fetches 8 bytes from
memory with an address that must be a multiple of 8. If we can guarantee that any
double will be aligned to have its address be a multiple of 8, then the value can
be read or written with a single memory operation. Otherwise, we may need to

Section 3.9 Heterogeneous Data Structures 249

perform two memory accesses, since the object might be split across two 8-byte
memory blocks.

The IA32 hardware will work correctly regardless of the alignment of data.
However, Intel recommends that data be aligned to improve memory system
performance. Linux follows an alignment policy where 2-byte data types (e.g.,
short) must have an address that is a multiple of 2, while any larger data types
(e.g., int, int *, float, and double) must have an address that is a multiple of
4. Note that this requirement means that the least significant bit of the address of
an object of type shortmust equal zero. Similarly, any object of type int, or any
pointer, must be at an address having the low-order 2 bits equal to zero.

Aside A case of mandatory alignment

For most IA32 instructions, keeping data aligned improves efficiency, but it does not affect program
behavior. On the other hand, some of the SSE instructions for implementing multimedia operations
will not work correctly with unaligned data. These instructions operate on 16-byte blocks of data, and
the instructions that transfer data between the SSE unit and memory require the memory addresses to
be multiples of 16. Any attempt to access memory with an address that does not satisfy this alignment
will lead to an exception, with the default behavior for the program to terminate.

This is the motivation behind the IA32 convention of making sure that every stack frame is a
multiple of 16 bytes long (see the aside of page 226). The compiler can allocate storage within a stack
frame in such a way that a block can be stored with a 16-byte alignment.

Aside Alignment with Microsoft Windows

Microsoft Windows imposes a stronger alignment requirement—any primitive object of K bytes, for
K = 2, 4, or 8, must have an address that is a multiple of K . In particular, it requires that the address
of a double or a long long be a multiple of 8. This requirement enhances the memory performance at
the expense of some wasted space. The Linux convention, where 8-byte values are aligned on 4-byte
boundaries was probably good for the i386, back when memory was scarce and memory interfaces were
only 4 bytes wide. With modern processors, Microsoft’s alignment is a better design decision. Data type
long double, for which gcc generates IA32 code allocating 12 bytes (even though the actual data type
requires only 10 bytes) has a 4-byte alignment requirement with both Windows and Linux.

Alignment is enforced by making sure that every data type is organized and
allocated in such a way that every object within the type satisfies its alignment
restrictions. The compiler places directives in the assembly code indicating the
desired alignment for global data. For example, the assembly-code declaration of
the jump table beginning on page 217 contains the following directive on line 2:

.align 4

This ensures that the data following it (in this case the start of the jump table) will
start with an address that is a multiple of 4. Since each table entry is 4 bytes long,
the successive elements will obey the 4-byte alignment restriction.

250 Chapter 3 Machine-Level Representation of Programs

Library routines that allocate memory, such as malloc, must be designed
so that they return a pointer that satisfies the worst-case alignment restriction
for the machine it is running on, typically 4 or 8. For code involving structures,
the compiler may need to insert gaps in the field allocation to ensure that each
structure element satisfies its alignment requirement. The structure then has some
required alignment for its starting address.

For example, consider the following structure declaration:

struct S1 {

int i;

char c;

int j;

};

Suppose the compiler used the minimal 9-byte allocation, diagrammed as
follows:

Offset

Contents i

0 4 5 9

c j

Then it would be impossible to satisfy the 4-byte alignment requirement for both
fields i (offset 0) and j (offset 5). Instead, the compiler inserts a 3-byte gap (shown
here as shaded in blue) between fields c and j:

Offset

Contents i

0 4 5 8 12

c j

As a result, j has offset 8, and the overall structure size is 12 bytes. Further-
more, the compiler must ensure that any pointer p of type struct S1* satisfies
a 4-byte alignment. Using our earlier notation, let pointer p have value xp. Then
xp must be a multiple of 4. This guarantees that both p->i (address xp) and p->j
(address xp + 8) will satisfy their 4-byte alignment requirements.

In addition, the compiler may need to add padding to the end of the structure
so that each element in an array of structures will satisfy its alignment requirement.
For example, consider the following structure declaration:

struct S2 {

int i;

int j;

char c;

};

If we pack this structure into 9 bytes, we can still satisfy the alignment requirements
for fields i and j by making sure that the starting address of the structure satisfies
a 4-byte alignment requirement. Consider, however, the following declaration:

struct S2 d[4];

Section 3.9 Heterogeneous Data Structures 251

With the 9-byte allocation, it is not possible to satisfy the alignment requirement
for each element of d, because these elements will have addresses xd, xd + 9,
xd + 18, and xd + 27. Instead, the compiler allocates 12 bytes for structure S2,
with the final 3 bytes being wasted space:

Offset

Contents i

0 4 98 12

cj

That way the elements of d will have addresses xd, xd + 12, xd + 24, and xd + 36.
As long as xd is a multiple of 4, all of the alignment restrictions will be satisfied.

Practice Problem 3.41
For each of the following structure declarations, determine the offset of each field,
the total size of the structure, and its alignment requirement under Linux/IA32.

A. struct P1 { int i; char c; int j; char d; };

B. struct P2 { int i; char c; char d; int j; };

C. struct P3 { short w[3]; char c[3] };

D. struct P4 { short w[3]; char *c[3] };

E. struct P3 { struct P1 a[2]; struct P2 *p };

Practice Problem 3.42
For the structure declaration

struct {

char *a;

short b;

double c;

char d;

float e;

char f;

long long g;

void *h;

} foo;

suppose it was compiled on a Windows machine, where each primitive data type
of K bytes must have an offset that is a multiple of K .

A. What are the byte offsets of all the fields in the structure?

B. What is the total size of the structure?

C. Rearrange the fields of the structure to minimize wasted space, and then
show the byte offsets and total size for the rearranged structure.

252 Chapter 3 Machine-Level Representation of Programs

3.10 Putting It Together: Understanding Pointers

Pointers are a central feature of the C programming language. They serve as a
uniform way to generate references to elements within different data structures.
Pointers are a source of confusion for novice programmers, but the underlying
concepts are fairly simple. Here we highlight some key principles of pointers and
their mapping into machine code.

. Every pointer has an associated type. This type indicates what kind of object
the pointer points to. Using the following pointer declarations as illustrations,

int *ip;

char **cpp;

variable ip is a pointer to an object of type int, while cpp is a pointer to an
object that itself is a pointer to an object of type char. In general, if the object
has type T , then the pointer has type *T . The special void * type represents a
generic pointer. For example, the malloc function returns a generic pointer,
which is converted to a typed pointer via either an explicit cast or by the
implicit casting of the assignment operation. Pointer types are not part of
machine code; they are an abstraction provided by C to help programmers
avoid addressing errors.

. Every pointer has a value. This value is an address of some object of the
designated type. The special NULL (0) value indicates that the pointer does
not point anywhere.

. Pointers are created with the & operator. This operator can be applied to any
C expression that is categorized as an lvalue, meaning an expression that can
appear on the left side of an assignment. Examples include variables and the
elements of structures, unions, and arrays. We have seen that the machine-
code realization of the & operator often uses the leal instruction to compute
the expression value, since this instruction is designed to compute the address
of a memory reference.

. Pointers are dereferenced with the * operator. The result is a value having the
type associated with the pointer. Dereferencing is implemented by a memory
reference, either storing to or retrieving from the specified address.

. Arrays and pointers are closely related. The name of an array can be referenced
(but not updated) as if it were a pointer variable. Array referencing (e.g.,
a[3]) has the exact same effect as pointer arithmetic and dereferencing (e.g.,
*(a+3)). Both array referencing and pointer arithmetic require scaling the
offsets by the object size. When we write an expression p+i for pointer p with
value p, the resulting address is computed as p + L . i, where L is the size of
the data type associated with p.

. Casting from one type of pointer to another changes its type but not its value.
One effect of casting is to change any scaling of pointer arithmetic. So for
example, if p is a pointer of type char * having value p, then the expression

Section 3.10 Putting It Together: Understanding Pointers 253

(int *) p+7 computes p + 28, while (int *) (p+7) computes p + 7. (Recall
that casting has higher precedence than addition.)

. Pointers can also point to functions. This provides a powerful capability for
storing and passing references to code, which can be invoked in some other
part of the program. For example, if we have a function defined by the proto-
type

int fun(int x, int *p);

then we can declare and assign a pointer fp to this function by the following
code sequence:

(int) (*fp)(int, int *);

fp = fun;

We can then invoke the function using this pointer:

int y = 1;

int result = fp(3, &y);

The value of a function pointer is the address of the first instruction in the
machine-code representation of the function.

New to C? Function pointers

The syntax for declaring function pointers is especially difficult for novice programmers to understand.
For a declaration such as

int (*f)(int*);

it helps to read it starting from the inside (starting with “f”) and working outward. Thus, we see that f
is a pointer, as indicated by “(*f).” It is a pointer to a function that has a single int * as an argument,
as indicated by “(*f)(int*)”. Finally, we see that it is a pointer to a function that takes an int * as an
argument and returns int.

The parentheses around *f are required, because otherwise the declaration

int *f(int*);

would be read as

(int *) f(int*);

That is, it would be interpreted as a function prototype, declaring a function f that has an int * as its
argument and returns an int *.

Kernighan & Ritchie [58, Sect. 5.12] present a helpful tutorial on reading C declarations.

254 Chapter 3 Machine-Level Representation of Programs

3.11 Life in the Real World: Using the gdb Debugger

The GNU debugger gdb provides a number of useful features to support the
run-time evaluation and analysis of machine-level programs. With the examples
and exercises in this book, we attempt to infer the behavior of a program by
just looking at the code. Using gdb, it becomes possible to study the behavior
by watching the program in action, while having considerable control over its
execution.

Figure 3.30 shows examples of some gdb commands that help when working
with machine-level, IA32 programs. It is very helpful to first run objdump to get
a disassembled version of the program. Our examples are based on running gdb
on the file prog, described and disassembled on page 164. We start gdb with the
following command line:

unix> gdb prog

The general scheme is to set breakpoints near points of interest in the pro-
gram. These can be set to just after the entry of a function, or at a program address.
When one of the breakpoints is hit during program execution, the program will
halt and return control to the user. From a breakpoint, we can examine different
registers and memory locations in various formats. We can also single-step the
program, running just a few instructions at a time, or we can proceed to the next
breakpoint.

As our examples suggest, gdb has an obscure command syntax, but the on-
line help information (invoked within gdb with the help command) overcomes
this shortcoming. Rather than using the command-line interface to gdb, many
programmers prefer using ddd, an extension to gdb that provides a graphic user
interface.

Web Aside ASM:OPT Machine code generated with higher levels of optimization

In our presentation, we have looked at machine code generated with level-one optimization (specified
with the command-line option ‘-O1’). In practice, most heavily used programs are compiled with higher
levels of optimization. For example, all of the GNU libraries and packages are compiled with level-two
optimization, specified with the command-line option ‘-O2’.

Recent versions of gcc employ an extensive set of optimizations at level two, making the mapping
between the source code and the generated code more difficult to discern. Here are some examples of
the optimizations that can be found at level two:

. The control structures become more entangled. Most procedures have multiple return points,
and the stack management code to set up and complete a function is intermixed with the code
implementing the operations of the procedure.

. Procedure calls are often inlined, replacing them by the instructions implementing the procedures.
This eliminates much of the overhead involved in calling and returning from a function, and it
enables optimizations that are specific to individual function calls. On the other hand, if we try to
set a breakpoint for a function in a debugger, we might never encounter a call to this function.

Section 3.11 Life in the Real World: Using the gdb Debugger 255

Command Effect

Starting and stopping
quit Exit gdb
run Run your program (give command line arguments here)
kill Stop your program

Breakpoints
break sum Set breakpoint at entry to function sum
break *0x8048394 Set breakpoint at address 0x8048394
delete 1 Delete breakpoint 1
delete Delete all breakpoints

Execution
stepi Execute one instruction
stepi 4 Execute four instructions
nexti Like stepi, but proceed through function calls
continue Resume execution
finish Run until current function returns

Examining code
disas Disassemble current function
disas sum Disassemble function sum
disas 0x8048397 Disassemble function around address 0x8048397
disas 0x8048394 0x80483a4 Disassemble code within specified address range
print /x $eip Print program counter in hex

Examining data
print $eax Print contents of %eax in decimal
print /x $eax Print contents of %eax in hex
print /t $eax Print contents of %eax in binary
print 0x100 Print decimal representation of 0x100
print /x 555 Print hex representation of 555
print /x ($ebp+8) Print contents of %ebp plus 8 in hex
print *(int *) 0xfff076b0 Print integer at address 0xfff076b0
print *(int *) ($ebp+8) Print integer at address %ebp + 8
x/2w 0xfff076b0 Examine two (4-byte) words starting at address 0xfff076b0
x/20b sum Examine first 20 bytes of function sum

Useful information
info frame Information about current stack frame
info registers Values of all the registers
help Get information about gdb

Figure 3.30 Example gdb commands. These examples illustrate some of the ways gdb
supports debugging of machine-level programs.

256 Chapter 3 Machine-Level Representation of Programs

. Recursion is often replaced by iteration. For example, the recursive factorial function rfact (Fig-
ure 3.25) is compiled into code very similar to that generated for the while loop implementation
(Figure 3.15). Again, this can lead to some surprises when we try to monitor program execution
with a debugger.

These optimizations can significantly improve program performance, but they make the mapping
between source and machine code much more difficult to discern. This can make the programs more
difficult to debug. Nonetheless, these higher level optimizations have now become standard, and so
those who study programs at the machine level must become familiar with the possible optimizations
they may encounter.

3.12 Out-of-Bounds Memory References
and Buffer Overflow

We have seen that C does not perform any bounds checking for array references,
and that local variables are stored on the stack along with state information such
as saved register values and return addresses. This combination can lead to serious
program errors, where the state stored on the stack gets corrupted by a write to an
out-of-bounds array element. When the program then tries to reload the register
or execute a ret instruction with this corrupted state, things can go seriously
wrong.

A particularly common source of state corruption is known as buffer overflow.
Typically some character array is allocated on the stack to hold a string, but the
size of the string exceeds the space allocated for the array. This is demonstrated
by the following program example:

1 /* Sample implementation of library function gets() */

2 char *gets(char *s)

3 {

4 int c;

5 char *dest = s;

6 int gotchar = 0; /* Has at least one character been read? */

7 while ((c = getchar()) != ’\n’ && c != EOF) {

8 *dest++ = c; /* No bounds checking! */

9 gotchar = 1;

10 }

11 *dest++ = ’\0’; /* Terminate string */

12 if (c == EOF && !gotchar)

13 return NULL; /* End of file or error */

14 return s;

15 }

16

Section 3.12 Out-of-Bounds Memory References and Buffer Overflow 257

17 /* Read input line and write it back */

18 void echo()

19 {

20 char buf[8]; /* Way too small! */

21 gets(buf);

22 puts(buf);

23 }

The preceding code shows an implementation of the library function gets
to demonstrate a serious problem with this function. It reads a line from the
standard input, stopping when either a terminating newline character or some
error condition is encountered. It copies this string to the location designated by
argument s, and terminates the string with a null character. We show the use of
gets in the function echo, which simply reads a line from standard input and
echoes it back to standard output.

The problem with gets is that it has no way to determine whether sufficient
space has been allocated to hold the entire string. In our echo example, we have
purposely made the buffer very small—just eight characters long. Any string
longer than seven characters will cause an out-of-bounds write.

Examining the assembly code generated by gcc for echo shows how the stack
is organized.

1 echo:

2 pushl %ebp Save %ebp on stack

3 movl %esp, %ebp

4 pushl %ebx Save %ebx

5 subl $20, %esp Allocate 20 bytes on stack

6 leal -12(%ebp), %ebx Compute buf as %ebp-12

7 movl %ebx, (%esp) Store buf at top of stack

8 call gets Call gets

9 movl %ebx, (%esp) Store buf at top of stack

10 call puts Call puts

11 addl $20, %esp Deallocate stack space

12 popl %ebx Restore %ebx

13 popl %ebp Restore %ebp

14 ret Return

We can see in this example that the program stores the contents of registers %ebp
and %ebx on the stack, and then allocates an additional 20 bytes by subtracting 20
from the stack pointer (line 5). The location of character array buf is computed as
12 bytes below %ebp (line 6), just below the stored value of %ebx, as illustrated in
Figure 3.31. As long as the user types at most seven characters, the string returned
by gets (including the terminating null) will fit within the space allocated for buf.
A longer string, however, will cause gets to overwrite some of the information

258 Chapter 3 Machine-Level Representation of Programs

Figure 3.31
Stack organization for
echo function. Character
array buf is just below part
of the saved state. An out-
of-bounds write to buf can
corrupt the program state.

Stack frame
for caller

Stack frame
for echo

Return address

Saved %ebp

Saved %ebx

%ebp

[7] [6] [5] [4]

[3] [2] [1] [0] buf

stored on the stack. As the string gets longer, the following information will get
corrupted:

Characters typed Additional corrupted state

0–7 None
8–11 Saved value of %ebx

12–15 Saved value of %ebp
16–19 Return address
20+ Saved state in caller

As this table indicates, the corruption is cumulative—as the number of char-
acters increases, more state gets corrupted. Depending on which portions of the
state are affected, the program can misbehave in several different ways:

. If the stored value of %ebx is corrupted, then this register will not be restored
properly in line 12, and so the caller will not be able to rely on the integrity of
this register, even though it should be callee-saved.

. If the stored value of %ebp is corrupted, then this register will not be restored
properly on line 13, and so the caller will not be able to reference its local
variables or parameters properly.

. If the stored value of the return address is corrupted, then the ret instruction
(line 14) will cause the program to jump to a totally unexpected location.

None of these behaviors would seem possible based on the C code. The impact
of out-of-bounds writing to memory by functions such as gets can only be under-
stood by studying the program at the machine-code level.

Our code for echo is simple but sloppy. A better version involves using the
function fgets, which includes as an argument a count on the maximum number
of bytes to read. Problem 3.68 asks you to write an echo function that can handle
an input string of arbitrary length. In general, using gets or any function that can
overflow storage is considered a bad programming practice. The C compiler even
produces the following error message when compiling a file containing a call to
gets: “The gets function is dangerous and should not be used.” Unfortunately,

Section 3.12 Out-of-Bounds Memory References and Buffer Overflow 259

a number of commonly used library functions, including strcpy, strcat, and
sprintf, have the property that they can generate a byte sequence without being
given any indication of the size of the destination buffer [94]. Such conditions can
lead to vulnerabilities to buffer overflow.

Practice Problem 3.43
Figure 3.32 shows a (low-quality) implementation of a function that reads a line
from standard input, copies the string to newly allocated storage, and returns a
pointer to the result.

Consider the following scenario. Procedure getline is called with the return
address equal to 0x8048643, register %ebp equal to 0xbffffc94, register %ebx
equal to 0x1, register %edi is equal to 0x2, and register %esi is equal to 0x3. You
type in the string “ 012345678901234567890123”. The program terminates with

(a) C code

1 /* This is very low-quality code.

2 It is intended to illustrate bad programming practices.

3 See Problem 3.43. */

4 char *getline()

5 {

6 char buf[8];

7 char *result;

8 gets(buf);

9 result = malloc(strlen(buf));

10 strcpy(result, buf);

11 return result;

12 }

(b) Disassembly up through call to gets

1 080485c0 <getline>:

2 80485c0: 55 push %ebp

3 80485c1: 89 e5 mov %esp,%ebp

4 80485c3: 83 ec 28 sub $0x28,%esp

5 80485c6: 89 5d f4 mov %ebx,-0xc(%ebp)

6 80485c9: 89 75 f8 mov %esi,-0x8(%ebp)

7 80485cc: 89 7d fc mov %edi,-0x4(%ebp)

Diagram stack at this point

8 80485cf: 8d 75 ec lea -0x14(%ebp),%esi

9 80485d2: 89 34 24 mov %esi,(%esp)

10 80485d5: e8 a3 ff ff ff call 804857d <gets>

Modify diagram to show stack contents at this point

Figure 3.32 C and disassembled code for Problem 3.43.

260 Chapter 3 Machine-Level Representation of Programs

a segmentation fault. You run gdb and determine that the error occurs during the
execution of the ret instruction of getline.

A. Fill in the diagram that follows, indicating as much as you can about the
stack just after executing the instruction at line 7 in the disassembly. Label
the quantities stored on the stack (e.g., “Return address”) on the right, and
their hexadecimal values (if known) within the box. Each box represents 4
bytes. Indicate the position of %ebp.

08 04 86 43 Return address

B. Modify your diagram to show the effect of the call to gets (line 10).

C. To what address does the program attempt to return?

D. What register(s) have corrupted value(s) when getline returns?

E. Besides the potential for buffer overflow, what two other things are wrong
with the code for getline?

A more pernicious use of buffer overflow is to get a program to perform
a function that it would otherwise be unwilling to do. This is one of the most
common methods to attack the security of a system over a computer network.
Typically, the program is fed with a string that contains the byte encoding of some
executable code, called the exploit code, plus some extra bytes that overwrite the
return address with a pointer to the exploit code. The effect of executing the ret
instruction is then to jump to the exploit code.

In one form of attack, the exploit code then uses a system call to start up a
shell program, providing the attacker with a range of operating system functions.
In another form, the exploit code performs some otherwise unauthorized task,
repairs the damage to the stack, and then executes ret a second time, causing an
(apparently) normal return to the caller.

As an example, the famous Internet worm of November 1988 used four dif-
ferent ways to gain access to many of the computers across the Internet. One was
a buffer overflow attack on the finger daemon fingerd, which serves requests by
the finger command. By invoking finger with an appropriate string, the worm
could make the daemon at a remote site have a buffer overflow and execute code
that gave the worm access to the remote system. Once the worm gained access to a
system, it would replicate itself and consume virtually all of the machine’s comput-
ing resources. As a consequence, hundreds of machines were effectively paralyzed
until security experts could determine how to eliminate the worm. The author of

Section 3.12 Out-of-Bounds Memory References and Buffer Overflow 261

the worm was caught and prosecuted. He was sentenced to 3 years probation,
400 hours of community service, and a $10,500 fine. Even to this day, however,
people continue to find security leaks in systems that leave them vulnerable to
buffer overflow attacks. This highlights the need for careful programming. Any
interface to the external environment should be made “bullet proof” so that no
behavior by an external agent can cause the system to misbehave.

Aside Worms and viruses

Both worms and viruses are pieces of code that attempt to spread themselves among computers. As
described by Spafford [102], a worm is a program that can run by itself and can propagate a fully working
version of itself to other machines. A virus is a piece of code that adds itself to other programs, including
operating systems. It cannot run independently. In the popular press, the term “virus” is used to refer
to a variety of different strategies for spreading attacking code among systems, and so you will hear
people saying “virus” for what more properly should be called a “worm.”

3.12.1 Thwarting Buffer Overflow Attacks

Buffer overflow attacks have become so pervasive and have caused so many
problems with computer systems that modern compilers and operating systems
have implemented mechanisms to make it more difficult to mount these attacks
and to limit the ways by which an intruder can seize control of a system via a buffer
overflow attack. In this section, we will present ones that are provided by recent
versions of gcc for Linux.

Stack Randomization

In order to insert exploit code into a system, the attacker needs to inject both
the code as well as a pointer to this code as part of the attack string. Generating
this pointer requires knowing the stack address where the string will be located.
Historically, the stack addresses for a program were highly predictable. For all
systems running the same combination of program and operating system version,
the stack locations were fairly stable across many machines. So, for example, if
an attacker could determine the stack addresses used by a common Web server,
it could devise an attack that would work on many machines. Using infectious
disease as an analogy, many systems were vulnerable to the exact same strain of
a virus, a phenomenon often referred to as a security monoculture [93].

The idea of stack randomization is to make the position of the stack vary from
one run of a program to another. Thus, even if many machines are running identical
code, they would all be using different stack addresses. This is implemented by
allocating a random amount of space between 0 and n bytes on the stack at the
start of a program, for example, by using the allocation function alloca, which
allocates space for a specified number of bytes on the stack. This allocated space is
not used by the program, but it causes all subsequent stack locations to vary from
one execution of a program to another. The allocation range n needs to be large
enough to get sufficient variations in the stack addresses, yet small enough that it
does not waste too much space in the program.

262 Chapter 3 Machine-Level Representation of Programs

The following code shows a simple way to determine a “typical” stack address:

1 int main() {

2 int local;

3 printf("local at %p\n", &local);

4 return 0;

5 }

This code simply prints the address of a local variable in the main function.
Running the code 10,000 times on a Linux machine in 32-bit mode, the addresses
ranged from 0xff7fa7e0 to 0xffffd7e0, a range of around 223. By comparison,
running on an older Linux system, the same address occurred every time. Running
in 64-bit mode on the newer machine, the addresses ranged from 0x7fff00241914
to 0x7ffffff98664, a range of nearly 232.

Stack randomization has become standard practice in Linux systems. It is
one of a larger class of techniques known as address-space layout randomization,
or ASLR [95]. With ASLR, different parts of the program, including program
code, library code, stack, global variables, and heap data, are loaded into different
regions of memory each time a program is run. That means that a program running
on one machine will have very different address mappings than the same program
running on other machines. This can thwart some forms of attack.

Overall, however, a persistent attacker can overcome randomization by brute
force, repeatedly attempting attacks with different addresses. A common trick is
to include a long sequence of nop (pronounced “no op,” short for “no operation”)
instructions before the actual exploit code. Executing this instruction has no ef-
fect, other than incrementing the program counter to the next instruction. As long
as the attacker can guess an address somewhere within this sequence, the program
will run through the sequence and then hit the exploit code. The common term for
this sequence is a “nop sled” [94], expressing the idea that the program “slides”
through the sequence. If we set up a 256-byte nop sled, then the randomization
over n = 223 can be cracked by enumerating 215 = 32,768 starting addresses, which
is entirely feasible for a determined attacker. For the 64-bit case, trying to enumer-
ate 224 = 16,777,216 is a bit more daunting. We can see that stack randomization
and other aspects of ASLR can increase the effort required to successfully attack a
system, and therefore greatly reduce the rate at which a virus or worm can spread,
but it cannot provide a complete safeguard.

Practice Problem 3.44
Running our stack-checking code 10,000 times on a system running Linux ver-
sion 2.6.16, we obtained addresses ranging from a minimum of 0xffffb754 to a
maximum of 0xffffd754.

A. What is the approximate range of addresses?

B. If we attempted a buffer overrun with a 128-byte nop sled, how many
attempts would it take to exhaustively test all starting addresses?

Section 3.12 Out-of-Bounds Memory References and Buffer Overflow 263

Figure 3.33
Stack organization for
echo function with stack
protector enabled. A
special “canary” value is
positioned between array
buf and the saved state.
The code checks the canary
value to determine whether
or not the stack state has
been corrupted.

Stack frame
for caller

Stack frame
for echo

Return address

Saved %ebp

Saved %ebx

Canary

%ebp

[7] [6] [5] [4]

[3] [2] [1] [0] buf

Stack Corruption Detection

A second line of defense is to be able to detect when a stack has been corrupted.
We saw in the example of the echo function (Figure 3.31) that the corruption
typically occurs when we overrun the bounds of a local buffer. In C, there is no
reliable way to prevent writing beyond the bounds of an array. Instead, we can try
to detect when such a write has occurred before any harmful effects can occur.

Recent versions of gcc incorporate a mechanism known as stack protector into
the generated code to detect buffer overruns. The idea is to store a special canary
value4 in the stack frame between any local buffer and the rest of the stack state,
as illustrated in Figure 3.33 [32, 94]. This canary value, also referred to as a guard
value, is generated randomly each time the program is run, and so there is no easy
way for an attacker to determine what it is. Before restoring the register state and
returning from the function, the program checks if the canary has been altered by
some operation of this function or one that it has called. If so, the program aborts
with an error.

Recent versions of gcc try to determine whether a function is vulnerable to
a stack overflow, and insert this type of overflow detection automatically. In fact,
for our earlier demonstration of stack overflow, we had to give the command-line
option “-fno-stack-protector” to prevent gcc from inserting this code. When
we compile the function echo without this option, and hence with stack protector
enabled, we get the following assembly code:

1 echo:

2 pushl %ebp

3 movl %esp, %ebp

4 pushl %ebx

5 subl $20, %esp

6 movl %gs:20, %eax Retrieve canary

7 movl %eax, -8(%ebp) Store on stack

4. The term “canary” refers to the historic use of these birds to detect the presence of dangerous gasses
in coal mines.

264 Chapter 3 Machine-Level Representation of Programs

8 xorl %eax, %eax Zero out register

9 leal -16(%ebp), %ebx Compute buf as %ebp-16

10 movl %ebx, (%esp) Store buf at top of stack

11 call gets Call gets

12 movl %ebx, (%esp) Store buf at top of stack

13 call puts Call puts

14 movl -8(%ebp), %eax Retrieve canary

15 xorl %gs:20, %eax Compare to stored value

16 je .L19 If =, goto ok

17 call __stack_chk_fail Stack corrupted!

18 .L19: ok:

19 addl $20, %esp Normal return ...

20 popl %ebx

21 popl %ebp

22 ret

We see that this version of the function retrieves a value from memory (line 6)
and stores it on the stack at offset −8 from %ebp. The instruction argument
%gs:20 is an indication that the canary value is read from memory using segmented
addressing, an addressing mechanism that dates back to the 80286 and is seldom
found in programs running on modern systems. By storing the canary in a special
segment, it can be marked as “read only,” so that an attacker cannot overwrite the
stored canary value. Before restoring the register state and returning, the function
compares the value stored at the stack location with the canary value (via the xorl
instruction on line 15.) If the two are identical, the xorl instruction will yield 0,
and the function will complete in the normal fashion. A nonzero value indicates
that the canary on the stack has been modified, and so the code will call an error
routine.

Stack protection does a good job of preventing a buffer overflow attack from
corrupting state stored on the program stack. It incurs only a small performance
penalty, especially because gcc only inserts it when there is a local buffer of
type char in the function. Of course, there are other ways to corrupt the state
of an executing program, but reducing the vulnerability of the stack thwarts many
common attack strategies.

Practice Problem 3.45
The function intlen, along with the functions len and iptoa, provides a very
convoluted way of computing the number of decimal digits required to represent
an integer. We will use this as a way to study some aspects of the gcc stack protector
facility.

int len(char *s) {

return strlen(s);

}

void iptoa(char *s, int *p)

Section 3.12 Out-of-Bounds Memory References and Buffer Overflow 265

{

int val = *p;

sprintf(s, "%d", val);

}

int intlen(int x) {

int v;

char buf[12];

v = x;

iptoa(buf, &v);

return len(buf);

}

The following show portions of the code for intlen, compiled both with and
without stack protector:

Without protector

1 subl $36, %esp

2 movl 8(%ebp), %eax

3 movl %eax, -8(%ebp)

4 leal -8(%ebp), %eax

5 movl %eax, 4(%esp)

6 leal -20(%ebp), %ebx

7 movl %ebx, (%esp)

8 call iptoa

With protector

1 subl $52, %esp

2 movl %gs:20, %eax

3 movl %eax, -8(%ebp)

4 xorl %eax, %eax

5 movl 8(%ebp), %eax

6 movl %eax, -24(%ebp)

7 leal -24(%ebp), %eax

8 movl %eax, 4(%esp)

9 leal -20(%ebp), %ebx

10 movl %ebx, (%esp)

11 call iptoa

A. For both versions: What are the positions in the stack frame for buf, v, and
(when present) the canary value?

B. How would the rearranged ordering of the local variables in the protected
code provide greater security against a buffer overrun attack?

266 Chapter 3 Machine-Level Representation of Programs

Limiting Executable Code Regions

A final step is to eliminate the ability of an attacker to insert executable code into
a system. One method is to limit which memory regions hold executable code.
In typical programs, only the portion of memory holding the code generated by
the compiler need be executable. The other portions can be restricted to allow
just reading and writing. As we will see in Chapter 9, the virtual memory space
is logically divided into pages, typically with 2048 or 4096 bytes per page. The
hardware supports different forms of memory protection, indicating the forms
of access allowed by both user programs and by the operating system kernel.
Many systems allow control over three forms of access: read (reading data from
memory), write (storing data into memory), and execute (treating the memory
contents as machine-level code). Historically, the x86 architecture merged the
read and execute access controls into a single 1-bit flag, so that any page marked as
readable was also executable. The stack had to be kept both readable and writable,
and therefore the bytes on the stack were also executable. Various schemes were
implemented to be able to limit some pages to being readable but not executable,
but these generally introduced significant inefficiencies.

More recently, AMD introduced an “NX” (for “no-execute”) bit into the
memory protection for its 64-bit processors, separating the read and execute access
modes, and Intel followed suit. With this feature, the stack can be marked as being
readable and writable, but not executable, and the checking of whether a page is
executable is performed in hardware, with no penalty in efficiency.

Some types of programs require the ability to dynamically generate and ex-
ecute code. For example, “just-in-time” compilation techniques dynamically gen-
erate code for programs written in interpreted languages, such as Java, to improve
execution performance. Whether or not we can restrict the executable code to just
that part generated by the compiler in creating the original program depends on
the language and the operating system.

The techniques we have outlined—randomization, stack protection, and lim-
iting which portions of memory can hold executable code—are three of the most
common mechanisms used to minimize the vulnerability of programs to buffer
overflow attacks. They all have the properties that they require no special effort
on the part of the programmer and incur very little or no performance penalty.
Each separately reduces the level of vulnerability, and in combination they be-
come even more effective. Unfortunately, there are still ways to attack computers
[81, 94], and so worms and viruses continue to compromise the integrity of many
machines.

Web Aside ASM:EASM Combining assembly code with C programs

Although a C compiler does a good job of converting the computations we express in a program into
machine code, there are some features of a machine that cannot be accessed by a C program. For
example, IA32 machines have a condition code PF (for “parity flag”) that is set to 1 when there is an
even number of ones in the low-order 8 bits of the computed result. Computing this information in C

Section 3.13 x86-64: Extending IA32 to 64 Bits 267

requires at least seven shifting, masking, and exclusive-or operations (see Problem 2.65). It is ironic
that the hardware performs this computation as part of every arithmetic or logical operation, but there
is no way for a C program to determine the value of the PF condition code.

There are two ways to incorporate assembly code into C programs. First, we can write an entire
function as a separate assembly-code file and let the assembler and linker combine this with code we
have written in C. Second, we can use the inline assembly feature of gcc, where brief sections of assembly
code can be incorporated into a C program using the asm directive. This approach has the advantage
that it minimizes the amount of machine-specific code.

Of course, including assembly code in a C program makes the code specific to a particular class of
machines (such as IA32), and so it should only be used when the desired feature can only be accessed
in this way.

3.13 x86-64: Extending IA32 to 64 Bits

Intel’s IA32 instruction set architecture (ISA) has been the dominant instruction
format for the world’s computers for many years. IA32 has been the platform of
choice for most Windows, Linux, and, since 2006, even Macintosh computers. The
IA32 format used today was, for the most part, defined in 1985 with the introduc-
tion of the i386 microprocessor, extending the 16-bit instruction set defined by the
original 8086 to 32 bits. Even though subsequent processor generations have in-
troduced new instruction types and formats, many compilers, including gcc, have
avoided using these features in the interest of maintaining backward compatibility.
For example, we saw in Section 3.6.6 that the conditional move instructions, intro-
duced by Intel in 1995, can yield significant efficiency improvements over more
traditional conditional branches, yet in most configurations gcc will not generate
these instructions.

A shift is underway to a 64-bit version of the Intel instruction set. Originally
developed by Advanced Micro Devices (AMD) and named x86-64, it is now
supported by most processors from AMD (who now call it AMD64) and by Intel,
who refer to it as Intel64. Most people still refer to it as “x86-64,” and we follow this
convention. (Some vendors have shortened this to simply “x64”.) Newer versions
of Linux and Windows support this extension, although systems still run only 32-
bit versions of these operating systems. In extending gcc to support x86-64, the
developers saw an opportunity to also make use of some of the instruction-set
features that had been added in more recent generations of IA32 processors.

This combination of new hardware and revised compiler makes x86-64 code
substantially different in form and in performance than IA32 code. In creating
the 64-bit extension, the AMD engineers adopted some of the features found in
reduced instruction set computers (RISC) [49] that made them the favored targets
for optimizing compilers. For example, there are now 16 general-purpose registers,
rather than the performance-limiting 8 of the original 8086. The developers of gcc
were able to exploit these features, as well as those of more recent generations
of the IA32 architecture, to obtain substantial performance improvements. For
example, procedure parameters are now passed via registers rather than on the
stack, greatly reducing the number of memory read and write operations.

268 Chapter 3 Machine-Level Representation of Programs

This section serves as a supplement to our description of IA32, describing
the extensions in both the hardware and the software support to accommodate
x86-64. We assume readers are already familiar with IA32. We start with a brief
history of how AMD and Intel arrived at x86-64, followed by a summary of the
main features that distinguish x86-64 code from IA32 code, and then work our
way through the individual features.

3.13.1 History and Motivation for x86-64

Over the many years since introduction of the i386 in 1985, the capabilities of
microprocessors have changed dramatically. In 1985, a fully configured high-end
desktop computer, such as the Sun-3 workstation sold by Sun Microsystems, had
at most 8 megabytes of random-access memory (RAM) and 100 megabytes of
disk storage. It used a Motorola 68020 microprocessor (Intel microprocessors of
that era did not have the necessary features and performance for high-end ma-
chines) with a 12.5-megahertz clock and ran around 4 million instructions per
second. Nowadays, a typical high-end desktop system has 4 gigabytes of RAM
(512× increase), 1 terabyte of disk storage (10,000× increase), and a nearly 4-
gigahertz clock, running around 5 billion instructions per second (1250× increase).
Microprocessor-based systems have become pervasive. Even today’s supercom-
puters are based on harnessing the power of many microprocessors computing in
parallel. Given these large quantitative improvements, it is remarkable that the
world’s computing base mostly runs code that is binary compatible with machines
that existed back in 1985 (except that they did not have nearly enough memory
to handle today’s operating systems and applications).

The 32-bit word size of the IA32 has become a major limitation in growing
the capacity of microprocessors. Most significantly, the word size of a machine
defines the range of virtual addresses that programs can use, giving a 4-gigabyte
virtual address space in the case of 32 bits. It is now feasible to buy more than
this amount of RAM for a machine, but the system cannot make effective use
of it. For applications that involve manipulating large data sets, such as scientific
computing, databases, and data mining, the 32-bit word size makes life difficult
for programmers. They must write code using out-of-core algorithms,5 where the
data reside on disk and are explicitly read into memory for processing.

Further progress in computing technology requires shifting to a larger word
size. Following the tradition of growing word sizes by doubling, the next logical
step is 64 bits. In fact, 64-bit machines have been available for some time. Digital
Equipment Corporation introduced its Alpha processor in 1992, and it became
a popular choice for high-end computing. Sun Microsystems introduced a 64-bit
version of its SPARC architecture in 1995. At the time, however, Intel was not
a serious contender for high-end computers, and so the company was under less
pressure to switch to 64 bits.

5. The physical memory of a machine is often referred to as core memory, dating to an era when each
bit of a random-access memory was implemented with a magnetized ferrite core.

Section 3.13 x86-64: Extending IA32 to 64 Bits 269

Intel’s first foray into 64-bit computers were the Itanium processors, based
on a totally new instruction set, known as “IA64.” Unlike Intel’s historic strategy
of maintaining backward compatibility as it introduced each new generation of
microprocessor, IA64 is based on a radically new approach jointly developed
with Hewlett-Packard. Its Very Large Instruction Word (VLIW) format packs
multiple instructions into bundles, allowing higher degrees of parallel execution.
Implementing IA64 proved to be very difficult, and so the first Itanium chips did
not appear until 2001, and these did not achieve the expected level of performance
on real applications. Although the performance of Itanium-based systems has
improved, they have not captured a significant share of the computer market.
Itanium machines can execute IA32 code in a compatibility mode, but not with
very good performance. Most users have preferred to make do with less expensive,
and often faster, IA32-based systems.

Meanwhile, Intel’s archrival, Advanced Micro Devices (AMD), saw an op-
portunity to exploit Intel’s misstep with IA64. For years, AMD had lagged just
behind Intel in technology, and so they were relegated to competing with Intel on
the basis of price. Typically, Intel would introduce a new microprocessor at a price
premium. AMD would come along 6 to 12 months later and have to undercut
Intel significantly to get any sales—a strategy that worked but yielded very low
profits. In 2003, AMD introduced a 64-bit microprocessor based on its “x86-64”
instruction set. As the name implies, x86-64 is an evolution of the Intel instruc-
tion set to 64 bits. It maintains full backward compatibility with IA32, but it adds
new data formats, as well as other features that enable higher capacity and higher
performance. With x86-64, AMD captured some of the high-end market that had
historically belonged to Intel. AMD’s recent generations of processors have in-
deed proved very successful as high-performance machines. Most recently, AMD
has renamed this instruction set AMD64, but “x86-64” persists as a favored name.

Intel realized that its strategy of a complete shift from IA32 to IA64 was
not working, and so began supporting their own variant of x86-64 in 2004 with
processors in the Pentium 4 Xeon line. Since they had already used the name
“IA64” to refer to Itanium, they then faced a difficulty in finding their own
name for this 64-bit extension. In the end, they decided to describe x86-64 as an
enhancement to IA32, and so they referred to it as IA32-EM64T , for “Enhanced
Memory 64-bit Technology.” In late 2006, they adopted the name Intel64.

On the compiler side, the developers of gcc steadfastly maintained binary
compatibility with the i386, even as useful features were being added to the IA32
instruction set, including conditional moves and a more modern set of floating-
point instructions. These features would only be used when code was compiled
with special settings of command-line options. Switching to x86-64 as a target
provided an opportunity for gcc to give up backward compatibility and instead
exploit these newer features even with standard command-line options.

In this text, we use “IA32” to refer to the combination of hardware and
gcc code found in traditional 32-bit versions of Linux running on Intel-based
machines. We use “x86-64” to refer to the hardware and code combination running
on the newer 64-bit machines from AMD and Intel. In the worlds of Linux and
gcc, these two platforms are referred to as “i386” and “x86_64,” respectively.

270 Chapter 3 Machine-Level Representation of Programs

3.13.2 An Overview of x86-64

The combination of the new hardware supplied by Intel and AMD, and the new
versions of gcc targeting these machines makes x86-64 code substantially different
from that generated for IA32 machines. The main features include:

. Pointers and long integers are 64 bits long. Integer arithmetic operations
support 8, 16, 32, and 64-bit data types.

. The set of general-purpose registers is expanded from 8 to 16.

. Much of the program state is held in registers rather than on the stack. Integer
and pointer procedure arguments (up to 6) are passed via registers. Some
procedures do not need to access the stack at all.

. Conditional operations are implemented using conditional move instructions
when possible, yielding better performance than traditional branching code.

. Floating-point operations are implemented using the register-oriented in-
struction set introduced with SSE version 2, rather than the stack-based ap-
proach supported by IA32.

Data Types

Figure 3.34 shows the sizes of different C data types for x86-64, and compares
them to the sizes for IA32 (rightmost column). We see that pointers (shown here
as data type char *) require 8 bytes rather than 4. These are referred to as quad
words by Intel, since they are 4 times longer than the nominal 16-bit “word.”
In principle, this gives programs the ability to access 264 bytes, or 16 exabytes,
of memory (around 18.4 × 1018 bytes). That seems like an astonishing amount
of memory, but keep in mind that 4 gigabytes seemed like an extremely large
amount of memory when the first 32-bit machines appeared in the late 1970s. In
practice, most machines do not really support the full address range—the current

Assembly x86-64
C declaration Intel data type code suffix size (bytes) IA32 Size

char Byte b 1 1
short Word w 2 2
int Double word l 4 4
long int Quad word q 8 4
long long int Quad word q 8 8
char * Quad word q 8 4
float Single precision s 4 4
double Double precision d 8 8
long double Extended precision t 10/16 10/12

Figure 3.34 Sizes of standard data types with x86-64. These are compared to the
sizes for IA32. Both long integers and pointers require 8 bytes, as compared to 4 for IA32.

Section 3.13 x86-64: Extending IA32 to 64 Bits 271

generations of AMD and Intel x86-64 machines support 256 terabytes (248 bytes)
of virtual memory—but allocating a full 64 bits for pointers is a good idea for
long-term compatibility.

We also see that the prefix “long” changes integers to 64 bits, allowing a
considerably larger range of values. In fact, data type long becomes identical
to long long. Moreover, the hardware provides registers that can hold 64-bit
integers and instructions that can operate on these quad words.

As with IA32, the long prefix also changes a floating-point double to use
the 80-bit format supported by IA32 (Section 2.4.6). These are stored in memory
with an allocation of 16 bytes for x86-64, compared to 12 bytes for IA32. This
improves the performance of memory read and write operations, which typically
fetch 8 or 16 bytes at a time. Whether 12 or 16 bytes are allocated, only the low-
order 10 bytes are actually used. Moreover, the long double data type is only
supported by an older class of floating-point instructions that have some idiosyn-
cratic properties (see Web Aside data:ia32-fp), while both the float and double
data types are supported by the more recent SSE instructions. The long double
data type should only be used by programs requiring the additional precision and
range the extended-precision format provides over the double-precision format.

Practice Problem 3.46
As shown in Figure 6.17(b), the cost of DRAM, the memory technology used
to implement the main memories of microprocessors, has dropped from around
$8,000 per megabyte in 1980 to around $0.06 in 2010, roughly a factor of 1.48
every year, or around 51 every 10 years. Let us assume these trends will continue
indefinitely (which may not be realistic), and that our budget for a machine’s
memory is around $1,000, so that we would have configured a machine with
128 kilobytes in 1980 and with 16.3 gigabytes in 2010.

A. Estimate when our $1,000 budget would pay for 256 terabytes of memory.

B. Estimate when our $1,000 budget would pay for 16 exabytes of memory.

C. How much earlier would these transition points occur if we raised our
DRAM budget to $10,000?

Assembly-Code Example

In Section 3.2.3, we presented the IA32 assembly code generated by gcc for a
function simple. Below is the C code for simple_l, similar to simple, except that
it uses long integers:

long int simple_l(long int *xp, long int y)

{

long int t = *xp + y;

*xp = t;

return t;

}

272 Chapter 3 Machine-Level Representation of Programs

When gcc is run on an x86-64 Linux machine with the command line

unix> gcc -O1 -S -m32 code.c

it generates code that is compatible with any IA32 machine (we annotate the code
to highlight which instructions read (R) data from memory and which instructions
write (W) data to memory):

IA32 implementation of function simple_l.

xp at %ebp+8, y at %ebp+12

1 simple_l:

2 pushl %ebp Save frame pointer (W)

3 movl %esp, %ebp Create new frame pointer

4 movl 8(%ebp), %edx Retrieve xp (R)

5 movl 12(%ebp), %eax Retrieve yp (R)

6 addl (%edx), %eax Add *xp to get t (R)

7 movl %eax, (%edx) Store t at xp (W)

8 popl %ebp Restore frame pointer (R)

9 ret Return (R)

When we instruct gcc to generate x86-64 code

unix> gcc -O1 -S -m64 code.c

(on most machines, the flag -m64 is not required), we get very different code:

x86-64 version of function simple_l.

xp in %rdi, y in %rsi

1 simple_l:

2 movq %rsi, %rax Copy y

3 addq (%rdi), %rax Add *xp to get t (R)

4 movq %rax, (%rdi) Store t at xp (W)

5 ret Return (R)

Some of the key differences include:

. Instead of movl and addl instructions, we see movq and addq. The pointers
and variables declared as long integers are now 64 bits (quad words) rather
than 32 bits (long words).

. We see the 64-bit versions of registers (e.g., %rsi and %rdi, rather than %esi
and %edi). The procedure returns a value by storing it in register %rax.

. No stack frame gets generated in the x86-64 version. This eliminates the
instructions that set up (lines 2–3) and remove (line 8) the stack frame in the
IA32 code.

. Arguments xp and y are passed in registers (%rdi and %rsi, respectively)
rather than on the stack. This eliminates the need to fetch the arguments from
memory.

Section 3.13 x86-64: Extending IA32 to 64 Bits 273

The net effect of these changes is that the IA32 code consists of eight instruc-
tions making seven memory references (five reads, two writes), while the x86-64
code consists of four instructions making three memory references (two reads,
one write). The relative performance of the two versions depends greatly on the
hardware on which they are executed. Running on an Intel Pentium 4E, one of
the first Intel machines to support x86-64, we found that the IA32 version requires
around 18 clock cycles per call to simple_l, while the x86-64 version requires only
12. This 50% performance improvement on the same machine with the same C
code is quite striking. On a newer Intel Core i7 processor, we found that both ver-
sions required around 12 clock cycles, indicating no performance improvement.
On other machines we have tried, the performance difference lies somewhere be-
tween these two extremes. In general, x86-64 code is more compact, requires fewer
memory accesses, and runs more efficiently than the corresponding IA32 code.

3.13.3 Accessing Information

Figure 3.35 shows the set of general-purpose registers under x86-64. Compared to
the registers for IA32 (Figure 3.2), we see a number of differences:

. The number of registers has been doubled to 16.

. All registers are 64 bits long. The 64-bit extensions of the IA32 registers are
named %rax, %rcx, %rdx, %rbx, %rsi, %rdi, %rsp, and %rbp. The new registers
are named %r8–%r15.

. The low-order 32 bits of each register can be accessed directly. This gives us
the familiar registers from IA32: %eax, %ecx, %edx, %ebx, %esi, %edi, %esp,
and %ebp, as well as eight new 32-bit registers: %r8d–%r15d.

. The low-order 16 bits of each register can be accessed directly, as is the case
for IA32. The word-size versions of the new registers are named %r8w–%r15w.

. The low-order 8 bits of each register can be accessed directly. This is true
in IA32 only for the first four registers (%al, %cl, %dl, %bl). The byte-size
versions of the other IA32 registers are named %sil, %dil, %spl, and %bpl.
The byte-size versions of the new registers are named %r8b–%r15b.

. For backward compatibility, the second byte of registers %rax, %rcx, %rdx, and
%rbx can be directly accessed by instructions having single-byte operands.

As with IA32, most of the registers can be used interchangeably, but there
are some special cases. Register %rsp has special status, in that it holds a pointer
to the top stack element. Unlike in IA32, however, there is no frame pointer
register; register %rbp is available for use as a general-purpose register. Particular
conventions are used for passing procedure arguments via registers and for how
registers are to be saved and restored during procedure calls, as is discussed
in Section 3.13.4. In addition, some arithmetic instructions make special use of
registers %rax and %rdx.

For the most part, the operand specifiers of x86-64 are just the same as those
in IA32 (see Figure 3.3), except that the base and index register identifiers must

274 Chapter 3 Machine-Level Representation of Programs

%ah

3163 15 8 7 0

%eax %ax %al

%bh%ebx %bx %bl

%ch%ecx %cx %cl

%dh%edx %dx

%esi %si

%edi %di

%ebp %bp

%esp

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

%rsp %sp

%dl

%sil

%dil

%bpl

%spl

%r8d%r8 %r8w %r8b

%r9

%r10

%r11

%r12

%r13

%r14

%r15

Return value

Callee saved

4th argument

3rd argument

2nd argument

1st argument

Callee saved

Stack pointer

5th argument

6th argument

Caller saved

Caller saved

Callee saved

Callee saved

Callee saved

Callee saved

%r9d %r9w %r9b

%r10d %r10w %r10b

%r11d %r11w %r11b

%r12d %r12w %r12b

%r13d %r13w %r13b

%r14d %r14w %r14b

%r15d %r15w %r15b

Figure 3.35 Integer registers. The existing eight registers are extended to 64-bit versions, and eight new
registers are added. Each register can be accessed as either 8 bits (byte), 16 bits (word), 32 bits (double word),
or 64 bits (quad word).

Section 3.13 x86-64: Extending IA32 to 64 Bits 275

use the ‘r’ version of a register (e.g., %rax) rather than the ‘e’ version. In addition
to the IA32 addressing forms, some forms of PC-relative operand addressing are
supported. With IA32, this form of addressing is only supported for jump and
other control transfer instructions (see Section 3.6.3). This mode is provided to
compensate for the fact that the offsets (shown in Figure 3.3 as Imm) are only 32
bits long. By viewing this field as a 32-bit two’s-complement number, instructions
can access data within a window of around ±2.15 × 109 relative to the program
counter. With x86-64, the program counter is named %rip.

As an example of PC-relative data addressing, consider the following proce-
dure, which calls the function simple_l examined earlier:

long int gval1 = 567;

long int gval2 = 763;

long int call_simple_l()

{

long int z = simple_l(&gval1, 12L);

return z + gval2;

}

This code references global variables gval1 and gval2. When this function
is compiled, assembled, and linked, we get the following executable code (as
generated by the disassembler objdump):

1 0000000000400541 <call_simple_l>:

2 400541: be 0c 00 00 00 mov $0xc,%esi Load 12 as 2nd argument

3 400546: bf 20 10 60 00 mov $0x601020,%edi Load &gval1 as 1st argument

4 40054b: e8 c3 ff ff ff callq 400513 <simple_l> Call simple_l

5 400550: 48 03 05 d1 0a 20 00 add 0x200ad1(%rip),%rax Add gval2 to result

6 400557: c3 retq Return

The instruction on line 3 stores the address of global variable gval1 in register
%rdi. It does this by copying the constant value 0x601020 into register %edi. The
upper 32 bits of %rdi are automatically set to zero. The instruction on line 5
retrieves the value of gval2 and adds it to the value returned by the call to
simple_l. Here we see PC-relative addressing—the immediate value 0x200ad1
is added to the address of the following instruction to get 0x200ad1 + 0x400557
= 0x601028.

Figure 3.36 documents some of the data movement instructions available with
x86-64 beyond those found in IA32 (see Figure 3.4). Some instructions require the
destination to be a register, indicated by R. Others can have either a register or
a memory location as destination, indicated by D. Most of these instructions fall
within a class of instructions seen with IA32. The movabsq instruction, on the other
hand, has no counterpart in IA32. This instruction can copy a full 64-bit immediate
value to its destination register. When the movq instruction has an immediate value
as its source operand, it is limited to a 32-bit value, which is sign-extended to 64 bits.

276 Chapter 3 Machine-Level Representation of Programs

Instruction Effect Description

movabsq I , R R ← I Move absolute quad word

mov S, D D ← S Move

movq Move quad word

movs S, D D ← SignExtend(S) Move with sign extension

movsbq Move sign-extended byte to quad word
movswq Move sign-extended word to quad word
movslq Move sign-extended double word to quad word

movz S, D D ← ZeroExtend(S) Move with zero extension

movzbq Move zero-extended byte to quad word
movzwq Move zero-extended word to quad word

pushq S R[%rsp] ← R[%rsp] − 8; Push quad word
M[R[%rsp]] ← S

popq D D ← M[R[%rsp]]; Pop quad word
R[%rsp] ← R[%rsp] + 8

Figure 3.36 Data movement instructions. These supplement the movement instructions of IA32
(Figure 3.4). The movabsq instruction only allows immediate data (shown as I) as the source value.
Others allow immediate data, a register, or memory (shown as S). Some instructions require the
destination to be a register (shown as R), while others allow both register and memory destinations
(shown as D).

Moving from a smaller data size to a larger one can involve either sign ex-
tension (movs) or zero extension (movz). Perhaps unexpectedly, instructions that
move or generate 32-bit register values also set the upper 32 bits of the register
to zero. Consequently there is no need for an instruction movzlq. Similarly, the
instruction movzbq has the exact same behavior as movzbl when the destination
is a register—both set the upper 56 bits of the destination register to zero. This
is in contrast to instructions that generate 8- or 16-bit values, such as movb; these
instructions do not alter the other bits in the register. The new stack instructions
pushq and popq allow pushing and popping of 64-bit values.

Practice Problem 3.47
The following C function converts an argument of type src_t to a return value of
type dst_t, where these two types are defined using typedef:

dest_t cvt(src_t x)

{

dest_t y = (dest_t) x;

return y;

}

Section 3.13 x86-64: Extending IA32 to 64 Bits 277

Assume argument x is in the appropriately named portion of register %rdi
(i.e., %rdi, %edi, %di, or %dil), and that some form of data movement instruction
is to be used to perform the type conversion and to copy the value to the ap-
propriately named portion of register %rax. Fill in the following table indicating
the instruction, the source register, and the destination register for the following
combinations of source and destination type:

src_t dest_t Instruction S D

long long movq %rdi %rax

int long

char long

unsigned int unsigned long

unsigned char unsigned long

long int

unsigned long unsigned

Arithmetic Instructions

In Figure 3.7, we listed a number of arithmetic and logic instructions, using a class
name, such as “add”, to represent instructions for different operand sizes, such as
addb (byte), addw (word), and addl (long word). To each of these classes we now
add instructions that operate on quad words with the suffix ‘q’. Examples of these
quad-word instructions include leaq (load effective address), incq (increment),
addq (add), and salq (shift left). These quad-word instructions have the same
argument types as their shorter counterparts. As mentioned earlier, instructions
that generate 32-bit register results, such as addl, also set the upper 32 bits of the
register to zero. Instructions that generate 16-bit results, such as addw, only affect
their 16-bit destination registers, and similarly for instructions that generate 8-bit
results. As with the movq instruction, immediate operands are limited to 32-values,
which are sign extended to 64 bits.

When mixing operands of different sizes, gcc must choose the right combina-
tions of arithmetic instructions, sign extensions, and zero extensions. These depend
on subtle aspects of type conversion and the behavior of the instructions for dif-
ferent operand sizes. This is illustrated by the following C function:

1 long int gfun(int x, int y)

2 {

3 long int t1 = (long) x + y; /* 64-bit addition */

4 long int t2 = (long) (x + y); /* 32-bit addition */

5 return t1 | t2;

6 }

Given that integers are 32 bits and long integers are 64, the two additions in
this function proceed as follows. Recall that casting has higher precedence than
addition, and so line 3 calls for x to be converted to 64 bits, and by operand

278 Chapter 3 Machine-Level Representation of Programs

promotion y is also converted. Value t1 is then computed using 64-bit addition.
On the other hand, t2 is computed in line 4 by performing 32-bit addition and
then extending this value to 64 bits.

The assembly code generated for this function is as follows:

1 gfun:

x in %rdi, y in %rsi

2 leal (%rsi,%rdi), %eax Compute t2 as 32-bit sum of x and y

cltq is equivalent to movslq %eax,%rax

3 cltq Sign extend to 64 bits

4 movslq %esi,%rsi Convert y to long

5 movslq %edi,%rdi Convert x to long

6 addq %rdi, %rsi Compute t1 (64-bit addition)

7 orq %rsi, %rax Set t1 | t2 as return value

8 ret Return

Local value t2 is computed with an leal instruction (line 2), which uses
32-bit arithmetic. It is then sign-extended to 64 bits using the cltq instruction,
which we will see is a special instruction equivalent to executing the instruction
movslq %eax,%rax. The movslq instructions on lines 4–5 take the lower 32 bits
of the arguments and sign extend them to 64 bits in the same registers. The addq
instruction on line 6 then performs 64-bit addition to get t1.

Practice Problem 3.48
A C function arithprob with arguments a, b, c, and d has the following body:

return a*b + c*d;

It compiles to the following x86-64 code:

1 arithprob:

2 movslq %ecx,%rcx

3 imulq %rdx, %rcx

4 movsbl %sil,%esi

5 imull %edi, %esi

6 movslq %esi,%rsi

7 leaq (%rcx,%rsi), %rax

8 ret

The arguments and return value are all signed integers of various lengths.
Arguments a, b, c, and d are passed in the appropriate regions of registers %rdi,
%rsi, %rdx, and %rcx, respectively. Based on this assembly code, write a function
prototype describing the return and argument types for arithprob.

Figure 3.37 show instructions used to generate the full 128-bit product of two
64-bit words, as well as ones to support 64-bit division. They are similar to their 32-
bit counterparts (Figure 3.9). Several of these instructions view the combination

Section 3.13 x86-64: Extending IA32 to 64 Bits 279

Instruction Effect Description

imulq S R[%rdx]:R[%rax] ← S × R[%rax] Signed full multiply
mulq S R[%rdx]:R[%rax] ← S × R[%rax] Unsigned full multiply

cltq R[%rax] ← SignExtend(R[%eax]) Convert %eax to quad word

cqto R[%rdx]:R[%rax] ← SignExtend(R[%rax]) Convert to oct word

idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] ← R[%rdx]:R[%rax] ÷ S

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] ← R[%rdx]:R[%rax] ÷ S

Figure 3.37 Special arithmetic operations. These operations support full 64-bit
multiplication and division, for both signed and unsigned numbers. The pair of registers
%rdx and %rax are viewed as forming a single 128-bit oct word.

of registers %rdx and %rax as forming a 128-bit oct word. For example, the imulq
and mulq instructions store the result of multiplying two 64-bit values—the first
as given by the source operand and the second from register %rax.

The two divide instructions idivq and divq start with %rdx:%rax as the
128-bit dividend and the source operand as the 64-bit divisor. They then store
the quotient in register %rax and the remainder in register %rdx. Preparing the
dividend depends on whether unsigned (divq) or signed (idivq) division is to be
performed. In the former case, register %rdx is simply set to zero. In the latter
case, the instruction cqto is used to perform sign extension, copying the sign
bit of %rax into every bit of %rdx.6 Figure 3.37 also shows an instruction cltq
to sign extend register %eax to %rax.7 This instruction is just a shorthand for the
instruction movslq %eax,%rax.

3.13.4 Control

The control instructions and methods of implementing control transfers in x86-64
are the same as those in IA32 (Section 3.6.) As shown in Figure 3.38, two new
instructions, cmpq and testq, are added to compare and test quad words, aug-
menting those for byte, word, and double word sizes (Figure 3.10). gcc uses both
conditional data transfer and conditional control transfer, since all x86-64 ma-
chines support conditional moves.

To illustrate the similarity between IA32 and x86-64 code, consider the as-
sembly code generated by compiling an integer factorial function implemented
with a while loop (Figure 3.15), as is shown in Figure 3.39. As can be seen, these

6. ATT-format instruction cqto is called cqo in Intel and AMD documentation.

7. Instruction cltq is called cdqe in Intel and AMD documentation.

280 Chapter 3 Machine-Level Representation of Programs

Instruction Based on Description

cmp S2, S1 S1 - S2 Compare
cmpq Compare quad word

test S2, S1 S1 & S2 Test
testq Test quad word

Figure 3.38 64-bit comparison and test instructions. These instructions set the
condition codes without updating any other registers.

(a) IA32 version

1 fact_while:

n at %ebp+8

2 pushl %ebp Save frame pointer

3 movl %esp, %ebp Create new frame pointer

4 movl 8(%ebp), %edx Get n

5 movl $1, %eax Set result = 1

6 cmpl $1, %edx Compare n:1

7 jle .L7 If <=, goto done

8 .L10: loop:

9 imull %edx, %eax Compute result *= n

10 subl $1, %edx Decrement n

11 cmpl $1, %edx Compare n:1

12 jg .L10 If >, goto loop

13 .L7: done:

14 popl %ebp Restore frame pointer

15 ret Return result

(b) x86-64 version

1 fact_while:

n in %rdi

2 movl $1, %eax Set result = 1

3 cmpl $1, %edi Compare n:1

4 jle .L7 If <=, goto done

5 .L10: loop:

6 imull %edi, %eax Compute result *= n

7 subl $1, %edi Decrement n

8 cmpl $1, %edi Compare n:1

9 jg .L10 If >, goto loop

10 .L7: done:

11 rep (See explanation in aside)

12 ret Return result

Figure 3.39 IA32 and x86-64 versions of factorial. Both were compiled from the C
code shown in Figure 3.15.

Section 3.13 x86-64: Extending IA32 to 64 Bits 281

two versions are very similar. They differ only in how arguments are passed (on
the stack vs. in registers), and the absence of a stack frame or frame pointer in the
x86-64 code.

Aside Why is there a rep instruction in this code?

On line 11 of the x86-64 code, we see the instruction rep precedes the return instruction ret. Looking at
the Intel and AMD documentation for the rep instruction, we find that it is normally used to implement
a repeating string operation [3, 29]. It seems completely inappropriate here. The answer to this puzzle
can be seen in AMD’s guidelines to compiler writers [1]. They recommend using the combination of
rep followed by ret to avoid making the ret instruction be the destination of a conditional jump
instruction. Without the rep instruction, the jg instruction would proceed to the ret instruction when
the branch is not taken. According to AMD, their processors cannot properly predict the destination
of a ret instruction when it is reached from a jump instruction. The rep instruction serves as a form
of no-operation here, and so inserting it as the jump destination does not change behavior of the code,
except to make it faster on AMD processors.

Practice Problem 3.49
A function fun_c has the following overall structure:

long fun_c(unsigned long x) {

long val = 0;

int i;

for (; ;) {

;

}

;

return ;

}

The gcc C compiler generates the following assembly code:

1 fun_c:

x in %rdi

2 movl $0, %ecx

3 movl $0, %edx

4 movabsq $72340172838076673, %rsi

5 .L2:

6 movq %rdi, %rax

7 andq %rsi, %rax

8 addq %rax, %rcx

9 shrq %rdi Shift right by 1

10 addl $1, %edx

11 cmpl $8, %edx

12 jne .L2

282 Chapter 3 Machine-Level Representation of Programs

13 movq %rcx, %rax

14 sarq $32, %rax

15 addq %rcx, %rax

16 movq %rax, %rdx

17 sarq $16, %rdx

18 addq %rax, %rdx

19 movq %rdx, %rax

20 sarq $8, %rax

21 addq %rdx, %rax

22 andl $255, %eax

23 ret

Reverse engineer the operation of this code. You will find it useful to convert the
decimal constant on line 4 to hexadecimal.

A. Use the assembly-code version to fill in the missing parts of the C code.

B. Describe in English what this code computes.

Procedures

We have already seen in our code samples that the x86-64 implementation of
procedure calls differs substantially from that of IA32. By doubling the register
set, programs need not be so dependent on the stack for storing and retrieving
procedure information. This can greatly reduce the overhead for procedure calls
and returns.

Here are some of the highlights of how procedures are implemented with
x86-64:

. Arguments (up to the first six) are passed to procedures via registers, rather
than on the stack. This eliminates the overhead of storing and retrieving values
on the stack.

. The callq instruction stores a 64-bit return address on the stack.

. Many functions do not require a stack frame. Only functions that cannot keep
all local variables in registers need to allocate space on the stack.

. Functions can access storage on the stack up to 128 bytes beyond (i.e., at a
lower address than) the current value of the stack pointer. This allows some
functions to store information on the stack without altering the stack pointer.

. There is no frame pointer. Instead, references to stack locations are made
relative to the stack pointer. Most functions allocate their total stack storage
needs at the beginning of the call and keep the stack pointer at a fixed position.

. As with IA32, some registers are designated as callee-save registers. These
must be saved and restored by any procedure that modifies them.

Section 3.13 x86-64: Extending IA32 to 64 Bits 283

Operand Argument Number
size (bits) 1 2 3 4 5 6

64 %rdi %rsi %rdx %rcx %r8 %r9

32 %edi %esi %edx %ecx %r8d %r9d

16 %di %si %dx %cx %r8w %r9w

8 %dil %sil %dl %cl %r8b %r9b

Figure 3.40 Registers for passing function arguments. The registers are used in a
specified order and named according to the argument sizes.

Argument Passing

Up to six integral (i.e., integer and pointer) arguments can be passed via registers.
The registers are used in a specified order, with the name used for a register de-
pending on the size of the data type being passed. These are shown in Figure 3.40.
Arguments are allocated to these registers according to their ordering in the ar-
gument list. Arguments smaller than 64 bits can be accessed using the appropriate
subsection of the 64-bit register. For example, if the first argument is 32 bits, it can
be accessed as %edi.

As an example of argument passing, consider the following C function having
eight arguments:

void proc(long a1, long *a1p,

int a2, int *a2p,

short a3, short *a3p,

char a4, char *a4p)

{

*a1p += a1;

*a2p += a2;

*a3p += a3;

*a4p += a4;

}

The arguments include a range of different-sized integers (64, 32, 16, and 8 bits)
as well as different types of pointers, each of which is 64 bits.

This function is implemented in x86-64 as follows:

x86-64 implementation of function proc

Arguments passed as follows:

a1 in %rdi (64 bits)

a1p in %rsi (64 bits)

a2 in %edx (32 bits)

a2p in %rcx (64 bits)

a3 in %r8w (16 bits)

a3p in %r9 (64 bits)

284 Chapter 3 Machine-Level Representation of Programs

a4 at %rsp+8 (8 bits)

a4p at %rsp+16 (64 bits)

1 proc:

2 movq 16(%rsp), %r10 Fetch a4p (64 bits)

3 addq %rdi, (%rsi) *a1p += a1 (64 bits)

4 addl %edx, (%rcx) *a2p += a2 (32 bits)

5 addw %r8w, (%r9) *a3p += a3 (16 bits)

6 movzbl 8(%rsp), %eax Fetch a4 (8 bits)

7 addb %al, (%r10) *a4p += a4 (8 bits)

8 ret

The first six arguments are passed in registers, while the last two are at positions 8
and 16 relative to the stack pointer. Different versions of the add instruction are
used according to the sizes of the operands: addq for a1 (long), addl for a2 (int),
addw for a3 (short), and addb for a4 (char).

Practice Problem 3.50
A C function incrprob has arguments q, t, and x of different sizes, and each may
be signed or unsigned. The function has the following body:

*t += x;

*q += *t;

It compiles to the following x86-64 code:

1 incrprob:

2 addl (%rdx), %edi

3 movl %edi, (%rdx)

4 movslq %edi,%rdi

5 addq %rdi, (%rsi)

6 ret

Determine all four valid function prototypes for incrprob by determining the
ordering and possible types of the three parameters.

Stack Frames

We have already seen that many compiled functions do not require a stack frame.
If all of the local variables can be held in registers, and the function does not call
any other functions (sometimes referred to as a leaf procedure, in reference to the
tree structure of procedure calls), then the only need for the stack is to save the
return address.

On the other hand, there are several reasons a function may require a stack
frame:

. There are too many local variables to hold in registers.

. Some local variables are arrays or structures.

Section 3.13 x86-64: Extending IA32 to 64 Bits 285

. The function uses the address-of operator (&) to compute the address of a
local variable.

. The function must pass some arguments on the stack to another function.

. The function needs to save the state of a callee-save register before modify-
ing it.

When any of these conditions hold, we find the compiled code for the function
creating a stack frame. Unlike the code for IA32, where the stack pointer fluctuates
back and forth as values are pushed and popped, the stack frames for x86-64
procedures usually have a fixed size, set at the beginning of the procedure by
decrementing the stack pointer (register %rsp). The stack pointer remains at a
fixed position during the call, making it possible to access data using offsets relative
to the stack pointer. As a consequence, the frame pointer (register %ebp) seen in
IA32 code is no longer needed.

Whenever one function (the caller) calls another (the callee), the return ad-
dress gets pushed onto the stack. By convention, we consider this part of the
caller’s stack frame, in that it encodes part of the caller’s state. But this infor-
mation gets popped from the stack as control returns to the caller, and so it does
not affect the offsets used by the caller for accessing values within the stack frame.

The following function illustrates many aspects of the x86-64 stack discipline.
Despite the length of this example, it is worth studying carefully.

long int call_proc()

{

long x1 = 1; int x2 = 2;

short x3 = 3; char x4 = 4;

proc(x1, &x1, x2, &x2, x3, &x3, x4, &x4);

return (x1+x2)*(x3-x4);

}

gcc generates the following x86-64 code.

x86-64 implementation of call_proc

1 call_proc:

2 subq $32, %rsp Allocate 32-byte stack frame

3 movq $1, 16(%rsp) Store 1 in &x1

4 movl $2, 24(%rsp) Store 2 in &x2

5 movw $3, 28(%rsp) Store 3 in &x3

6 movb $4, 31(%rsp) Store 4 in &x4

7 leaq 24(%rsp), %rcx Pass &x2 as argument 4

8 leaq 16(%rsp), %rsi Pass &x1 as argument 2

9 leaq 31(%rsp), %rax Compute &x4

10 movq %rax, 8(%rsp) Pass &x4 as argument 8

11 movl $4, (%rsp) Pass 4 as argument 7

12 leaq 28(%rsp), %r9 Pass &x3 as argument 6

13 movl $3, %r8d Pass 3 as argument 5

14 movl $2, %edx Pass 2 as argument 3

15 movl $1, %edi Pass 1 as argument 1

286 Chapter 3 Machine-Level Representation of Programs

16 call proc Call

17 movswl 28(%rsp),%eax Get x3 and convert to int

18 movsbl 31(%rsp),%edx Get x4 and convert to int

19 subl %edx, %eax Compute x3-x4

20 cltq Sign extend to long int

21 movslq 24(%rsp),%rdx Get x2

22 addq 16(%rsp), %rdx Compute x1+x2

23 imulq %rdx, %rax Compute (x1+x2)*(x3-x4)

24 addq $32, %rsp Deallocate stack frame

25 ret Return

Figure 3.41(a) illustrates the stack frame set up during the execution of call_
proc. Function call_proc allocates 32 bytes on the stack by decrementing the
stack pointer. It uses bytes 16–31 to hold local variables x1 (bytes 16–23), x2 (bytes
24–27), x3 (bytes 28–29), and x4 (byte 31). These allocations are sized according
to the variable types. Byte 30 is unused. Bytes 0–7 and 8–15 of the stack frame are
used to hold the seventh and eighth arguments to call_proc, since there are not
enough argument registers. The parameters are allocated eight bytes each, even
though parameter x4 requires only a single byte. In the code for call_proc, we
can see instructions initializing the local variables and setting up the parameters
(both in registers and on the stack) for the call to call_proc. After proc returns,
the local variables are combined to compute the final expression, which is returned
in register %rax. The stack space is deallocated by simply incrementing the stack
pointer before the ret instruction.

Figure 3.41(b) illustrates the stack during the execution of proc. The call
instruction pushed the return address onto the stack, and so the stack pointer
is shifted down by 8 relative to its position during the execution of call_proc.

Figure 3.41
Stack frame structure for
call_proc. The frame
is required to hold local
variables x1 through x4,
as well as the seventh and
eighth arguments to proc.
During the execution of
proc (b), the stack pointer
is shifted down by 8.

Stack pointer
%rsp

(a) Before call to proc

x1

Argument 8

Argument 7

24

16

8

0

31 28

x4 x3 x2

Stack pointer
%rsp

(b) During call to proc

x1

Argument 8

Argument 7

Return address

32

24

16

8

0

x4 x3 x2

Section 3.13 x86-64: Extending IA32 to 64 Bits 287

Hence, within the code for proc, arguments 7 and 8 are accessed by offsets of 8
and 16 from the stack pointer.

Observe how call_proc changed the stack pointer only once during its execu-
tion. gcc determined that 32 bytes would suffice for holding all local variables and
for holding the additional arguments to proc. Minimizing the amount of move-
ment by the stack pointer simplifies the compiler’s task of generating reference to
stack elements using offsets from the stack pointer.

Register Saving Conventions

We saw in IA32 (Section 3.7.3) that some registers used for holding temporary
values are designated as caller-saved, where a function is free to overwrite their
values, while others are callee-saved, where a function must save their values on the
stack before writing to them. With x86-64, the following registers are designated
as being callee-saved: %rbx, %rbp, and %r12–%r15.

Aside Are there any caller-saved temporary registers?

Of the 16 general-purpose registers, we’ve seen that 6 are designated for passing arguments, 6 are for
callee-saved temporaries, 1 (%rax) holds the return value for a function, and 1 (%rsp) serves as the
stack pointer. Only %r10 and %r11 are left as caller-saved temporary registers. Of course, an argument
register can be used when there are fewer than six arguments or when the function is done using that
argument, and %rax can be used multiple times before the final result is generated.

We illustrate the use of callee-saved registers with a somewhat unusual version
of a recursive factorial function:

/* Compute x! and store at resultp */

void sfact_helper(long int x, long int *resultp)

{

if (x <= 1)

*resultp = 1;

else {

long int nresult;

sfact_helper(x-1, &nresult);

*resultp = x * nresult;

}

}

To compute the factorial of a value x, this function would be called at the top
level as follows:

long int sfact(long int x)

{

long int result;

sfact_helper(x, &result);

return result;

}

288 Chapter 3 Machine-Level Representation of Programs

The x86-64 code for sfact_helper is shown below.

Arguments: x in %rdi, resultp in %rsi

1 sfact_helper:

2 movq %rbx, -16(%rsp) Save %rbx (callee save)

3 movq %rbp, -8(%rsp) Save %rbp (callee save)

4 subq $40, %rsp Allocate 40 bytes on stack

5 movq %rdi, %rbx Copy x to %rbx

6 movq %rsi, %rbp Copy resultp to %rbp

7 cmpq $1, %rdi Compare x:1

8 jg .L14 If >, goto recur

9 movq $1, (%rsi) Store 1 in *resultp

10 jmp .L16 Goto done

11 .L14: recur:

12 leaq 16(%rsp), %rsi Compute &nresult as second argument

13 leaq -1(%rdi), %rdi Compute xm1 = x-1 as first argument

14 call sfact_helper Call sfact_helper(xm1, &nresult)

15 movq %rbx, %rax Copy x

16 imulq 16(%rsp), %rax Compute x*nresult

17 movq %rax, (%rbp) Store at resultp

18 .L16: done:

19 movq 24(%rsp), %rbx Restore %rbx

20 movq 32(%rsp), %rbp Restore %rbp

21 addq $40, %rsp Deallocate stack

22 ret Return

Figure 3.42 illustrates how sfact_helper uses the stack to store the values of
callee-saved registers and to hold the local variable nresult. This implementation

Figure 3.42
Stack frame for function
sfact_helper. This
function decrements the
stack pointer after saving
some of the state.

Stack pointer
%rsp

(a) Before decrementing the stack pointer

Saved %rbp

Saved %rbx

0

–8

–16

+32

+24

+16

+8

0
Stack pointer
%rsp

Saved %rbp

Saved %rbx

nresult

Unused

Unused

(b) After decrementing the stack pointer

Section 3.13 x86-64: Extending IA32 to 64 Bits 289

has the interesting feature that the two callee-saved registers it uses (%rbx and
%rbp) are saved on the stack (lines 2–3) before the stack pointer is decremented
(line 4) to allocate the stack frame. As a consequence, the stack offset for %rbx
shifts from −16 at the beginning to +24 at the end (line 19). Similarly, the offset
for %rbp shifts from −8 to +32.

Being able to access memory beyond the stack pointer is an unusual feature of
x86-64. It requires that the virtual memory management system allocate memory
for that region. The x86-64 ABI [73] specifies that programs can use the 128 bytes
beyond (i.e., at lower addresses than) the current stack pointer. The ABI refers to
this area as the red zone. It must be kept available for reading and writing as the
stack pointer moves.

Practice Problem 3.51
For the C program

long int local_array(int i)

{

long int a[4] = {2L, 3L, 5L, 7L};

int idx = i & 3;

return a[idx];

}

gcc generates the following code:

x86-64 implementation of local_array

Argument: i in %edi

1 local_array:

2 movq $2, -40(%rsp)

3 movq $3, -32(%rsp)

4 movq $5, -24(%rsp)

5 movq $7, -16(%rsp)

6 andl $3, %edi

7 movq -40(%rsp,%rdi,8), %rax

8 ret

A. Draw a diagram indicating the stack locations used by this function and their
offsets relative to the stack pointer.

B. Annotate the assembly code to describe the effect of each instruction.

C. What interesting feature does this example illustrate about the x86-64 stack
discipline?

290 Chapter 3 Machine-Level Representation of Programs

Practice Problem 3.52
For the recursive factorial program

long int rfact(long int x)

{

if (x <= 0)

return 1;

else {

long int xm1 = x-1;

return x * rfact(xm1);

}

}

gcc generates the following code:

x86-64 implementation of recursive factorial function rfact

Argument x in %rdi

1 rfact:

2 pushq %rbx

3 movq %rdi, %rbx

4 movl $1, %eax

5 testq %rdi, %rdi

6 jle .L11

7 leaq -1(%rdi), %rdi

8 call rfact

9 imulq %rbx, %rax

10 .L11:

11 popq %rbx

12 ret

A. What value does the function store in %rbx?

B. What are the purposes of the pushq (line 2) and popq (line 11) instructions?

C. Annotate the assembly code to describe the effect of each instruction.

D. How does this function manage the stack frame differently from others we
have seen?

3.13.5 Data Structures

Data structures follow the same principles in x86-64 as they do in IA32: arrays
are allocated as sequences of identically sized blocks holding the array elements,
structures are allocated as sequences of variably sized blocks holding the structure
elements, and unions are allocated as a single block big enough to hold the largest
union element.

Section 3.13 x86-64: Extending IA32 to 64 Bits 291

One difference is that x86-64 follows a more stringent set of alignment re-
quirements. For any scalar data type requiring K bytes, its starting address must
be a multiple of K . Thus, data types long and double as well as pointers, must be
aligned on 8-byte boundaries. In addition, data type long double uses a 16-byte
alignment (and size allocation), even though the actual representation requires
only 10 bytes. These alignment conditions are imposed to improve memory sys-
tem performance—the memory interface is designed in most processors to read
or write aligned blocks that are 8 or 16 bytes long.

Practice Problem 3.53
For each of the following structure declarations, determine the offset of each field,
the total size of the structure, and its alignment requirement under x86-64.

A. struct P1 { int i; char c; long j; char d; };

B. struct P2 { long i; char c; char d; int j; };

C. struct P3 { short w[3]; char c[3] };

D. struct P4 { short w[3]; char *c[3] };

E. struct P3 { struct P1 a[2]; struct P2 *p };

3.13.6 Concluding Observations about x86-64

Both AMD and the authors of gcc deserve credit for moving x86 processors into
a new era. The formulation of both the x86-64 hardware and the programming
conventions changed the processor from one that relied heavily on the stack to
hold program state to one where the most heavily used part of the state is held
in the much faster and expanded register set. Finally, x86 has caught up to ideas
developed for RISC processors in the early 1980s!

Processors capable of running either IA32 or x86-64 code are becoming com-
monplace. Many current desktop and laptop systems are still running 32-bit ver-
sions of their operating systems, and these machines are restricted to running
only 32-bit applications, as well. Machines running 64-bit operating systems, and
therefore capable of running both 32- and 64-bit applications, have become the
widespread choice for high-end machines, such as for database servers and scien-
tific computing. The biggest drawback in transforming applications from 32 bits
to 64 bits is that the pointer variables double in size, and since many data struc-
tures contain pointers, this means that the overall memory requirement can nearly
double. The transition from 32- to 64-bit applications has only occurred for ones
having memory needs that exceed the 4-gigabyte address space limitation of IA32.
History has shown that applications grow to use all available processing power and
memory size, and so we can reliably predict that 64-bit processors running 64-bit
operating systems and applications will become increasingly more commonplace.

292 Chapter 3 Machine-Level Representation of Programs

3.14 Machine-Level Representations of
Floating-Point Programs

Thus far, we have only considered programs that represent and operate on inte-
ger data types. In order to implement programs that make use of floating-point
data, we must have some method of storing floating-point data and additional in-
structions to operate on floating-point values, to convert between floating-point
and integer values, and to perform comparisons between floating-point values.
We also require conventions on how to pass floating-point values as function ar-
guments and to return them as function results. We call this combination of storage
model, instructions, and conventions the floating-point architecture for a machine.

Due to its long evolutionary heritage, x86 processors provide multiple floating-
point architectures, of which two are in current use. The first, referred to as “x87,”
dates back to the earliest days of Intel microprocessors and until recently was the
standard implementation. The second, referred to as “SSE,” is based on recent
additions to x86 processors to support multimedia applications.

Web Aside ASM:X87 The x87 floating-point architecture

The historical x87 floating-point architecture is one of the least elegant features of the x87 architecture.
In the original Intel machines, floating point was performed by a separate coprocessor, a unit with its
own registers and processing capabilities that executes a subset of the instructions. This coprocessor
was implemented as a separate chip, named the 8087, 80287, and i387, to accompany the processor chips
8086, 80286, and i386, respectively, and hence the colloquial name “x87.” All x86 processors support
the x87 architecture, and so this continues to be a possible target for compiling floating-point code.

x87 instructions operate on a shallow stack of floating-point registers. In a stack model, some
instructions read values from memory and push them onto the stack; others pop operands from the
stack, perform an operation, and then push the result; while others pop values from the stack and store
them to memory. This approach has the advantage that there is a simple algorithm by which a compiler
can map the evaluation of arithmetic expressions into stack code.

Modern compilers can make many optimizations that do not fit well within a stack model, for
example, making use of a single computed result multiple times. Consequently, the x87 architecture
implements an odd hybrid between a stack and a register model, where the different elements of the
stack can be read and written explicitly, as well as shifted up and down by pushing and popping. In
addition, the x87 stack is limited to a depth of eight values; when additional values are pushed, the
ones at the bottom are simply discarded. Hence, the compiler must keep track of the stack depth.
Furthermore, a compiler must treat all floating-point registers as being caller-save, since their values
might disappear off the bottom if other procedures push more values onto the stack.

Web Aside ASM:SSE The SSE floating-point architecture

Starting with the Pentium 4, the SSE2 instruction set, added to support multimedia applications,
becomes a viable floating-point architecture for compiled C code. Unlike the stack-based architecture
of x87, SSE-based floating point uses a straightforward register-based approach, a much better target

Section 3.15 Summary 293

for optimizing compilers. With SSE2, floating-point code is similar to integer code, except that it uses a
different set of registers and instructions. When compiling for x86-64, gcc generates SSE code. On the
other hand, its default is to generate x87 code for IA32, but it can be directed to generate SSE code by
a suitable setting of the command-line parameters.

3.15 Summary

In this chapter, we have peered beneath the layer of abstraction provided by the
C language to get a view of machine-level programming. By having the compiler
generate an assembly-code representation of the machine-level program, we gain
insights into both the compiler and its optimization capabilities, along with the ma-
chine, its data types, and its instruction set. In Chapter 5, we will see that knowing
the characteristics of a compiler can help when trying to write programs that have
efficient mappings onto the machine. We have also gotten a more complete picture
of how the program stores data in different memory regions. In Chapter 12, we
will see many examples where application programmers need to know whether
a program variable is on the run-time stack, in some dynamically allocated data
structure, or part of the global program data. Understanding how programs map
onto machines makes it easier to understand the differences between these kinds
of storage.

Machine-level programs, and their representation by assembly code, differ
in many ways from C programs. There is minimal distinction between different
data types. The program is expressed as a sequence of instructions, each of which
performs a single operation. Parts of the program state, such as registers and the
run-time stack, are directly visible to the programmer. Only low-level operations
are provided to support data manipulation and program control. The compiler
must use multiple instructions to generate and operate on different data structures
and to implement control constructs such as conditionals, loops, and procedures.
We have covered many different aspects of C and how it gets compiled. We
have seen that the lack of bounds checking in C makes many programs prone to
buffer overflows. This has made many systems vulnerable to attacks by malicious
intruders, although recent safeguards provided by the run-time system and the
compiler help make programs more secure.

We have only examined the mapping of C onto IA32 and x86-64, but much
of what we have covered is handled in a similar way for other combinations of
language and machine. For example, compiling C++ is very similar to compiling
C. In fact, early implementations of C++ first performed a source-to-source con-
version from C++ to C and generated object-code by running a C compiler on the
result. C++ objects are represented by structures, similar to a C struct. Methods
are represented by pointers to the code implementing the methods. By contrast,
Java is implemented in an entirely different fashion. The object code of Java is a
special binary representation known as Java byte code. This code can be viewed as
a machine-level program for a virtual machine. As its name suggests, this machine
is not implemented directly in hardware. Instead, software interpreters process

294 Chapter 3 Machine-Level Representation of Programs

the byte code, simulating the behavior of the virtual machine. Alternatively, an
approach known as just-in-time compilation dynamically translates byte code se-
quences into machine instructions. This approach provides faster execution when
code is executed multiple times, such as in loops. The advantage of using byte code
as the low-level representation of a program is that the same code can be “exe-
cuted” on many different machines, whereas the machine code we have considered
runs only on x86 machines.

Bibliographic Notes

Both Intel and AMD provide extensive documentation on their processors. This
includes general descriptions of an assembly-language programmer’s view of the
hardware [2, 27], as well as detailed references about the individual instructions
[3, 28, 29]. Reading the instruction descriptions is complicated by the facts that
(1) all documentation is based on the Intel assembly-code format, (2) there are
many variations for each instruction due to the different addressing and execution
modes, and (3) there are no illustrative examples. Still, these remain the authori-
tative references about the behavior of each instruction.

The organizationamd64.orghas been responsible for defining the Application
Binary Interface (ABI) for x86-64 code running on Linux systems [73]. This inter-
face describes details for procedure linkages, binary code files, and a number of
other features that are required for machine-code programs to execute properly.

As we have discussed, the ATT format used by gcc is very different from the
Intel format used in Intel documentation and by other compilers (including the
Microsoft compilers). Blum’s book [9] is one of the few references based on ATT
format, and it provides an extensive description of how to embed assembly code
into C programs using the asm directive.

Muchnick’s book on compiler design [76] is considered the most comprehen-
sive reference on code-optimization techniques. It covers many of the techniques
we discuss here, such as register usage conventions and the advantages of gener-
ating code for loops based on their do-while form.

Much has been written about the use of buffer overflow to attack systems over
the Internet. Detailed analyses of the 1988 Internet worm have been published
by Spafford [102] as well as by members of the team at MIT who helped stop its
spread [40]. Since then a number of papers and projects have generated ways both
to create and to prevent buffer overflow attacks. Seacord’s book [94] provides a
wealth of information about buffer overflow and other attacks on code generated
by C compilers.

Homework Problems

3.54 ◆
A function with prototype

int decode2(int x, int y, int z);

is compiled into IA32 assembly code. The body of the code is as follows:

Homework Problems 295

x at %ebp+8, y at %ebp+12, z at %ebp+16

1 movl 12(%ebp), %edx

2 subl 16(%ebp), %edx

3 movl %edx, %eax

4 sall $31, %eax

5 sarl $31, %eax

6 imull 8(%ebp), %edx

7 xorl %edx, %eax

Parameters x, y, and z are stored at memory locations with offsets 8, 12, and 16
relative to the address in register %ebp. The code stores the return value in register
%eax.

Write C code for decode2 that will have an effect equivalent to our assembly
code.

3.55 ◆
The following code computes the product of x and y and stores the result in
memory. Data type ll_t is defined to be equivalent to long long.

typedef long long ll_t;

void store_prod(ll_t *dest, int x, ll_t y) {

*dest = x*y;

}

gcc generates the following assembly code implementing the computation:

dest at %ebp+8, x at %ebp+12, y at %ebp+16

1 movl 16(%ebp), %esi

2 movl 12(%ebp), %eax

3 movl %eax, %edx

4 sarl $31, %edx

5 movl 20(%ebp), %ecx

6 imull %eax, %ecx

7 movl %edx, %ebx

8 imull %esi, %ebx

9 addl %ebx, %ecx

10 mull %esi

11 leal (%ecx,%edx), %edx

12 movl 8(%ebp), %ecx

13 movl %eax, (%ecx)

14 movl %edx, 4(%ecx)

This code uses three multiplications to implement the multiprecision arith-
metic required to implement 64-bit arithmetic on a 32-bit machine. Describe the
algorithm used to compute the product, and annotate the assembly code to show
how it realizes your algorithm. Hint: See Problem 3.12 and its solution.

296 Chapter 3 Machine-Level Representation of Programs

3.56 ◆◆
Consider the following assembly code:

x at %ebp+8, n at %ebp+12

1 movl 8(%ebp), %esi

2 movl 12(%ebp), %ebx

3 movl $-1, %edi

4 movl $1, %edx

5 .L2:

6 movl %edx, %eax

7 andl %esi, %eax

8 xorl %eax, %edi

9 movl %ebx, %ecx

10 sall %cl, %edx

11 testl %edx, %edx

12 jne .L2

13 movl %edi, %eax

The preceding code was generated by compiling C code that had the following
overall form:

1 int loop(int x, int n)

2 {

3 int result = ;

4 int mask;

5 for (mask = ; mask ; mask =) {

6 result ^= ;

7 }

8 return result;

9 }

Your task is to fill in the missing parts of the C code to get a program equivalent
to the generated assembly code. Recall that the result of the function is returned
in register %eax. You will find it helpful to examine the assembly code before,
during, and after the loop to form a consistent mapping between the registers and
the program variables.

A. Which registers hold program values x, n, result, and mask?

B. What are the initial values of result and mask?

C. What is the test condition for mask?

D. How does mask get updated?

E. How does result get updated?

F. Fill in all the missing parts of the C code.

3.57 ◆◆
In Section 3.6.6, we examined the following code as a candidate for the use of
conditional data transfer:

Homework Problems 297

int cread(int *xp) {

return (xp ? *xp : 0);

}

We showed a trial implementation using a conditional move instruction but argued
that it was not valid, since it could attempt to read from a null address.

Write a C function cread_alt that has the same behavior as cread, except
that it can be compiled to use conditional data transfer. When compiled with the
command-line option ‘-march=i686’, the generated code should use a conditional
move instruction rather than one of the jump instructions.

3.58 ◆◆
The code that follows shows an example of branching on an enumerated type
value in a switch statement. Recall that enumerated types in C are simply a way
to introduce a set of names having associated integer values. By default, the values
assigned to the names go from zero upward. In our code, the actions associated
with the different case labels have been omitted.

/* Enumerated type creates set of constants numbered 0 and upward */

typedef enum {MODE_A, MODE_B, MODE_C, MODE_D, MODE_E} mode_t;

int switch3(int *p1, int *p2, mode_t action)

{

int result = 0;

switch(action) {

case MODE_A:

case MODE_B:

case MODE_C:

case MODE_D:

case MODE_E:

default:

}

return result;

}

The part of the generated assembly code implementing the different actions
is shown in Figure 3.43. The annotations indicate the argument locations, the
register values, and the case labels for the different jump destinations. Register
%edx corresponds to program variable result and is initialized to −1.

Fill in the missing parts of the C code. Watch out for cases that fall through.

298 Chapter 3 Machine-Level Representation of Programs

Arguments: p1 at %ebp+8, p2 at %ebp+12, action at %ebp+16

Registers: result in %edx (initialized to -1)

The jump targets:

1 .L17: MODE_E

2 movl $17, %edx

3 jmp .L19

4 .L13: MODE_A

5 movl 8(%ebp), %eax

6 movl (%eax), %edx

7 movl 12(%ebp), %ecx

8 movl (%ecx), %eax

9 movl 8(%ebp), %ecx

10 movl %eax, (%ecx)

11 jmp .L19

12 .L14: MODE_B

13 movl 12(%ebp), %edx

14 movl (%edx), %eax

15 movl %eax, %edx

16 movl 8(%ebp), %ecx

17 addl (%ecx), %edx

18 movl 12(%ebp), %eax

19 movl %edx, (%eax)

20 jmp .L19

21 .L15: MODE_C

22 movl 12(%ebp), %edx

23 movl $15, (%edx)

24 movl 8(%ebp), %ecx

25 movl (%ecx), %edx

26 jmp .L19

27 .L16: MODE_D

28 movl 8(%ebp), %edx

29 movl (%edx), %eax

30 movl 12(%ebp), %ecx

31 movl %eax, (%ecx)

32 movl $17, %edx

33 .L19: default

34 movl %edx, %eax Set return value

Figure 3.43 Assembly code for Problem 3.58. This code implements the different
branches of a switch statement.

3.59 ◆◆
This problem will give you a chance to reverse engineer a switch statement from
machine code. In the following procedure, the body of the switch statement has
been removed:

Homework Problems 299

1 int switch_prob(int x, int n)

2 {

3 int result = x;

4

5 switch(n) {

6

7 /* Fill in code here */

8 }

9

10 return result;

11 }

Figure 3.44 shows the disassembled machine code for the procedure. We can
see in lines 4 and 5 that parameters x and n are loaded into registers %eax and
%edx, respectively.

The jump table resides in a different area of memory. We can see from the
indirect jump on line 9 that the jump table begins at address 0x80485d0. Using
the gdb debugger, we can examine the six 4-byte words of memory comprising
the jump table with the command x/6w 0x80485d0. gdb prints the following:

(gdb) x/6w 0x80485d0

0x80485d0: 0x08048438 0x08048448 0x08048438 0x0804843d

0x80485e0: 0x08048442 0x08048445

Fill in the body of the switch statement with C code that will have the same
behavior as the machine code.

1 08048420 <switch_prob>:

2 8048420: 55 push %ebp

3 8048421: 89 e5 mov %esp,%ebp

4 8048423: 8b 45 08 mov 0x8(%ebp),%eax

5 8048426: 8b 55 0c mov 0xc(%ebp),%edx

6 8048429: 83 ea 32 sub $0x32,%edx

7 804842c: 83 fa 05 cmp $0x5,%edx

8 804842f: 77 17 ja 8048448 <switch_prob+0x28>

9 8048431: ff 24 95 d0 85 04 08 jmp *0x80485d0(,%edx,4)

10 8048438: c1 e0 02 shl $0x2,%eax

11 804843b: eb 0e jmp 804844b <switch_prob+0x2b>

12 804843d: c1 f8 02 sar $0x2,%eax

13 8048440: eb 09 jmp 804844b <switch_prob+0x2b>

14 8048442: 8d 04 40 lea (%eax,%eax,2),%eax

15 8048445: 0f af c0 imul %eax,%eax

16 8048448: 83 c0 0a add $0xa,%eax

17 804844b: 5d pop %ebp

18 804844c: c3 ret

Figure 3.44 Disassembled code for Problem 3.59.

300 Chapter 3 Machine-Level Representation of Programs

3.60 ◆◆◆
Consider the following source code, where R, S, and T are constants declared with
#define:

int A[R][S][T];

int store_ele(int i, int j, int k, int *dest)

{

*dest = A[i][j][k];

return sizeof(A);

}

In compiling this program, gcc generates the following assembly code:

i at %ebp+8, j at %ebp+12, k at %ebp+16, dest at %ebp+20

1 movl 12(%ebp), %edx

2 leal (%edx,%edx,4), %eax

3 leal (%edx,%eax,2), %eax

4 imull $99, 8(%ebp), %edx

5 addl %edx, %eax

6 addl 16(%ebp), %eax

7 movl A(,%eax,4), %edx

8 movl 20(%ebp), %eax

9 movl %edx, (%eax)

10 movl $1980, %eax

A. Extend Equation 3.1 from two dimensions to three to provide a formula for
the location of array element A[i][j][k].

B. Use your reverse engineering skills to determine the values of R, S, and T

based on the assembly code.

3.61 ◆◆
The code generated by the C compiler for var_prod_ele (Figure 3.29) cannot fit
all of the values it uses in the loop in registers, and so it must retrieve the value of
n from memory on each iteration. Write C code for this function that incorporates
optimizations similar to those performed by gcc, but such that the compiled code
does not spill any loop values into memory.

Recall that the processor only has six registers available to hold temporary
data, since registers %ebp and %esp cannot be used for this purpose. One of these
registers must be used to hold the result of the multiply instruction. Hence, you
must reduce the number of values in the loop from six (result, Arow, Bcol, j, n,
and 4*n) to five.

You will need to find a strategy that works for your particular compiler. Keep
trying different strategies until you find one that works.

3.62 ◆◆
The following code transposes the elements of an M × M array, where M is a
constant defined by #define:

Homework Problems 301

void transpose(Marray_t A) {

int i, j;

for (i = 0; i < M; i++)

for (j = 0; j < i; j++) {

int t = A[i][j];

A[i][j] = A[j][i];

A[j][i] = t;

}

}

When compiled with optimization level -O2, gcc generates the following code for
the inner loop of the function:

1 .L3:

2 movl (%ebx), %eax

3 movl (%esi,%ecx,4), %edx

4 movl %eax, (%esi,%ecx,4)

5 addl $1, %ecx

6 movl %edx, (%ebx)

7 addl $52, %ebx

8 cmpl %edi, %ecx

9 jl .L3

A. What is the value of M?

B. What registers hold program values i and j?

C. Write a C code version of transpose that makes use of the optimizations
that occur in this loop. Use the parameter M in your code rather than numeric
constants.

3.63 ◆◆
Consider the following source code, where E1 and E2 are macro expressions de-
clared with #define that compute the dimensions of array A in terms of parameter
n. This code computes the sum of the elements of column j of the array.

1 int sum_col(int n, int A[E1(n)][E2(n)], int j) {

2 int i;

3 int result = 0;

4 for (i = 0; i < E1(n); i++)

5 result += A[i][j];

6 return result;

7 }

In compiling this program, gcc generates the following assembly code:

n at %ebp+8, A at %ebp+12, j at %ebp+16

1 movl 8(%ebp), %eax

2 leal (%eax,%eax), %edx

302 Chapter 3 Machine-Level Representation of Programs

3 leal (%edx,%eax), %ecx

4 movl %edx, %ebx

5 leal 1(%edx), %eax

6 movl $0, %edx

7 testl %eax, %eax

8 jle .L3

9 leal 0(,%ecx,4), %esi

10 movl 16(%ebp), %edx

11 movl 12(%ebp), %ecx

12 leal (%ecx,%edx,4), %eax

13 movl $0, %edx

14 movl $1, %ecx

15 addl $2, %ebx

16 .L4:

17 addl (%eax), %edx

18 addl $1, %ecx

19 addl %esi, %eax

20 cmpl %ebx, %ecx

21 jne .L4

22 .L3:

23 movl %edx, %eax

Use your reverse engineering skills to determine the definitions of E1 and E2.

3.64 ◆◆
For this exercise, we will examine the code generated by gcc for functions that have
structures as arguments and return values, and from this see how these language
features are typically implemented.

The following C code has a function word_sum having structures as argument
and return values, and a function prod that calls word_sum:

typedef struct {

int a;

int *p;

} str1;

typedef struct {

int sum;

int diff;

} str2;

str2 word_sum(str1 s1) {

str2 result;

result.sum = s1.a + *s1.p;

result.diff = s1.a - *s1.p;

Homework Problems 303

return result;

}

int prod(int x, int y)

{

str1 s1;

str2 s2;

s1.a = x;

s1.p = &y;

s2 = word_sum(s1);

return s2.sum * s2.diff;

}

gcc generates the following code for these two functions:

1 word_sum:

2 pushl %ebp

3 movl %esp, %ebp

4 pushl %ebx

5 movl 8(%ebp), %eax

6 movl 12(%ebp), %ebx

7 movl 16(%ebp), %edx

8 movl (%edx), %edx

9 movl %ebx, %ecx

10 subl %edx, %ecx

11 movl %ecx, 4(%eax)

12 addl %ebx, %edx

13 movl %edx, (%eax)

14 popl %ebx

15 popl %ebp

16 ret $4

1 prod:

2 pushl %ebp

3 movl %esp, %ebp

4 subl $20, %esp

5 leal 12(%ebp), %edx

6 leal -8(%ebp), %ecx

7 movl 8(%ebp), %eax

8 movl %eax, 4(%esp)

9 movl %edx, 8(%esp)

10 movl %ecx, (%esp)

11 call word_sum

12 subl $4, %esp

13 movl -4(%ebp), %eax

14 imull -8(%ebp), %eax

15 leave

16 ret

The instruction ret $4 is like a normal return instruction, but it increments
the stack pointer by 8 (4 for the return address plus 4 additional), rather than 4.

A. We can see in lines 5–7 of the code for word_sum that it appears as if three
values are being retrieved from the stack, even though the function has only
a single argument. Describe what these three values are.

B. We can see in line 4 of the code for prod that 20 bytes are allocated in the
stack frame. These get used as five fields of 4 bytes each. Describe how each
of these fields gets used.

C. How would you describe the general strategy for passing structures as argu-
ments to a function?

D. How would you describe the general strategy for handling a structure as a
return value from a function?

304 Chapter 3 Machine-Level Representation of Programs

3.65 ◆◆◆
In the following code, A and B are constants defined with #define:

typedef struct {

short x[A][B]; /* Unknown constants A and B */

int y;

} str1;

typedef struct {

char array[B];

int t;

short s[B];

int u;

} str2;

void setVal(str1 *p, str2 *q) {

int v1 = q->t;

int v2 = q->u;

p->y = v1+v2;

}

gcc generates the following code for the body of setVal:

1 movl 12(%ebp), %eax

2 movl 36(%eax), %edx

3 addl 12(%eax), %edx

4 movl 8(%ebp), %eax

5 movl %edx, 92(%eax)

What are the values of A and B? (The solution is unique.)

3.66 ◆◆◆
You are charged with maintaining a large C program, and you come across the
following code:

1 typedef struct {

2 int left;

3 a_struct a[CNT];

4 int right;

5 } b_struct;

6

7 void test(int i, b_struct *bp)

8 {

9 int n = bp->left + bp->right;

10 a_struct *ap = &bp->a[i];

11 ap->x[ap->idx] = n;

12 }

Homework Problems 305

1 00000000 <test>:

2 0: 55 push %ebp

3 1: 89 e5 mov %esp,%ebp

4 3: 8b 45 08 mov 0x8(%ebp),%eax

5 6: 8b 4d 0c mov 0xc(%ebp),%ecx

6 9: 8d 04 80 lea (%eax,%eax,4),%eax

7 c: 03 44 81 04 add 0x4(%ecx,%eax,4),%eax

8 10: 8b 91 b8 00 00 00 mov 0xb8(%ecx),%edx

9 16: 03 11 add (%ecx),%edx

10 18: 89 54 81 08 mov %edx,0x8(%ecx,%eax,4)

11 1c: 5d pop %ebp

12 1d: c3 ret

Figure 3.45 Disassembled code for Problem 3.66.

The declarations of the compile-time constant CNT and the structure a_struct
are in a file for which you do not have the necessary access privilege. Fortunately,
you have a copy of the ‘.o’ version of code, which you are able to disassemble with
the objdump program, yielding the disassembly shown in Figure 3.45.

Using your reverse engineering skills, deduce the following.

A. The value of CNT.

B. A complete declaration of structure a_struct. Assume that the only fields
in this structure are idx and x.

3.67 ◆◆◆
Consider the following union declaration:

union ele {

struct {

int *p;

int y;

} e1;

struct {

int x;

union ele *next;

} e2;

};

This declaration illustrates that structures can be embedded within unions.
The following procedure (with some expressions omitted) operates on a

linked list having these unions as list elements:

void proc (union ele *up)

{

up-> = *(up->) - up-> ;

}

306 Chapter 3 Machine-Level Representation of Programs

A. What would be the offsets (in bytes) of the following fields:
e1.p:
e1.y:
e2.x:
e2.next:

B. How many total bytes would the structure require?

C. The compiler generates the following assembly code for the body of proc:

up at %ebp+8

1 movl 8(%ebp), %edx

2 movl 4(%edx), %ecx

3 movl (%ecx), %eax

4 movl (%eax), %eax

5 subl (%edx), %eax

6 movl %eax, 4(%ecx)

On the basis of this information, fill in the missing expressions in the code
for proc. Hint: Some union references can have ambiguous interpretations.
These ambiguities get resolved as you see where the references lead. There
is only one answer that does not perform any casting and does not violate
any type constraints.

3.68 ◆
Write a function good_echo that reads a line from standard input and writes it to
standard output. Your implementation should work for an input line of arbitrary
length. You may use the library function fgets, but you must make sure your
function works correctly even when the input line requires more space than you
have allocated for your buffer. Your code should also check for error conditions
and return when one is encountered. Refer to the definitions of the standard I/O
functions for documentation [48, 58].

3.69 ◆
The following declaration defines a class of structures for use in constructing
binary trees:

1 typedef struct ELE *tree_ptr;

2

3 struct ELE {

4 long val;

5 tree_ptr left;

6 tree_ptr right;

7 };

Homework Problems 307

For a function with the following prototype:

long trace(tree_ptr tp);

gcc generates the following x86-64 code:

1 trace:

tp in %rdi

2 movl $0, %eax

3 testq %rdi, %rdi

4 je .L3

5 .L5:

6 movq (%rdi), %rax

7 movq 16(%rdi), %rdi

8 testq %rdi, %rdi

9 jne .L5

10 .L3:

11 rep

12 ret

A. Generate a C version of the function, using a while loop.

B. Explain in English what this function computes.

3.70 ◆◆
Using the same tree data structure we saw in Problem 3.69, and a function with
the prototype

long traverse(tree_ptr tp);

gcc generates the following x86-64 code:

1 traverse:

tp in %rdi

2 movq %rbx, -24(%rsp)

3 movq %rbp, -16(%rsp)

4 movq %r12, -8(%rsp)

5 subq $24, %rsp

6 movq %rdi, %rbp

7 movabsq $-9223372036854775808, %rax

8 testq %rdi, %rdi

9 je .L9

10 movq (%rdi), %rbx

11 movq 8(%rdi), %rdi

12 call traverse

13 movq %rax, %r12

14 movq 16(%rbp), %rdi

15 call traverse

308 Chapter 3 Machine-Level Representation of Programs

16 cmpq %rax, %r12

17 cmovge %r12, %rax

18 cmpq %rbx, %rax

19 cmovl %rbx, %rax

20 .L9:

21 movq (%rsp), %rbx

22 movq 8(%rsp), %rbp

23 movq 16(%rsp), %r12

24 addq $24, %rsp

25 ret

A. Generate a C version of the function.

B. Explain in English what this function computes.

Solutions to Practice Problems

Solution to Problem 3.1 (page 170)
This exercise gives you practice with the different operand forms.

Operand Value Comment

%eax 0x100 Register
0x104 0xAB Absolute address
$0x108 0x108 Immediate
(%eax) 0xFF Address 0x100
4(%eax) 0xAB Address 0x104
9(%eax,%edx) 0x11 Address 0x10C
260(%ecx,%edx) 0x13 Address 0x108
0xFC(,%ecx,4) 0xFF Address 0x100
(%eax,%edx,4) 0x11 Address 0x10C

Solution to Problem 3.2 (page 174)
As we have seen, the assembly code generated by gcc includes suffixes on the
instructions, while the disassembler does not. Being able to switch between these
two forms is an important skill to learn. One important feature is that memory
references in IA32 are always given with double-word registers, such as %eax,
even if the operand is a byte or single word.

Here is the code written with suffixes:

1 movl %eax, (%esp)

2 movw (%eax), %dx

3 movb $0xFF, %bl

4 movb (%esp,%edx,4), %dh

5 pushl $0xFF

6 movw %dx, (%eax)

7 popl %edi

Solutions to Practice Problems 309

Solution to Problem 3.3 (page 174)
Since we will rely on gcc to generate most of our assembly code, being able to
write correct assembly code is not a critical skill. Nonetheless, this exercise will
help you become more familiar with the different instruction and operand types.

Here is the code with explanations of the errors:

1 movb $0xF, (%bl) Cannot use %bl as address register

2 movl %ax, (%esp) Mismatch between instruction suffix and register ID

3 movw (%eax),4(%esp) Cannot have both source and destination be memory references

4 movb %ah,%sh No register named %sh

5 movl %eax,$0x123 Cannot have immediate as destination

6 movl %eax,%dx Destination operand incorrect size

7 movb %si, 8(%ebp) Mismatch between instruction suffix and register ID

Solution to Problem 3.4 (page 176)
This exercise gives you more experience with the different data movement instruc-
tions and how they relate to the data types and conversion rules of C.

src_t dest_t Instruction

int int movl %eax, (%edx)

char int movsbl %al, (%edx)

char unsigned movsbl %al, (%edx)

unsigned char int movzbl %al, (%edx)

int char movb %al, (%edx)

unsigned unsigned char movb %al, (%edx)

unsigned int movl %eax, (%edx)

Solution to Problem 3.5 (page 176)
Reverse engineering is a good way to understand systems. In this case, we want
to reverse the effect of the C compiler to determine what C code gave rise to this
assembly code. The best way is to run a “simulation,” starting with values x, y, and
z at the locations designated by pointers xp, yp, and zp, respectively. We would
then get the following behavior:

xp at %ebp+8, yp at %ebp+12, zp at %ebp+16

1 movl 8(%ebp), %edi Get xp

2 movl 12(%ebp), %edx Get yp

3 movl 16(%ebp), %ecx Get zp

4 movl (%edx), %ebx Get y

5 movl (%ecx), %esi Get z

6 movl (%edi), %eax Get x

7 movl %eax, (%edx) Store x at yp

8 movl %ebx, (%ecx) Store y at zp

9 movl %esi, (%edi) Store z at xp

310 Chapter 3 Machine-Level Representation of Programs

From this, we can generate the following C code:

void decode1(int *xp, int *yp, int *zp)

{

int tx = *xp;

int ty = *yp;

int tz = *zp;

*yp = tx;

*zp = ty;

*xp = tz;

}

Solution to Problem 3.6 (page 178)
This exercise demonstrates the versatility of the leal instruction and gives you
more practice in deciphering the different operand forms. Although the operand
forms are classified as type “Memory” in Figure 3.3, no memory access occurs.

Instruction Result

leal 6(%eax), %edx 6 + x

leal (%eax,%ecx), %edx x + y

leal (%eax,%ecx,4), %edx x + 4y

leal 7(%eax,%eax,8), %edx 7 + 9x

leal 0xA(,%ecx,4), %edx 10 + 4y

leal 9(%eax,%ecx,2), %edx 9 + x + 2y

Solution to Problem 3.7 (page 179)
This problem gives you a chance to test your understanding of operands and the
arithmetic instructions. The instruction sequence is designed so that the result of
each instruction does not affect the behavior of subsequent ones.

Instruction Destination Value

addl %ecx,(%eax) 0x100 0x100

subl %edx,4(%eax) 0x104 0xA8

imull $16,(%eax,%edx,4) 0x10C 0x110

incl 8(%eax) 0x108 0x14

decl %ecx %ecx 0x0

subl %edx,%eax %eax 0xFD

Solution to Problem 3.8 (page 180)
This exercise gives you a chance to generate a little bit of assembly code. The
solution code was generated by gcc. By loading parameter n in register %ecx, it
can then use byte register %cl to specify the shift amount for the sarl instruction:

Solutions to Practice Problems 311

1 movl 8(%ebp), %eax Get x

2 sall $2, %eax x <<= 2

3 movl 12(%ebp), %ecx Get n

4 sarl %cl, %eax x >>= n

Solution to Problem 3.9 (page 181)
This problem is fairly straightforward, since each of the expressions is imple-
mented by a single instruction and there is no reordering of the expressions.

5 int t1 = x^y;

6 int t2 = t1 >> 3;

7 int t3 = ~t2;

8 int t4 = t3-z;

Solution to Problem 3.10 (page 182)

A. This instruction is used to set register %edx to zero, exploiting the property
that x ^ x = 0 for any x. It corresponds to the C statement x = 0.

B. A more direct way of setting register %edx to zero is with the instruction movl
$0,%edx.

C. Assembling and disassembling this code, however, we find that the version
with xorl requires only 2 bytes, while the version with movl requires 5.

Solution to Problem 3.11 (page 184)
We can simply replace the cltd instruction with one that sets register %edx to 0,
and use divl rather than idivl as our division instruction, yielding the following
code:

x at %ebp+8, y at %ebp+12

movl 8(%ebp),%eax Load x into %eax

movl $0,%edx Set high-order bits to 0

divl 12(%ebp) Unsigned divide by y

movl %eax, 4(%esp) Store x / y

movl %edx, (%esp) Store x % y

Solution to Problem 3.12 (page 184)

A. We can see that the program is performing multiprecision operations on
64-bit data. We can also see that the 64-bit multiply operation (line 4) uses
unsigned arithmetic, and so we conclude that num_t is unsigned long long.

B. Let x denote the value of variable x, and let y denote the value of y, which
we can write as y = yh

. 232 + yl, where yh and yl are the values represented
by the high- and low-order 32 bits, respectively. We can therefore compute
x . y = x . yh

. 232 + x . yl. The full representation of the product would be
96 bits long, but we require only the low-order 64 bits. We can therefore let s

be the low-order 32 bits of x . yh and t be the full 64-bit product x . yl, which

312 Chapter 3 Machine-Level Representation of Programs

we can split into high- and low-order parts th and tl. The final result has tl as
the low-order part, and s + th as the high-order part.

Here is the annotated assembly code:

dest at %ebp+8, x at %ebp+12, y at %ebp+16

1 movl 12(%ebp), %eax Get x

2 movl 20(%ebp), %ecx Get y_h

3 imull %eax, %ecx Compute s = x*y_h

4 mull 16(%ebp) Compute t = x*y_l

5 leal (%ecx,%edx), %edx Add s to t_h

6 movl 8(%ebp), %ecx Get dest

7 movl %eax, (%ecx) Store t_l

8 movl %edx, 4(%ecx) Store s+t_h

Solution to Problem 3.13 (page 188)
It is important to understand that assembly code does not keep track of the type
of a program value. Instead, the different instructions determine the operand
sizes and whether they are signed or unsigned. When mapping from instruction
sequences back to C code, we must do a bit of detective work to infer the data
types of the program values.

A. The suffix ‘l’ and the register identifiers indicate 32-bit operands, while the
comparison is for a two’s complement ‘<’. We can infer that data_tmust be
int.

B. The suffix ‘w’ and the register identifiers indicate 16-bit operands, while the
comparison is for a two’s-complement ‘>=’. We can infer that data_t must
be short.

C. The suffix ‘b’ and the register identifiers indicate 8-bit operands, while the
comparison is for an unsigned ‘<’. We can infer that data_t must be un-
signed char.

D. The suffix ‘l’ and the register identifiers indicate 32-bit operands, while
the comparison is for ‘!=’, which is the same whether the arguments are
signed, unsigned, or pointers. We can infer that data_t could be either int,
unsigned, or some form of pointer. For the first two cases, they could also
have the long size designator.

Solution to Problem 3.14 (page 189)
This problem is similar to Problem 3.13, except that it involves test instructions
rather than cmp instructions.

A. The suffix ‘l’ and the register identifiers indicate 32-bit operands, while the
comparison is for ‘!=’, which is the same for signed or unsigned. We can infer
that data_tmust be either int, unsigned, or some type of pointer. For the
first two cases, they could also have the long size designator.

B. The suffix ‘w’ and the register identifier indicate 16-bit operands, while the
comparison is for ‘==’, which is the same for signed or unsigned. We can infer
that data_t must be either short or unsigned short.

Solutions to Practice Problems 313

C. The suffix ‘b’ and the register identifier indicate an 8-bit operand, while the
comparison is for two’s complement ‘>’. We can infer that data_t must be
char.

D. The suffix ‘w’ and the register identifier indicate 16-bit operands, while the
comparison is for unsigned ‘>’. We can infer that data_tmust be unsigned
short.

Solution to Problem 3.15 (page 192)
This exercise requires you to examine disassembled code in detail and reason
about the encodings for jump targets. It also gives you practice in hexadecimal
arithmetic.

A. The je instruction has as target 0x8048291 + 0x05. As the original disas-
sembled code shows, this is 0x8048296:

804828f: 74 05 je 8048296

8048291: e8 1e 00 00 00 call 80482b4

B. The jb instruction has as target 0x8048359 − 25 (since 0xe7 is the 1-byte,
two’s-complement representation of −25). As the original disassembled
code shows, this is 0x8048340:

8048357: 72 e7 jb 8048340

8048359: c6 05 10 a0 04 08 01 movb $0x1,0x804a010

C. According to the annotation produced by the disassembler, the jump target
is at absolute address 0x8048391. According to the byte encoding, this must
be at an address 0x12 bytes beyond that of the mov instruction. Subtracting
these gives address 0x804837f, as confirmed by the disassembled code:

804837d: 74 12 je 8048391

804837f: b8 00 00 00 00 mov $0x0,%eax

D. Reading the bytes in reverse order, we see that the target offset is
0xffffffe0, or decimal −32. Adding this to 0x80482c4 (the address of the
nop instruction) gives address 0x80482a4:

80482bf: e9 e0 ff ff ff jmp 80482a4

80482c4: 90 nop

E. An indirect jump is denoted by instruction code ff 25. The address from
which the jump target is to be read is encoded explicitly by the following
4 bytes. Since the machine is little endian, these are given in reverse order
as fc 9f 04 08.

Solution to Problem 3.16 (page 195)
Annotating assembly code and writing C code that mimics its control flow are good
first steps in understanding assembly-language programs. This problem gives you
practice for an example with simple control flow. It also gives you a chance to
examine the implementation of logical operations.

314 Chapter 3 Machine-Level Representation of Programs

A. Here is the C code:

1 void goto_cond(int a, int *p) {

2 if (p == 0)

3 goto done;

4 if (a <= 0)

5 goto done;

6 *p += a;

7 done:

8 return;

9 }

B. The first conditional branch is part of the implementation of the && ex-
pression. If the test for p being non-null fails, the code will skip the test of
a > 0.

Solution to Problem 3.17 (page 196)
This is an exercise to help you think about the idea of a general translation rule
and how to apply it.

A. Converting to this alternate form involves only switching around a few lines
of the code:

1 int gotodiff_alt(int x, int y) {

2 int result;

3 if (x < y)

4 goto true;

5 result = x - y;

6 goto done;

7 true:

8 result = y - x;

9 done:

10 return result;

11 }

B. In most respects, the choice is arbitrary. But the original rule works better
for the common case where there is no else statement. For this case, we can
simply modify the translation rule to be as follows:

t = test-expr;
if (!t)

goto done;

then-statement
done:

A translation based on the alternate rule is more cumbersome.

Solution to Problem 3.18 (page 196)
This problem requires that you work through a nested branch structure, where
you will see how our rule for translating if statements has been applied. For the

Solutions to Practice Problems 315

most part, the machine code is a straightforward translation of the C code. The
only difference is that the initialization expression (line 2 in the C code) has been
moved down (line 15 in the assembly code) so that it only gets computed when it
is certain that this will be the returned value.

1 int test(int x, int y) {

2 int val = x^y;

3 if (x < -3) {

4 if (y < x)

5 val = x*y;

6 else

7 val = x+y;

8 } else if (x > 2)

9 val = x-y;

10 return val;

11 }

Solution to Problem 3.19 (page 198)

A. If we build up a table of factorials computed with data type int, we get the
following:

n n! OK?

1 1 Y
2 2 Y
3 6 Y
4 24 Y
5 120 Y
6 720 Y
7 5,040 Y
8 40,320 Y
9 362,880 Y

10 3,628,800 Y
11 39,916,800 Y
12 479,001,600 Y
13 1,932,053,504 Y
14 1,278,945,280 N

We can see that 14! has overflowed, since the numbers stopped growing. As
we learned in Problem 2.35, we can also test whether or not the computation
of n!has overflowed by computing n!/n and seeing whether it equals (n − 1)!.

B. Doing the computation with data type long long lets us go up to 20!, yielding
2,432,902,008,176,640,000.

316 Chapter 3 Machine-Level Representation of Programs

Solution to Problem 3.20 (page 199)
The code generated when compiling loops can be tricky to analyze, because the
compiler can perform many different optimizations on loop code, and because it
can be difficult to match program variables with registers. We start practicing this
skill with a fairly simple loop.

A. The register usage can be determined by simply looking at how the argu-
ments get fetched.

Register usage

Register Variable Initially

%eax x x

%ecx y y

%edx n n

B. The body-statement portion consists of lines 3 through 5 in the C code and
lines 5 through 7 in the assembly code. The test-expr portion is on line 6 in
the C code. In the assembly code, it is implemented by the instructions on
lines 8 through 11.

C. The annotated code is as follows:

x at %ebp+8, y at %ebp+12, n at %ebp+16

1 movl 8(%ebp), %eax Get x

2 movl 12(%ebp), %ecx Get y

3 movl 16(%ebp), %edx Get n

4 .L2: loop:

5 addl %edx, %eax x += n

6 imull %edx, %ecx y *= n

7 subl $1, %edx n--

8 testl %edx, %edx Test n

9 jle .L5 If <= 0, goto done

10 cmpl %edx, %ecx Compare y:n

11 jl .L2 If <, goto loop

12 .L5: done:

As with the code of Problem 3.16, two conditional branches are required to
implement the && operation.

Solution to Problem 3.21 (page 201)
This problem demonstrates how the transformations made by the compiler can
make it difficult to decipher the generated assembly code.

A. We can see that the register is initialized to a + b and then incremented on
each iteration. Similarly, the value of a (held in register %ecx) is incremented
on each iteration. We can therefore see that the value in register %edx will
always equal a + b. Let us call this apb (for “a plus b”).

Solutions to Practice Problems 317

B. Here is a table of register usage:

Register Program value Initial value

%ecx a a

%ebx b b

%eax result 1
%edx apb a + b

C. The annotated code is as follows:

Arguments: a at %ebp+8, b at %ebp+12

Registers: a in %ecx, b in %ebx, result in %eax, %edx set to apb (a+b)

1 movl 8(%ebp), %ecx Get a

2 movl 12(%ebp), %ebx Get b

3 movl $1, %eax Set result = 1

4 cmpl %ebx, %ecx Compare a:b

5 jge .L11 If >=, goto done

6 leal (%ebx,%ecx), %edx Compute apb = a+b

7 movl $1, %eax Set result = 1

8 .L12: loop:

9 imull %edx, %eax Compute result *= apb

10 addl $1, %ecx Compute a++

11 addl $1, %edx Compute apb++

12 cmpl %ecx, %ebx Compare b:a

13 jg .L12 If >, goto loop

14 .L11: done:

Return result

D. The equivalent goto code is as follows:

1 int loop_while_goto(int a, int b)

2 {

3 int result = 1;

4 if (a >= b)

5 goto done;

6 /* apb has same value as a+b in original code */

7 int apb = a+b;

8 loop:

9 result *= apb;

10 a++;

11 apb++;

12 if (b > a)

13 goto loop;

14 done:

15 return result;

16 }

318 Chapter 3 Machine-Level Representation of Programs

Solution to Problem 3.22 (page 202)
Being able to work backward from assembly code to C code is a prime example
of reverse engineering.

A. Here is the original C code:

int fun_a(unsigned x) {

int val = 0;

while (x) {

val ^= x;

x >>= 1;

}

return val & 0x1;

}

B. This code computes the parity of argument x. That is, it returns 1 if there is
an odd number of ones in x and 0 if there is an even number.

Solution to Problem 3.23 (page 205)
This problem is trickier than Problem 3.22, since the code within the loop is more
complex and the overall operation is less familiar.

A. Here is the original C code:

int fun_b(unsigned x) {

int val = 0;

int i;

for (i = 0; i < 32; i++) {

val = (val << 1) | (x & 0x1);

x >>= 1;

}

return val;

}

B. This code reverses the bits in x, creating a mirror image. It does this by
shifting the bits of x from left to right, and then filling these bits in as it
shifts val from right to left.

Solution to Problem 3.24 (page 206)
Our stated rule for translating a for loop into a while loop is just a bit too
simplistic—this is the only aspect that requires special consideration.

A. Applying our translation rule would yield the following code:

/* Naive translation of for loop into while loop */

/* WARNING: This is buggy code */

int sum = 0;

int i = 0;

Solutions to Practice Problems 319

while (i < 10) {

if (i & 1)

/* This will cause an infinite loop */

continue;

sum += i;

i++;

}

This code has an infinite loop, since the continue statement would prevent
index variable i from being updated.

B. The general solution is to replace the continue statement with a goto
statement that skips the rest of the loop body and goes directly to the update
portion:

/* Correct translation of for loop into while loop */

int sum = 0;

int i = 0;

while (i < 10) {

if (i & 1)

goto update;

sum += i;

update:

i++;

}

Solution to Problem 3.25 (page 209)
This problem reinforces our method of computing the misprediction penalty.

A. We can apply our formula directly to get TMP = 2(31 − 16) = 30.

B. When misprediction occurs, the function will require around 16 + 30 = 46
cycles.

Solution to Problem 3.26 (page 212)
This problem provides a chance to study the use of conditional moves.

A. The operator is ‘/’. We see this is an example of dividing by a power of 2 by
right shifting (see Section 2.3.7). Before shifting by k = 2, we must add a bias
of 2k − 1 = 3 when the dividend is negative.

B. Here is an annotated version of the assembly code:

Computation by function arith

Register: x in %edx

1 leal 3(%edx), %eax temp = x+3

2 testl %edx, %edx Test x

3 cmovns %edx, %eax If >= 0, temp = x

4 sarl $2, %eax Return temp >> 2 (= x/4)

320 Chapter 3 Machine-Level Representation of Programs

The program creates a temporary value equal to x + 3, in anticipation of
x being negative and therefore requiring biasing. The cmovns instruction
conditionally changes this number to x when x ≥ 0, and then it is shifted by
2 to generate x/4.

Solution to Problem 3.27 (page 212)
This problem is similar to Problem 3.18, except that some of the conditionals have
been implemented by conditional data transfers. Although it might seem daunting
to fit this code into the framework of the original C code, you will find that it follows
the translation rules fairly closely.

1 int test(int x, int y) {

2 int val = 4*x;

3 if (y > 0) {

4 if (x < y)

5 val = x-y;

6 else

7 val = x^y;

8 } else if (y < -2)

9 val = x+y;

10 return val;

11 }

Solution to Problem 3.28 (page 217)
This problem gives you a chance to reason about the control flow of a switch
statement. Answering the questions requires you to combine information from
several places in the assembly code.

1. Line 2 of the assembly code adds 2 to x to set the lower range of the cases to
zero. That means that the minimum case label is −2.

2. Lines 3 and 4 cause the program to jump to the default case when the adjusted
case value is greater than 6. This implies that the maximum case label is
−2 + 6 = 4.

3. In the jump table, we see that the entry on line 3 (case value −1) has the same
destination (.L2) as the jump instruction on line 4, indicating the default case
behavior. Thus, case label −1 is missing in the switch statement body.

4. In the jump table, we see that the entries on lines 6 and 7 have the same
destination. These correspond to case labels 2 and 3.

From this reasoning, we draw the following two conclusions:

A. The case labels in the switch statement body had values −2, 0, 1, 2, 3, and 4.

B. The case with destination .L6 had labels 2 and 3.

Solution to Problem 3.29 (page 218)
The key to reverse engineering compiled switch statements is to combine the
information from the assembly code and the jump table to sort out the different
cases. We can see from the ja instruction (line 3) that the code for the default case

Solutions to Practice Problems 321

has label .L2. We can see that the only other repeated label in the jump table is
.L4, and so this must be the code for the cases C and D. We can see that the code
falls through at line 14, and so label .L6 must match case A and label .L3 must
match case B. That leaves only label .L2 to match case E.

The original C code is as follows. Observe how the compiler optimized the
case where a equals 4 by setting the return value to be 4, rather than a.

1 int switcher(int a, int b, int c)

2 {

3 int answer;

4 switch(a) {

6 case 5:

7 c = b ^ 15;

8 /* Fall through */

9 case 0:

10 answer = c + 112;

11 break;

12 case 2:

13 case 7:

14 answer = (c + b) << 2;

15 break;

16 case 4:

17 answer = a; /* equivalently, answer = 4 */

18 break;

19 default:

20 answer = b;

21 }

22 return answer;

23 }

Solution to Problem 3.30 (page 223)
This is another example of an assembly-code idiom. At first it seems quite
peculiar—a call instruction with no matching ret. Then we realize that it is not
really a procedure call after all.

A. %eax is set to the address of the popl instruction.

B. This is not a true procedure call, since the control follows the same ordering
as the instructions and the return address is popped from the stack.

C. This is the only way in IA32 to get the value of the program counter into an
integer register.

Solution to Problem 3.31 (page 224)
This problem makes concrete the discussion of register usage conventions. Reg-
isters %edi, %esi, and %ebx are callee-save. The procedure must save them on the
stack before altering their values and restore them before returning. The other
three registers are caller-save. They can be altered without affecting the behavior
of the caller.

322 Chapter 3 Machine-Level Representation of Programs

Solution to Problem 3.32 (page 228)
One step in learning to read IA32 code is to become very familiar with the way
arguments are passed on the stack. The key to solving this problem is to note that
the storage of d at p is implemented by the instruction at line 3 of the assembly
code, from which you work backward to determine the types and positions of
arguments d and p. Similarly, the subtraction is performed at line 6, and from this
you can work backward to determine the types and positions of arguments x and c.

The following is the function prototype:

int fun(short c, char d, int *p, int x);

As this example shows, reverse engineering is like solving a puzzle. It’s important
to identify the points where there is a unique choice, and then work around these
points to fill in the rest of the details.

Solution to Problem 3.33 (page 228)
Being able to reason about how functions use the stack is a critical part of under-
standing compiler-generated code. As this example illustrates, the compiler may
allocate a significant amount of space that never gets used.

A. We started with %esp having value 0x800040. The pushl instruction on line 2
decrements the stack pointer by 4, giving 0x80003C, and this becomes the
new value of %ebp.

B. Line 4 decrements the stack pointer by 40 (hex 0x28), yielding 0x800014.

C. We can see how the two leal instructions (lines 5 and 7) compute the
arguments to pass to scanf, while the two movl instructions (lines 6 and 8)
store them on the stack. Since the function arguments appear on the stack at
increasingly positive offsets from %esp, we can conclude that line 5 computes
&x, while line 7 computes line &y. These have values 0x800038 and 0x800034,
respectively.

D. The stack frame has the following structure and contents:

0x800060

0x53

0x46

0x800038

0x800034

0x300070

0x80003C

0x800038

0x800034

0x800030

0x80002C

0x800028

0x800024

0x800020

0x80001C

0x800018

0x800014

x

y

%ebp

%esp

E. Byte addresses 0x800020 through 0x800033 are unused.

Solutions to Practice Problems 323

Solution to Problem 3.34 (page 231)
This problem provides a chance to examine the code for a recursive function. An
important lesson to learn is that recursive code has the exact same structure as the
other functions we have seen. The stack and register-saving disciplines suffice to
make recursive functions operate correctly.

A. Register %ebx holds the value of parameter x, so that it can be used to
compute the result expression.

B. The assembly code was generated from the following C code:

int rfun(unsigned x) {

if (x == 0)

return 0;

unsigned nx = x>>1;

int rv = rfun(nx);

return (x & 0x1) + rv;

}

C. Like the code of Problem 3.49, this function computes the sum of the bits in
argument x. It recursively computes the sum of all but the least significant
bit, and then it adds the least significant bit to get the result.

Solution to Problem 3.35 (page 233)
This exercise tests your understanding of data sizes and array indexing. Observe
that a pointer of any kind is 4 bytes long. For IA32, gcc allocates 12 bytes for data
type long double, even though the actual format requires only 10 bytes.

Array Element size Total size Start address Element i

S 2 14 xS xS+ 2i

T 4 12 xT xT + 4i

U 4 24 xU xU + 4i

V 12 96 xV xV + 12i

W 4 16 xW xW + 4i

Solution to Problem 3.36 (page 234)
This problem is a variant of the one shown for integer array E. It is important to
understand the difference between a pointer and the object being pointed to. Since
data type short requires 2 bytes, all of the array indices are scaled by a factor of 2.
Rather than using movl, as before, we now use movw.

Expression Type Value Assembly

S+1 short * xS+ 2 leal 2(%edx),%eax

S[3] short M[xS+ 6] movw 6(%edx),%ax

&S[i] short * xS+ 2i leal (%edx,%ecx,2),%eax

S[4*i+1] short M[xS+ 8i + 2] movw 2(%edx,%ecx,8),%ax

S+i-5 short * xS+ 2i − 10 leal -10(%edx,%ecx,2),%eax

324 Chapter 3 Machine-Level Representation of Programs

Solution to Problem 3.37 (page 236)
This problem requires you to work through the scaling operations to determine
the address computations, and to apply Equation 3.1 for row-major indexing. The
first step is to annotate the assembly code to determine how the address references
are computed:

1 movl 8(%ebp), %ecx Get i

2 movl 12(%ebp), %edx Get j

3 leal 0(,%ecx,8), %eax 8*i

4 subl %ecx, %eax 8*i-i = 7*i

5 addl %edx, %eax 7*i+j

6 leal (%edx,%edx,4), %edx 5*j

7 addl %ecx, %edx 5*j+i

8 movl mat1(,%eax,4), %eax mat1[7*i+j]

9 addl mat2(,%edx,4), %eax mat2[5*j+i]

We can see that the reference to matrix mat1 is at byte offset 4(7i + j), while the
reference to matrix mat2 is at byte offset 4(5j + i). From this, we can determine
that mat1 has 7 columns, while mat2 has 5, giving M = 5 and N = 7.

Solution to Problem 3.38 (page 238)
This exercise requires that you be able to study compiler-generated assembly code
to understand what optimizations have been performed. In this case, the compiler
was clever in its optimizations.

Let us first study the following C code, and then see how it is derived from the
assembly code generated for the original function.

1 /* Set all diagonal elements to val */

2 void fix_set_diag_opt(fix_matrix A, int val) {

3 int *Abase = &A[0][0];

4 int index = 0;

5 do {

6 Abase[index] = val;

7 index += (N+1);

8 } while (index != (N+1)*N);

9 }

This function introduces a variable Abase, of type int *, pointing to the start
of array A. This pointer designates a sequence of 4-byte integers consisting of
elements of A in row-major order. We introduce an integer variable index that
steps through the diagonal elements of A, with the property that diagonal elements
i and i + 1are spaced N + 1elements apart in the sequence, and that once we reach
diagonal element N (index value N(N + 1)), we have gone beyond the end.

The actual assembly code follows this general form, but now the pointer
increments must be scaled by a factor of 4. We label register %eax as holding a

Solutions to Practice Problems 325

value index4 equal to index in our C version, but scaled by a factor of 4. For
N = 16, we can see that our stopping point for index4will be 4 . 16(16 + 1) = 1088.

A at %ebp+8, val at %ebp+12

1 movl 8(%ebp), %ecx Get Abase = &A[0][0]

2 movl 12(%ebp), %edx Get val

3 movl $0, %eax Set index4 to 0

4 .L14: loop:

5 movl %edx, (%ecx,%eax) Set Abase[index4/4] to val

6 addl $68, %eax index4 += 4(N+1)

7 cmpl $1088, %eax Compare index4:4N(N+1)

8 jne .L14 If !=, goto loop

Solution to Problem 3.39 (page 243)
This problem gets you to think about structure layout and the code used to access
structure fields. The structure declaration is a variant of the example shown in
the text. It shows that nested structures are allocated by embedding the inner
structures within the outer ones.

A. The layout of the structure is as follows:

Offset

Contents p

0 4 8 12 16

s.x s.y next

B. It uses 16 bytes.

C. As always, we start by annotating the assembly code:

sp at %ebp+8

1 movl 8(%ebp), %eax Get sp

2 movl 8(%eax), %edx Get sp->s.y

3 movl %edx, 4(%eax) Store in sp->s.x

4 leal 4(%eax), %edx Compute &(sp->s.x)

5 movl %edx, (%eax) Store in sp->p

6 movl %eax, 12(%eax) Store sp in sp->next

From this, we can generate C code as follows:

void sp_init(struct prob *sp)

{

sp->s.x = sp->s.y;

sp->p = &(sp->s.x);

sp->next = sp;

}

Solution to Problem 3.40 (page 247)
Structures and unions involve a simple set of concepts, but it takes practice to be
comfortable with the different referencing patterns and their implementations.

326 Chapter 3 Machine-Level Representation of Programs

EXPR TYPE Code

up->t1.s int movl 4(%eax), %eax

movl %eax, (%edx)

up->t1.v short movw (%eax), %ax

movw %ax, (%edx)

&up->t1.d short * leal 2(%eax), %eax

movl %eax, (%edx)

up->t2.a int * movl %eax, (%edx)

up->t2.a[up->t1.s] int movl 4(%eax), %ecx

movl (%eax,%ecx,4), %eax

movl %eax, (%edx)

*up->t2.p char movl 8(%eax), %eax

movb (%eax), %al

movb %al, (%edx)

Solution to Problem 3.41 (page 251)
Understanding structure layout and alignment is very important for understand-
ing how much storage different data structures require and for understanding the
code generated by the compiler for accessing structures. This problem lets you
work out the details of some example structures.

A. struct P1 { int i; char c; int j; char d; };

i c j d Total Alignment

0 4 8 12 16 4

B. struct P2 { int i; char c; char d; int j; };

i c j d Total Alignment

0 4 5 8 12 4

C. struct P3 { short w[3]; char c[3] };

w c Total Alignment

0 6 10 2

D. struct P4 { short w[3]; char *c[3] };

w c Total Alignment

0 8 20 4

E. struct P3 { struct P1 a[2]; struct P2 *p };

a p Total Alignment

0 32 36 4

Solutions to Practice Problems 327

Solution to Problem 3.42 (page 251)
This is an exercise in understanding structure layout and alignment.

A. Here are the object sizes and byte offsets:

Field a b c d e f g h

Size 4 2 8 1 4 1 8 4
Offset 0 4 8 16 20 24 32 40

B. The structure is a total of 48 bytes long. The end of the structure must be
padded by 4 bytes to satisfy the 8-byte alignment requirement.

C. One strategy that works, when all data elements have a length equal to a
power of two, is to order the structure elements in descending order of size.
This leads to a declaration,

struct {

double c;

long long g;

float e;

char *a;

void *h;

short b;

char d;

char f;

} foo;

with the following offsets, for a total of 32 bytes:

Field c g e a h b d f

Size 8 8 4 4 4 2 1 1
Offset 0 8 16 20 24 28 30 31

Solution to Problem 3.43 (page 259)
This problem covers a wide range of topics, such as stack frames, string represen-
tations, ASCII code, and byte ordering. It demonstrates the dangers of out-of-
bounds memory references and the basic ideas behind buffer overflow.

A. Stack after line 7:

08 04 86 43

bf ff fc 94

00 00 00 03

00 00 00 02

00 00 00 01

%ebp

Return address

Saved %ebp

Saved %edi

Saved %esi

Saved %ebx

buf[4-7]

buf[0-3]

328 Chapter 3 Machine-Level Representation of Programs

B. Stack after line 10:

08 04 86 00

33 32 31 30

39 38 37 36

35 34 33 32

31 30 39 38

37 36 35 34

33 32 31 30

%ebp

Return address

Saved %ebp

Saved %edi

Saved %esi

Saved %ebx

buf[4-7]

buf[0-3]

C. The program is attempting to return to address 0x08048600. The low-order
byte was overwritten by the terminating null character.

D. The saved values of the following registers were altered:

Register Value

%ebp 33323130

%edi 39383736

%esi 35343332

%ebx 31303938

These values will be loaded into the registers before getline returns.

E. The call to malloc should have had strlen(buf)+1 as its argument, and the
code should also check that the returned value is not equal to NULL.

Solution to Problem 3.44 (page 262)

A. This corresponds to a range of around 213 addresses.

B. A 128-byte nop sled would cover 27 addresses with each test, and so we would
only require 26 = 64 attempts.

This example clearly shows that the degree of randomization in this version of
Linux would provide only minimal deterrence against an overflow attack.

Solution to Problem 3.45 (page 264)
This problem gives you another chance to see how IA32 code manages the stack,
and to also better understand how to defend against buffer overflow attacks.

A. For the unprotected code, we can see that lines 4 and 6 compute the positions
of v and buf to be at offsets −8 and −20 relative to %ebp. In the protected
code, the canary is stored at offset −8 (line 3), while v and buf are at offsets
−24 and −20 (lines 7 and 9).

B. In the protected code, local variable v is positioned closer to the top of the
stack than buf, and so an overrun of buf will not corrupt the value of v.

Solutions to Practice Problems 329

In fact, buf is positioned so that any buffer overrun will corrupt the canary
value.

Solution to Problem 3.46 (page 271)
Achieving a factor of 51 price improvement every 10 years over 3 decades has been
truly remarkable, and it helps explain why computers have become so pervasive
in our society.

A. Assuming the baseline of 16.3 gigabytes in 2010, 256 terabytes represents an
increase by a factor of 1.608 × 104, which would take around 25 years, giving
us 2035.

B. Sixteen exabytes is an increase of 1.054 × 109 over 16.3 gigabytes. This would
take around 53 years, giving us 2063.

C. Increasing the budget by a factor of 10 cuts about 6 years off our schedule,
making it possible to meet the two memory-size goals in years 2029 and 2057,
respectively.

These numbers, of course, should not be taken too literally. It would require
scaling memory technology well beyond what are believed to be fundamental
physical limits of the current technology. Nonetheless, it indicates that, within the
lifetimes of many readers of this book, there will be systems with exabyte-scale
memory systems.

Solution to Problem 3.47 (page 276)
This problem illustrates some of the subtleties of type conversion and the different
move instructions. In some cases, we make use of the property that the movl
instruction will set the upper 32 bits of the destination register to zeros. Some
of the problems have multiple solutions.

src_t dest_t Instruction S D Explanation

long long movq %rdi %rax No conversion

int long movslq %edi %rax Sign extend

char long movsbq %dil %rax Sign extend

unsigned int unsigned long movl %edi %eax Zero extend to 64 bits

unsigned char unsigned long movzbq %dil %rax Zero extend to 64

unsigned char unsigned long movzbl %dil %eax Zero extend to 64 bits

long int movslq %edi %rax Sign extend to 64 bits

long int movl %edi %eax Zero extend to 64 bits

unsigned long unsigned movl %edi %eax Zero extend to 64 bits

We show that the long to int conversion can use either movslq or movl, even
though one will sign extend the upper 32 bits, while the other will zero extend
it. This is because the values of the upper 32 bits are ignored for any subsequent
instruction having %eax as an operand.

330 Chapter 3 Machine-Level Representation of Programs

Solution to Problem 3.48 (page 278)
We can step through the code for arithprob and determine the following:

1. The first movslq instruction sign extends d to a long integer prior to its multi-
plication by c. This implies that d has type int and c has type long.

2. The movsbl instruction (line 4) sign extends b to an integer prior to its multi-
plication by a. This means that b has type char and a has type int.

3. The sum is computed using a leaq instruction, indicating that the return value
has type long.

From this, we can determine that the unique prototype for arithprob is

long arithprob(int a, char b, long c, int d);

Solution to Problem 3.49 (page 281)
This problem demonstrates a clever way to count the number of 1 bits in a word.
It uses several tricks that look fairly obscure at the assembly-code level.

A. Here is the original C code:

long fun_c(unsigned long x) {

long val = 0;

int i;

for (i = 0; i < 8; i++) {

val += x & 0x0101010101010101L;

x >>= 1;

}

val += (val >> 32);

val += (val >> 16);

val += (val >> 8);

return val & 0xFF;

}

B. This code sums the bits in xby computing 8 single-byte sums in parallel, using
all 8 bytes of val. It then sums the two halves of val, then the two low-order
16 bits, and then the 2 low-order bytes of this sum to get the final amount in
the low-order byte. It masks off the high-order bits to get the final result. This
approach has the advantage that it requires only 8 iterations, rather than the
more typical 64.

Solution to Problem 3.50 (page 284)
We can step through the code for incrprob and determine the following:

1. The addl instruction fetches a 32-bit integer from the location given by the
third argument register and adds it to the 32-bit version of the first argument
register. From this, we can infer that t is the third argument and x is the first
argument. We can see that tmust be a pointer to a signed or unsigned integer,
but x could be either signed or unsigned, and it could either be 32 bits or 64
(since when adding it to *t, the code should truncate it to 32 bits).

Solutions to Practice Problems 331

2. The movslq instruction sign extends the sum (a copy of *t) to a long integer.
From this, we can infer that t must be a pointer to a signed integer.

3. The addq instruction adds the sign-extended value of the previous sum to the
location indicated by the second argument register. From this, we can infer
that q is the second argument and that it is a pointer to a long integer.

There are four valid prototypes for incrprob, depending on whether or not
x is long, and whether it is signed or unsigned. We show these as four different
prototypes:

void incrprob_s(int x, long *q, int *t);

void incrprob_u(unsigned x, long *q, int *t);

void incrprob_sl(long x, long *q, int *t);

void incrprob_ul(unsigned long x, long *q, int *t);

Solution to Problem 3.51 (page 289)
This function is an example of a leaf function that requires local storage. It can
use space beyond the stack pointer for its local storage, never altering the stack
pointer.

A. Stack locations used:

0

–8

–16

–24

–32

–40

Stack pointer
%rsp Unused

Unused

a[3]

a[2]

a[1]

a[0]

B. x86-64 implementation of local_array

Argument i in %edi

1 local_array:

2 movq $2, -40(%rsp) Store 2 in a[0]

3 movq $3, -32(%rsp) Store 3 in a[1]

4 movq $5, -24(%rsp) Store 5 in a[2]

5 movq $7, -16(%rsp) Store 7 in a[3]

6 andl $3, %edi Compute idx = i & 3

7 movq -40(%rsp,%rdi,8), %rax Compute a[idx] as return value

8 ret Return

C. The function never changes the stack pointer. It stores all of its local values
in the region beyond the stack pointer.

Solution to Problem 3.52 (page 290)

A. Register %rbx is used to hold the parameter x.

332 Chapter 3 Machine-Level Representation of Programs

B. Since %rbx is callee-saved, it must be stored on the stack. Since this is the only
use of the stack for this function, the code uses push and pop instructions to
save and restore the register.

C. x86-64 implementation of recursive factorial function rfact

Argument: x in %rdi

1 rfact:

2 pushq %rbx Save %rbx (callee save)

3 movq %rdi, %rbx Copy x to %rbx

4 movl $1, %eax result = 1

5 testq %rdi, %rdi Test x

6 jle .L11 If <=0, goto done

7 leaq -1(%rdi), %rdi Compute xm1 = x-1

8 call rfact Call rfact(xm1)

9 imulq %rbx, %rax Compute result = x*rfact(xm1)

10 .L11: done:

11 popq %rbx Restore %rbx

12 ret Return

D. Instead of explicitly decrementing and incrementing the stack pointer, the
code can use pushq and popq to both modify the stack pointer and to save
and restore register state.

Solution to Problem 3.53 (page 291)
This problem is similar to Problem 3.41, but updated for x86-64.

A. struct P1 { int i; char c; long j; char d; };

i c j d Total Alignment

0 4 8 16 24 8

B. struct P2 { long i; char c; char d; int j; };

i c d j Total Alignment

0 8 9 12 16 8

C. struct P3 { short w[3]; char c[3] };

w c Total Alignment

0 6 10 2

D. struct P4 { short w[3]; char *c[3] };

w c Total Alignment

0 8 32 8

E. struct P3 { struct P1 a[2]; struct P2 *p };

a p Total Alignment

0 48 56 8

C H A P T E R 4
Processor Architecture

4.1 The Y86 Instruction Set Architecture 336

4.2 Logic Design and the Hardware Control Language HCL 352

4.3 Sequential Y86 Implementations 364

4.4 General Principles of Pipelining 391

4.5 Pipelined Y86 Implementations 400

4.6 Summary 449

Bibliographic Notes 451

Homework Problems 451

Solutions to Practice Problems 457

333

334 Chapter 4 Processor Architecture

Modern microprocessors are among the most complex systems ever created by
humans. A single silicon chip, roughly the size of a fingernail, can contain a
complete high-performance processor, large cache memories, and the logic re-
quired to interface it to external devices. In terms of performance, the processors
implemented on a single chip today dwarf the room-sized supercomputers that
cost over $10 million just 20 years ago. Even the embedded processors found in
everyday appliances such as cell phones, personal digital assistants, and handheld
game systems are far more powerful than the early developers of computers ever
envisioned.

Thus far, we have only viewed computer systems down to the level of machine-
language programs. We have seen that a processor must execute a sequence of
instructions, where each instruction performs some primitive operation, such as
adding two numbers. An instruction is encoded in binary form as a sequence of
1 or more bytes. The instructions supported by a particular processor and their
byte-level encodings are known as its instruction-set architecture (ISA). Different
“families” of processors, such as Intel IA32, IBM/Freescale PowerPC, and the
ARM processor family have different ISAs. A program compiled for one type
of machine will not run on another. On the other hand, there are many different
models of processors within a single family. Each manufacturer produces proces-
sors of ever-growing performance and complexity, but the different models remain
compatible at the ISA level. Popular families, such as IA32, have processors sup-
plied by multiple manufacturers. Thus, the ISA provides a conceptual layer of
abstraction between compiler writers, who need only know what instructions are
permitted and how they are encoded, and processor designers, who must build
machines that execute those instructions.

In this chapter, we take a brief look at the design of processor hardware. We
study the way a hardware system can execute the instructions of a particular ISA.
This view will give you a better understanding of how computers work and the
technological challenges faced by computer manufacturers. One important con-
cept is that the actual way a modern processor operates can be quite different
from the model of computation implied by the ISA. The ISA model would seem
to imply sequential instruction execution, where each instruction is fetched and
executed to completion before the next one begins. By executing different parts
of multiple instructions simultaneously, the processor can achieve higher perfor-
mance than if it executed just one instruction at a time. Special mechanisms are
used to make sure the processor computes the same results as it would with se-
quential execution. This idea of using clever tricks to improve performance while
maintaining the functionality of a simpler and more abstract model is well known
in computer science. Examples include the use of caching in Web browsers and
information retrieval data structures such as balanced binary trees and hash tables.

Chances are you will never design your own processor. This is a task for
experts working at fewer than 100 companies worldwide. Why, then, should you
learn about processor design?

. It is intellectually interesting and important.There is an intrinsic value in learn-
ing how things work. It is especially interesting to learn the inner workings of

Chapter 4 Processor Architecture 335

a system that is such a part of the daily lives of computer scientists and engi-
neers and yet remains a mystery to many. Processor design embodies many of
the principles of good engineering practice. It requires creating a simple and
regular structure to perform a complex task.

. Understanding how the processor works aids in understanding how the overall
computer system works. In Chapter 6, we will look at the memory system and
the techniques used to create an image of a very large memory with a very
fast access time. Seeing the processor side of the processor-memory interface
will make this presentation more complete.

. Although few people design processors, many design hardware systems that
contain processors. This has become commonplace as processors are embed-
ded into real-world systems such as automobiles and appliances. Embedded-
system designers must understand how processors work, because these sys-
tems are generally designed and programmed at a lower level of abstraction
than is the case for desktop systems.

. You just might work on a processor design.Although the number of companies
producing microprocessors is small, the design teams working on those pro-
cessors are already large and growing. There can be over 1000 people involved
in the different aspects of a major processor design.

In this chapter, we start by defining a simple instruction set that we use as
a running example for our processor implementations. We call this the “Y86”
instruction set, because it was inspired by the IA32 instruction set, which is
colloquially referred to as “x86.” Compared with IA32, the Y86 instruction set has
fewer data types, instructions, and addressing modes. It also has a simpler byte-
level encoding. Still, it is sufficiently complete to allow us to write simple programs
manipulating integer data. Designing a processor to implement Y86 requires us
to face many of the challenges faced by processor designers.

We then provide some background on digital hardware design. We describe
the basic building blocks used in a processor and how they are connected together
and operated. This presentation builds on our discussion of Boolean algebra and
bit-level operations from Chapter 2. We also introduce a simple language, HCL
(for “Hardware Control Language”), to describe the control portions of hardware
systems. We will later use this language to describe our processor designs. Even if
you already have some background in logic design, read this section to understand
our particular notation.

As a first step in designing a processor, we present a functionally correct,
but somewhat impractical, Y86 processor based on sequential operation. This
processor executes a complete Y86 instruction on every clock cycle. The clock
must run slowly enough to allow an entire series of actions to complete within
one cycle. Such a processor could be implemented, but its performance would be
well below what could be achieved for this much hardware.

With the sequential design as a basis, we then apply a series of transforma-
tions to create a pipelined processor. This processor breaks the execution of each
instruction into five steps, each of which is handled by a separate section or stage

336 Chapter 4 Processor Architecture

of the hardware. Instructions progress through the stages of the pipeline, with one
instruction entering the pipeline on each clock cycle. As a result, the processor can
be executing the different steps of up to five instructions simultaneously. Making
this processor preserve the sequential behavior of the Y86 ISA requires handling
a variety of hazard conditions, where the location or operands of one instruction
depend on those of other instructions that are still in the pipeline.

We have devised a variety of tools for studying and experimenting with
our processor designs. These include an assembler for Y86, a simulator for run-
ning Y86 programs on your machine, and simulators for two sequential and one
pipelined processor design. The control logic for these designs is described by files
in HCL notation. By editing these files and recompiling the simulator, you can al-
ter and extend the simulator’s behavior. A number of exercises are provided that
involve implementing new instructions and modifying how the machine processes
instructions. Testing code is provided to help you evaluate the correctness of your
modifications. These exercises will greatly aid your understanding of the material
and will give you an appreciation for the many different design alternatives faced
by processor designers.

Web Aside arch:vlog presents a representation of our pipelined Y86 proces-
sor in the Verilog hardware description language. This involves creating modules
for the basic hardware building blocks and for the overall processor structure. We
automatically translate the HCL description of the control logic into Verilog. By
first debugging the HCL description with our simulators, we eliminate many of the
tricky bugs that would otherwise show up in the hardware design. Given a Verilog
description, there are commercial and open-source tools to support simulation
and logic synthesis, generating actual circuit designs for the microprocessors. So,
although much of the effort we expend here is to create pictorial and textual de-
scriptions of a system, much as one would when writing software, the fact that
these designs can be automatically synthesized demonstrates that we are indeed
creating a system that can be realized as hardware.

4.1 The Y86 Instruction Set Architecture

Defining an instruction set architecture, such as Y86, includes defining the differ-
ent state elements, the set of instructions and their encodings, a set of programming
conventions, and the handling of exceptional events.

4.1.1 Programmer-Visible State

As Figure 4.1 illustrates, each instruction in a Y86 program can read and modify
some part of the processor state. This is referred to as the programmer-visible
state, where the “programmer” in this case is either someone writing programs
in assembly code or a compiler generating machine-level code. We will see in our
processor implementations that we do not need to represent and organize this
state in exactly the manner implied by the ISA, as long as we can make sure that
machine-level programs appear to have access to the programmer-visible state.
The state for Y86 is similar to that for IA32. There are eight program registers:

Section 4.1 The Y86 Instruction Set Architecture 337

RF: Program registers Stat: Program status

DMEM: Memory

CC:
Condition

codes%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

PC

ZF SF OF

Figure 4.1 Y86 programmer-visible state. As with IA32, programs for Y86 access and
modify the program registers, the condition code, the program counter (PC), and the
memory. The status code indicates whether the program is running normally, or some
special event has occurred.

%eax, %ecx, %edx, %ebx, %esi, %edi, %esp, and %ebp. Each of these stores a
word. Register %esp is used as a stack pointer by the push, pop, call, and return
instructions. Otherwise, the registers have no fixed meanings or values. There are
three single-bit condition codes, ZF, SF, and OF, storing information about the
effect of the most recent arithmetic or logical instruction. The program counter
(PC) holds the address of the instruction currently being executed.

The memory is conceptually a large array of bytes, holding both program
and data. Y86 programs reference memory locations using virtual addresses. A
combination of hardware and operating system software translates these into the
actual, or physical, addresses indicating where the values are actually stored in
memory. We will study virtual memory in more detail in Chapter 9. For now, we
can think of the virtual memory system as providing Y86 programs with an image
of a monolithic byte array.

A final part of the program state is a status code Stat, indicating the overall
state of program execution. It will indicate either normal operation, or that some
sort of exception has occurred, such as when an instruction attempts to read
from an invalid memory address. The possible status codes and the handling of
exceptions is described in Section 4.1.4.

4.1.2 Y86 Instructions

Figure 4.2 gives a concise description of the individual instructions in the Y86 ISA.
We use this instruction set as a target for our processor implementations. The set
of Y86 instructions is largely a subset of the IA32 instruction set. It includes only
4-byte integer operations, has fewer addressing modes, and includes a smaller set
of operations. Since we only use 4-byte data, we can refer to these as “words”
without any ambiguity. In this figure, we show the assembly-code representation
of the instructions on the left and the byte encodings on the right. The assembly-
code format is similar to the ATT format for IA32.

Here are some further details about the different Y86 instructions.

. The IA32 movl instruction is split into four different instructions: irmovl,
rrmovl, mrmovl, and rmmovl, explicitly indicating the form of the source and
destination. The source is either immediate (i), register (r), or memory (m).

338 Chapter 4 Processor Architecture

Figure 4.2
Y86 instruction set.
Instruction encodings
range between 1 and
6 bytes. An instruction
consists of a 1-byte
instruction specifier,
possibly a 1-byte register
specifier, and possibly a 4-
byte constant word. Field
fn specifies a particular
integer operation (OPl),
data movement condition
(cmovXX), or branch
condition (jXX). All
numeric values are shown
in hexadecimal.

halt

nop

rrmovl rA, rB

irmovl V, rB

rmmovl rA, D(rB)

mrmovl D(rB), rA

OPl rA, rB

jXX Dest

cmovXX rA, rB

call Dest

ret

pushl rA

popl rA

0

1

2

3

4

5

6

7

2

8

9

A

B

rB

rB

rB

rB

rB

rB

V

D

D

Dest

Dest

0Byte 1 2 3 4 5

rA

rA

0

0

0

0

0

0

fn

fn

fn

0

0

0

0 F

F

rA

F

rA

rA

rA

rA

It is designated by the first character in the instruction name. The destination
is either register (r) or memory (m). It is designated by the second character
in the instruction name. Explicitly identifying the four types of data transfer
will prove helpful when we decide how to implement them.

The memory references for the two memory movement instructions have
a simple base and displacement format. We do not support the second index
register or any scaling of a register’s value in the address computation.

As with IA32, we do not allow direct transfers from one memory location
to another. In addition, we do not allow a transfer of immediate data to
memory.

. There are four integer operation instructions, shown in Figure 4.2 as OPl.
These are addl, subl, andl, and xorl. They operate only on register data,
whereas IA32 also allows operations on memory data. These instructions set
the three condition codes ZF, SF, and OF (zero, sign, and overflow).

. The seven jump instructions (shown in Figure 4.2 as jXX) are jmp, jle, jl, je,
jne, jge, and jg. Branches are taken according to the type of branch and the
settings of the condition codes. The branch conditions are the same as with
IA32 (Figure 3.12).

Section 4.1 The Y86 Instruction Set Architecture 339

. There are six conditional move instructions (shown in Figure 4.2 as cmovXX):
cmovle, cmovl, cmove, cmovne, cmovge, and cmovg. These have the same
format as the register-register move instruction rrmovl, but the destination
register is updated only if the condition codes satisfy the required constraints.

. The call instruction pushes the return address on the stack and jumps to the
destination address. The ret instruction returns from such a call.

. The pushl and popl instructions implement push and pop, just as they do in
IA32.

. The halt instruction stops instruction execution. IA32 has a comparable
instruction, called hlt. IA32 application programs are not permitted to use
this instruction, since it causes the entire system to suspend operation. For
Y86, executing the halt instruction causes the processor to stop, with the
status code set to HLT. (See Section 4.1.4.)

4.1.3 Instruction Encoding

Figure 4.2 also shows the byte-level encoding of the instructions. Each instruction
requires between 1 and 6 bytes, depending on which fields are required. Every
instruction has an initial byte identifying the instruction type. This byte is split
into two 4-bit parts: the high-order, or code, part, and the low-order, or function,
part. As you can see in Figure 4.2, code values range from 0 to 0xB. The function
values are significant only for the cases where a group of related instructions share
a common code. These are given in Figure 4.3, showing the specific encodings of
the integer operation, conditional move, and branch instructions. Observe that
rrmovl has the same instruction code as the conditional moves. It can be viewed
as an “unconditional move” just as the jmp instruction is an unconditional jump,
both having function code 0.

As shown in Figure 4.4, each of the eight program registers has an associated
register identifier (ID) ranging from 0 to 7. The numbering of registers in Y86
matches what is used in IA32. The program registers are stored within the CPU
in a register file, a small random-access memory where the register IDs serve

Operations Branches

6addl 0

6subl 1

6andl 2

6xorl 3

7

7

jmp 0

jle 1

7jl 2

7je 3

7jne 4

7jge 5

7jg 6

Moves

2

2

rrmovl 0

cmovle 1

2cmovl 2

2cmove 3

2cmovne 4

2cmovge 5

2cmovg 6

Figure 4.3 Function codes for Y86 instruction set. The code specifies a particular
integer operation, branch condition, or data transfer condition. These instructions are
shown as OPl, jXX, and cmovXX in Figure 4.2.

340 Chapter 4 Processor Architecture

Number Register name

0 %eax

1 %ecx

2 %edx

3 %ebx

4 %esp

5 %ebp

6 %esi

7 %edi

F No register

Figure 4.4 Y86 program register identifiers. Each of the eight program registers has
an associated identifier (ID) ranging from 0 to 7. ID 0xF in a register field of an instruction
indicates the absence of a register operand.

as addresses. ID value 0xF is used in the instruction encodings and within our
hardware designs when we need to indicate that no register should be accessed.

Some instructions are just 1 byte long, but those that require operands have
longer encodings. First, there can be an additional register specifier byte, specifying
either one or two registers. These register fields are called rA and rB in Figure 4.2.
As the assembly-code versions of the instructions show, they can specify the
registers used for data sources and destinations, as well as the base register used in
an address computation, depending on the instruction type. Instructions that have
no register operands, such as branches and call, do not have a register specifier
byte. Those that require just one register operand (irmovl, pushl, and popl) have
the other register specifier set to value 0xF. This convention will prove useful in
our processor implementation.

Some instructions require an additional 4-byte constant word. This word can
serve as the immediate data for irmovl, the displacement for rmmovl and mrmovl
address specifiers, and the destination of branches and calls. Note that branch and
call destinations are given as absolute addresses, rather than using the PC-relative
addressing seen in IA32. Processors use PC-relative addressing to give more
compact encodings of branch instructions and to allow code to be copied from
one part of memory to another without the need to update all of the branch target
addresses. Since we are more concerned with simplicity in our presentation, we
use absolute addressing. As with IA32, all integers have a little-endian encoding.
When the instruction is written in disassembled form, these bytes appear in reverse
order.

As an example, let us generate the byte encoding of the instruction rmmovl
%esp,0x12345(%edx) in hexadecimal. From Figure 4.2, we can see that rmmovl
has initial byte 40. We can also see that source register %esp should be encoded
in the rA field, and base register %edx should be encoded in the rB field. Using the
register numbers in Figure 4.4, we get a register specifier byte of 42. Finally, the

Section 4.1 The Y86 Instruction Set Architecture 341

displacement is encoded in the 4-byte constant word. We first pad 0x12345 with
leading zeros to fill out 4 bytes, giving a byte sequence of 00 01 23 45. We write
this in byte-reversed order as 45 23 01 00. Combining these, we get an instruction
encoding of 404245230100.

One important property of any instruction set is that the byte encodings must
have a unique interpretation. An arbitrary sequence of bytes either encodes a
unique instruction sequence or is not a legal byte sequence. This property holds
for Y86, because every instruction has a unique combination of code and function
in its initial byte, and given this byte, we can determine the length and meaning of
any additional bytes. This property ensures that a processor can execute an object-
code program without any ambiguity about the meaning of the code. Even if the
code is embedded within other bytes in the program, we can readily determine
the instruction sequence as long as we start from the first byte in the sequence.
On the other hand, if we do not know the starting position of a code sequence, we
cannot reliably determine how to split the sequence into individual instructions.
This causes problems for disassemblers and other tools that attempt to extract
machine-level programs directly from object-code byte sequences.

Practice Problem 4.1
Determine the byte encoding of the Y86 instruction sequence that follows. The
line “.pos 0x100” indicates that the starting address of the object code should be
0x100.

.pos 0x100 # Start code at address 0x100

irmovl $15,%ebx # Load 15 into %ebx

rrmovl %ebx,%ecx # Copy 15 to %ecx

loop: # loop:

rmmovl %ecx,-3(%ebx) # Save %ecx at address 15-3 = 12

addl %ebx,%ecx # Increment %ecx by 15

jmp loop # Goto loop

Practice Problem 4.2
For each byte sequence listed, determine the Y86 instruction sequence it encodes.
If there is some invalid byte in the sequence, show the instruction sequence up
to that point and indicate where the invalid value occurs. For each sequence, we
show the starting address, then a colon, and then the byte sequence.

A. 0x100:30f3fcffffff40630008000000

B. 0x200:a06f80080200000030f30a00000090

C. 0x300:50540700000010f0b01f

D. 0x400:6113730004000000

E. 0x500:6362a0f0

342 Chapter 4 Processor Architecture

Aside Comparing IA32 to Y86 instruction encodings

Compared with the instruction encodings used in IA32, the encoding of Y86 is much simpler but also
less compact. The register fields occur only in fixed positions in all Y86 instructions, whereas they are
packed into various positions in the different IA32 instructions. We use a 4-bit encoding of registers,
even though there are only eight possible registers. IA32 uses just 3 bits. Thus, IA32 can pack a push
or pop instruction into just 1 byte, with a 5-bit field indicating the instruction type and the remaining 3
bits for the register specifier. IA32 can encode constant values in 1, 2, or 4 bytes, whereas Y86 always
requires 4 bytes.

Aside RISC and CISC instruction sets

IA32 is sometimes labeled as a “complex instruction set computer” (CISC—pronounced “sisk”),
and is deemed to be the opposite of ISAs that are classified as “reduced instruction set computers”
(RISC—pronounced “risk”). Historically, CISC machines came first, having evolved from the earliest
computers. By the early 1980s, instruction sets for mainframe and minicomputers had grown quite large,
as machine designers incorporated new instructions to support high-level tasks, such as manipulating
circular buffers, performing decimal arithmetic, and evaluating polynomials. The first microprocessors
appeared in the early 1970s and had limited instruction sets, because the integrated-circuit technology
then posed severe constraints on what could be implemented on a single chip. Microprocessors evolved
quickly and, by the early 1980s, were following the path of increasing instruction-set complexity set by
mainframes and minicomputers. The x86 family took this path, evolving into IA32, and more recently
into x86-64. Even the x86 line continues to evolve as new classes of instructions are added based on the
needs of emerging applications.

The RISC design philosophy developed in the early 1980s as an alternative to these trends. A group
of hardware and compiler experts at IBM, strongly influenced by the ideas of IBM researcher John
Cocke, recognized that they could generate efficient code for a much simpler form of instruction set. In
fact, many of the high-level instructions that were being added to instruction sets were very difficult to
generate with a compiler and were seldom used. A simpler instruction set could be implemented with
much less hardware and could be organized in an efficient pipeline structure, similar to those described
later in this chapter. IBM did not commercialize this idea until many years later, when it developed the
Power and PowerPC ISAs.

The RISC concept was further developed by Professors David Patterson, of the University of
California at Berkeley, and John Hennessy, of Stanford University. Patterson gave the name RISC to
this new class of machines, and CISC to the existing class, since there had previously been no need to
have a special designation for a nearly universal form of instruction set.

Comparing CISC with the original RISC instruction sets, we find the following general character-
istics:

CISC Early RISC

A large number of instructions. The Intel
document describing the complete set of
instructions [28, 29] is over 1200 pages long.

Many fewer instructions. Typically less than 100.

Some instructions with long execution times.
These include instructions that copy an entire
block from one part of memory to another
and others that copy multiple registers to and
from memory.

No instruction with a long execution time.
Some early RISC machines did not even have
an integer multiply instruction, requiring
compilers to implement multiplication as a
sequence of additions.

Section 4.1 The Y86 Instruction Set Architecture 343

CISC Early RISC

Variable-length encodings. IA32 instructions
can range from 1 to 15 bytes.

Fixed-length encodings. Typically all instructions
are encoded as 4 bytes.

Multiple formats for specifying operands. In
IA32, a memory operand specifier can have
many different combinations of displacement,
base and index registers, and scale factors.

Simple addressing formats. Typically just base
and displacement addressing.

Arithmetic and logical operations can be applied
to both memory and register operands.

Arithmetic and logical operations only use
register operands. Memory referencing is only
allowed by load instructions, reading from
memory into a register, and store instructions,
writing from a register to memory. This
convention is referred to as a load/store
architecture.

Implementation artifacts hidden from machine-
level programs. The ISA provides a clean
abstraction between programs and how they
get executed.

Implementation artifacts exposed to machine-
level programs. Some RISC machines
prohibit particular instruction sequences
and have jumps that do not take effect until
the following instruction is executed. The
compiler is given the task of optimizing
performance within these constraints.

Condition codes. Special flags are set as a
side effect of instructions and then used for
conditional branch testing.

No condition codes. Instead, explicit test
instructions store the test results in normal
registers for use in conditional evaluation.

Stack-intensive procedure linkage. The stack
is used for procedure arguments and return
addresses.

Register-intensive procedure linkage. Registers
are used for procedure arguments and return
addresses. Some procedures can thereby
avoid any memory references. Typically, the
processor has many more (up to 32) registers.

The Y86 instruction set includes attributes of both CISC and RISC instruction sets. On the CISC
side, it has condition codes, variable-length instructions, and stack-intensive procedure linkages. On
the RISC side, it uses a load-store architecture and a regular encoding. It can be viewed as taking a
CISC instruction set (IA32) and simplifying it by applying some of the principles of RISC.

Aside The RISC versus CISC controversy

Through the 1980s, battles raged in the computer architecture community regarding the merits of RISC
versus CISC instruction sets. Proponents of RISC claimed they could get more computing power for
a given amount of hardware through a combination of streamlined instruction set design, advanced
compiler technology, and pipelined processor implementation. CISC proponents countered that fewer
CISC instructions were required to perform a given task, and so their machines could achieve higher
overall performance.

Major companies introduced RISC processor lines, including Sun Microsystems (SPARC), IBM
and Motorola (PowerPC), and Digital Equipment Corporation (Alpha). A British company, Acorn

344 Chapter 4 Processor Architecture

Computers Ltd., developed its own architecture, ARM (originally an acronym for “Acorn RISC
Machine”), which is widely used in embedded applications, such as cellphones.

In the early 1990s, the debate diminished as it became clear that neither RISC nor CISC in their
purest forms were better than designs that incorporated the best ideas of both. RISC machines evolved
and introduced more instructions, many of which take multiple cycles to execute. RISC machines
today have hundreds of instructions in their repertoire, hardly fitting the name “reduced instruction
set machine.” The idea of exposing implementation artifacts to machine-level programs proved to be
short-sighted. As new processor models were developed using more advanced hardware structures,
many of these artifacts became irrelevant, but they still remained part of the instruction set. Still, the
core of RISC design is an instruction set that is well-suited to execution on a pipelined machine.

More recent CISC machines also take advantage of high-performance pipeline structures. As we
will discuss in Section 5.7, they fetch the CISC instructions and dynamically translate them into a
sequence of simpler, RISC-like operations. For example, an instruction that adds a register to memory
is translated into three operations: one to read the original memory value, one to perform the addition,
and a third to write the sum to memory. Since the dynamic translation can generally be performed well
in advance of the actual instruction execution, the processor can sustain a very high execution rate.

Marketing issues, apart from technological ones, have also played a major role in determining the
success of different instruction sets. By maintaining compatibility with its existing processors, Intel with
x86 made it easy to keep moving from one generation of processor to the next. As integrated-circuit
technology improved, Intel and other x86 processor manufacturers could overcome the inefficiencies
created by the original 8086 instruction set design, using RISC techniques to produce performance
comparable to the best RISC machines. As we saw in Section 3.13, the evolution of IA32 into x86-64
provided an opportunity to incorporate several features of RISC into x86. In the areas of desktop and
laptop computing, x86 has achieved total domination, and it is increasingly popular for high-end server
machines.

RISC processors have done very well in the market for embedded processors, controlling such
systems as cellular telephones, automobile brakes, and Internet appliances. In these applications, saving
on cost and power is more important than maintaining backward compatibility. In terms of the number
of processors sold, this is a very large and growing market.

4.1.4 Y86 Exceptions

The programmer-visible state for Y86 (Figure 4.1) includes a status code Stat
describing the overall state of the executing program. The possible values for this
code are shown in Figure 4.5. Code value 1, named AOK, indicates that the program
is executing normally, while the other codes indicate that some type of exception
has occurred. Code 2, named HLT, indicates that the processor has executed a halt
instruction. Code 3, named ADR, indicates that the processor attempted to read
from or write to an invalid memory address, either while fetching an instruction
or while reading or writing data. We limit the maximum address (the exact limit
varies by implementation), and any access to an address beyond this limit will
trigger an ADR exception. Code 4, named INS, indicates that an invalid instruction
code has been encountered.

Section 4.1 The Y86 Instruction Set Architecture 345

Value Name Meaning

1 AOK Normal operation
2 HLT halt instruction encountered
3 ADR Invalid address encountered
4 INS Invalid instruction encountered

Figure 4.5 Y86 status codes. In our design, the processor halts for any code other than
AOK.

For Y86, we will simply have the processor stop executing instructions when it
encounters any of the exceptions listed. In a more complete design, the processor
would typically invoke an exception handler, a procedure designated to handle
the specific type of exception encountered. As described in Chapter 8, exception
handlers can be configured to have different effects, such as aborting the program
or invoking a user-defined signal handler.

4.1.5 Y86 Programs

Figure 4.6 shows IA32 and Y86 assembly code for the following C function:

int Sum(int *Start, int Count)

{

int sum = 0;

while (Count) {

sum += *Start;

Start++;

Count--;

}

return sum;

}

The IA32 code was generated by the gcc compiler. The Y86 code is essentially the
same, except that Y86 sometimes requires two instructions to accomplish what
can be done with a single IA32 instruction. If we had written the program using
array indexing, however, the conversion to Y86 code would be more difficult,
since Y86 does not have scaled addressing modes. This code follows many of the
programming conventions we have seen for IA32, including the use of the stack
and frame pointers. For simplicity, it does not follow the IA32 convention of having
some registers designated as callee-save registers. This is just a programming
convention that we can either adopt or ignore as we please.

Figure 4.7 shows an example of a complete program file written in Y86 as-
sembly code. The program contains both data and instructions. Directives indicate
where to place code or data and how to align it. The program specifies issues such

346 Chapter 4 Processor Architecture

IA32 code

int Sum(int *Start, int Count)

1 Sum:

2 pushl %ebp

3 movl %esp,%ebp

4 movl 8(%ebp),%ecx ecx = Start

5 movl 12(%ebp),%edx edx = Count

6 xorl %eax,%eax sum = 0

7 testl %edx,%edx

8 je .L34

9 .L35:

10 addl (%ecx),%eax add *Start to sum

11 addl $4,%ecx Start++

12 decl %edx Count--

13 jnz .L35 Stop when 0

14 .L34:

15 movl %ebp,%esp

16 popl %ebp

17 ret

Y86 code

int Sum(int *Start, int Count)

1 Sum:

2 pushl %ebp

3 rrmovl %esp,%ebp

4 mrmovl 8(%ebp),%ecx ecx = Start

5 mrmovl 12(%ebp),%edx edx = Count

6 xorl %eax,%eax sum = 0

7 andl %edx,%edx Set condition codes

8 je End

9 Loop:

10 mrmovl (%ecx),%esi get *Start

11 addl %esi,%eax add to sum

12 irmovl $4,%ebx

13 addl %ebx,%ecx Start++

14 irmovl $-1,%ebx

15 addl %ebx,%edx Count--

16 jne Loop Stop when 0

17 End:

18 rrmovl %ebp,%esp

19 popl %ebp

20 ret

Figure 4.6 Comparison of Y86 and IA32 assembly programs. The Sum function computes the sum of an
integer array. The Y86 code differs from the IA32 mainly in that it may require multiple instructions to perform
what can be done with a single IA32 instruction.

as stack placement, data initialization, program initialization, and program termi-
nation.

In this program, words beginning with “.” are assembler directives telling the
assembler to adjust the address at which it is generating code or to insert some
words of data. The directive .pos 0 (line 2) indicates that the assembler should
begin generating code starting at address 0. This is the starting address for all Y86
programs. The next two instructions (lines 3 and 4) initialize the stack and frame
pointers. We can see that the label Stack is declared at the end of the program
(line 47), to indicate address 0x100 using a .pos directive (line 46). Our stack will
therefore start at this address and grow toward lower addresses. We must ensure
that the stack does not grow so large that it overwrites the code or other program
data.

Lines 9 to 13 of the program declare an array of four words, having values
0xd, 0xc0, 0xb00, and 0xa000. The label array denotes the start of this array, and
is aligned on a 4-byte boundary (using the .align directive). Lines 17 to 6 show
a “main” procedure that calls the function Sum on the four-word array and then
halts.

1 # Execution begins at address 0

2 .pos 0

3 init: irmovl Stack, %esp # Set up stack pointer

4 irmovl Stack, %ebp # Set up base pointer

5 call Main # Execute main program

6 halt # Terminate program

7

8 # Array of 4 elements

9 .align 4

10 array: .long 0xd

11 .long 0xc0

12 .long 0xb00

13 .long 0xa000

14

15 Main: pushl %ebp

16 rrmovl %esp,%ebp

17 irmovl $4,%eax

18 pushl %eax # Push 4

19 irmovl array,%edx

20 pushl %edx # Push array

21 call Sum # Sum(array, 4)

22 rrmovl %ebp,%esp

23 popl %ebp

24 ret

25

26 # int Sum(int *Start, int Count)

27 Sum: pushl %ebp

28 rrmovl %esp,%ebp

29 mrmovl 8(%ebp),%ecx # ecx = Start

30 mrmovl 12(%ebp),%edx # edx = Count

31 xorl %eax,%eax # sum = 0

32 andl %edx,%edx # Set condition codes

33 je End

34 Loop: mrmovl (%ecx),%esi # get *Start

35 addl %esi,%eax # add to sum

36 irmovl $4,%ebx #

37 addl %ebx,%ecx # Start++

38 irmovl $-1,%ebx #

39 addl %ebx,%edx # Count--

40 jne Loop # Stop when 0

41 End: rrmovl %ebp,%esp

42 popl %ebp

43 ret

44

45 # The stack starts here and grows to lower addresses

46 .pos 0x100

47 Stack:

Figure 4.7 Sample program written in Y86 assembly code. The Sum function is called
to compute the sum of a four-element array.

348 Chapter 4 Processor Architecture

As this example shows, since our only tool for creating Y86 code is an assem-
bler, the programmer must perform tasks we ordinarily delegate to the compiler,
linker, and run-time system. Fortunately, we only do this for small programs, for
which simple mechanisms suffice.

Figure 4.8 shows the result of assembling the code shown in Figure 4.7 by an
assembler we call yas. The assembler output is in ASCII format to make it more
readable. On lines of the assembly file that contain instructions or data, the object
code contains an address, followed by the values of between 1 and 6 bytes.

We have implemented an instruction set simulator we call yis, the purpose
of which is to model the execution of a Y86 machine-code program, without
attempting to model the behavior of any specific processor implementation. This
form of simulation is useful for debugging programs before actual hardware is
available, and for checking the result of either simulating the hardware or running
the program on the hardware itself. Running on our sample object code, yis
generates the following output:

Stopped in 52 steps at PC = 0x11. Status ’HLT’, CC Z=1 S=0 O=0

Changes to registers:

%eax: 0x00000000 0x0000abcd

%ecx: 0x00000000 0x00000024

%ebx: 0x00000000 0xffffffff

%esp: 0x00000000 0x00000100

%ebp: 0x00000000 0x00000100

%esi: 0x00000000 0x0000a000

Changes to memory:

0x00e8: 0x00000000 0x000000f8

0x00ec: 0x00000000 0x0000003d

0x00f0: 0x00000000 0x00000014

0x00f4: 0x00000000 0x00000004

0x00f8: 0x00000000 0x00000100

0x00fc: 0x00000000 0x00000011

The first line of the simulation output summarizes the execution and the
resulting values of the PC and program status. In printing register and memory
values, it only prints out words that change during simulation, either in registers
or in memory. The original values (here they are all zero) are shown on the left,
and the final values are shown on the right. We can see in this output that register
%eax contains 0xabcd, the sum of the four-element array passed to subroutine Sum.
In addition, we can see that the stack, which starts at address 0x100 and grows
toward lower addresses, has been used, causing changes to words of memory at
addresses 0xe8 through 0xfc. This is well away from 0x7c, the maximum address
of the executable code.

Section 4.1 The Y86 Instruction Set Architecture 349

| # Execution begins at address 0

0x000: | .pos 0

0x000: 30f400010000 | init: irmovl Stack, %esp # Set up stack pointer

0x006: 30f500010000 | irmovl Stack, %ebp # Set up base pointer

0x00c: 8024000000 | call Main # Execute main program

0x011: 00 | halt # Terminate program

|

| # Array of 4 elements

0x014: | .align 4

0x014: 0d000000 | array: .long 0xd

0x018: c0000000 | .long 0xc0

0x01c: 000b0000 | .long 0xb00

0x020: 00a00000 | .long 0xa000

|

0x024: a05f | Main: pushl %ebp

0x026: 2045 | rrmovl %esp,%ebp

0x028: 30f004000000 | irmovl $4,%eax

0x02e: a00f | pushl %eax # Push 4

0x030: 30f214000000 | irmovl array,%edx

0x036: a02f | pushl %edx # Push array

0x038: 8042000000 | call Sum # Sum(array, 4)

0x03d: 2054 | rrmovl %ebp,%esp

0x03f: b05f | popl %ebp

0x041: 90 | ret

|

| # int Sum(int *Start, int Count)

0x042: a05f | Sum: pushl %ebp

0x044: 2045 | rrmovl %esp,%ebp

0x046: 501508000000 | mrmovl 8(%ebp),%ecx # ecx = Start

0x04c: 50250c000000 | mrmovl 12(%ebp),%edx # edx = Count

0x052: 6300 | xorl %eax,%eax # sum = 0

0x054: 6222 | andl %edx,%edx # Set condition codes

0x056: 7378000000 | je End

0x05b: 506100000000 | Loop: mrmovl (%ecx),%esi # get *Start

0x061: 6060 | addl %esi,%eax # add to sum

0x063: 30f304000000 | irmovl $4,%ebx #

0x069: 6031 | addl %ebx,%ecx # Start++

0x06b: 30f3ffffffff | irmovl $-1,%ebx #

0x071: 6032 | addl %ebx,%edx # Count--

0x073: 745b000000 | jne Loop # Stop when 0

0x078: 2054 | End: rrmovl %ebp,%esp

0x07a: b05f | popl %ebp

0x07c: 90 | ret

|

| # The stack starts here and grows to lower addresses

0x100: | .pos 0x100

0x100: | Stack:

Figure 4.8 Output of yas assembler. Each line includes a hexadecimal address and
between 1 and 6 bytes of object code.

350 Chapter 4 Processor Architecture

Practice Problem 4.3
Write Y86 code to implement a recursive sum function rSum, based on the follow-
ing C code:

int rSum(int *Start, int Count)

{

if (Count <= 0)

return 0;

return *Start + rSum(Start+1, Count-1);

}

You might find it helpful to compile the C code on an IA32 machine and then
translate the instructions to Y86.

Practice Problem 4.4
Modify the Y86 code for the Sum function (Figure 4.6) to implement a function
AbsSum that computes the sum of absolute values of an array. Use a conditional
jump instruction within your inner loop.

Practice Problem 4.5
Modify the Y86 code for the Sum function (Figure 4.6) to implement a function
AbsSum that computes the sum of absolute values of an array. Use a conditional
move instruction within your inner loop.

4.1.6 Some Y86 Instruction Details

Most Y86 instructions transform the program state in a straightforward manner,
and so defining the intended effect of each instruction is not difficult. Two unusual
instruction combinations, however, require special attention.

The pushl instruction both decrements the stack pointer by 4 and writes a
register value to memory. It is therefore not totally clear what the processor should
do when executing the instruction pushl %esp, since the register being pushed is
being changed by the same instruction. Two different conventions are possible:
(1) push the original value of %esp, or (2) push the decremented value of %esp.

For the Y86 processor, let us adopt the same convention as is used with IA32,
as determined in the following problem.

Practice Problem 4.6
Let us determine the behavior of the instruction pushl %esp for an IA32 proces-
sor. We could try reading the Intel documentation on this instruction, but a simpler
approach is to conduct an experiment on an actual machine. The C compiler would
not normally generate this instruction, so we must use hand-generated assembly

Section 4.1 The Y86 Instruction Set Architecture 351

code for this task. Here is a test function we have written (Web Aside asm:easm
describes how to write programs that combine C code with hand-written assembly
code):

1 .text

2 .globl pushtest

3 pushtest:

4 pushl %ebp

5 movl %esp, %ebp

6 movl %esp, %eax Copy stack pointer

7 pushl %esp Push stack pointer

8 popl %edx Pop it back

9 subl %edx,%eax Subtract new from old stack pointer

10 leave Restore stack & frame pointers

11 ret

In our experiments, we find that function pushtest always returns zero. What
does this imply about the behavior of the instruction pushl %esp under IA32?

A similar ambiguity occurs for the instruction popl %esp. It could either set
%esp to the value read from memory or to the incremented stack pointer. As
with Problem 4.6, let us run an experiment to determine how an IA32 machine
would handle this instruction, and then design our Y86 machine to follow the same
convention.

Practice Problem 4.7
The following assembly-code function lets us determine the behavior of the in-
struction popl %esp for IA32:

1 .text

2 .globl poptest

3 poptest:

4 pushl %ebp

5 movl %esp, %ebp

6 pushl $0xabcd Push test value

7 popl %esp Pop to stack pointer

8 movl %esp, %eax Set popped value as return value

9 leave Restore stack and frame pointers

10 ret

We find this function always returns 0xabcd. What does this imply about the
behavior of popl %esp? What other Y86 instruction would have the exact same
behavior?

352 Chapter 4 Processor Architecture

Aside Getting the details right: Inconsistencies across x86 models

Problems 4.6 and 4.7 are designed to help us devise a consistent set of conventions for instructions that
push or pop the stack pointer. There seems to be little reason why one would want to perform either
of these operations, and so a natural question to ask is “Why worry about such picky details?”

Several useful lessons can be learned about the importance of consistency from the following
excerpt from the Intel documentation of the pop instruction [29]:

For IA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the value of the ESP
register as it existed before the instruction was executed. (This is also true for Intel 64 architecture,
real-address and virtual-8086 modes of IA-32 architecture.) For the Intel® 8086 processor, the
PUSH SP instruction pushes the new value of the SP register (that is the value after it has been
decremented by 2).

What this note states is that different models of x86 processors do different things when instructed to
push the stack pointer register. Some push the original value, while others push the decremented value.
(Interestingly, there is no corresponding ambiguity about popping to the stack pointer register.) There
are two drawbacks to this inconsistency:

. It decreases code portability. Programs may have different behavior depending on the processor
model. Although the particular instruction is not at all common, even the potential for incompat-
ibility can have serious consequences.

. It complicates the documentation. As we see here, a special note is required to try to clarify the
differences. The documentation for x86 is already complex enough without special cases such as
this one.

We conclude, therefore, that working out details in advance and striving for complete consistency can
save a lot of trouble in the long run.

4.2 Logic Design and the Hardware Control Language HCL

In hardware design, electronic circuits are used to compute functions on bits and
to store bits in different kinds of memory elements. Most contemporary circuit
technology represents different bit values as high or low voltages on signal wires. In
current technology, logic value 1 is represented by a high voltage of around 1.0 volt,
while logic value 0 is represented by a low voltage of around 0.0 volts. Three major
components are required to implement a digital system: combinational logic to
compute functions on the bits, memory elements to store bits, and clock signals to
regulate the updating of the memory elements.

In this section, we provide a brief description of these different components.
We also introduce HCL (for “hardware control language”), the language that
we use to describe the control logic of the different processor designs. We only
describe HCL informally here. A complete reference for HCL can be found in
Web Aside arch:hcl.

Section 4.2 Logic Design and the Hardware Control Language HCL 353

Aside Modern logic design

At one time, hardware designers created circuit designs by drawing schematic diagrams of logic circuits
(first with paper and pencil, and later with computer graphics terminals). Nowadays, most designs
are expressed in a hardware description language (HDL), a textual notation that looks similar to a
programming language but that is used to describe hardware structures rather than program behaviors.
The most commonly used languages are Verilog, having a syntax similar to C, and VHDL, having
a syntax similar to the Ada programming language. These languages were originally designed for
expressing simulation models of digital circuits. In the mid-1980s, researchers developed logic synthesis
programs that could generate efficient circuit designs from HDL descriptions. There are now a number
of commercial synthesis programs, and this has become the dominant technique for generating digital
circuits. This shift from hand-designed circuits to synthesized ones can be likened to the shift from
writing programs in assembly code to writing them in a high-level language and having a compiler
generate the machine code.

Our HCL language expresses only the control portions of a hardware design, with only a limited set
of operations and with no modularity. As we will see, however, the control logic is the most difficult part
of designing a microprocessor. We have developed tools that can directly translate HCL into Verilog,
and by combining this code with Verilog code for the basic hardware units, we can generate HDL
descriptions from which actual working microprocessors can be synthesized. By carefully separating
out, designing, and testing the control logic, we can create a working microprocessor with reasonable
effort. Web Aside arch:vlog describes how we can generate Verilog versions of a Y86 processor.

4.2.1 Logic Gates

Logic gates are the basic computing elements for digital circuits. They generate an
output equal to some Boolean function of the bit values at their inputs. Figure 4.9
shows the standard symbols used for Boolean functions And, Or, and Not. HCL
expressions are shown below the gates for the operators in C (Section 2.1.9):
&& for And, || for Or, and ! for Not. We use these instead of the bit-level C
operators &, |, and ~, because logic gates operate on single-bit quantities, not
entire words. Although the figure illustrates only two-input versions of the And
and Or gates, it is common to see these being used as n-way operations for n > 2.
We still write these in HCL using binary operators, though, so the operation of a
three-input And gate with inputs a, b, and c is described with the HCL expression
a && b && c.

Logic gates are always active. If some input to a gate changes, then within
some small amount of time, the output will change accordingly.

Figure 4.9
Logic gate types. Each
gate generates output
equal to some Boolean
function of its inputs.

And

outout out

Or Not

a
a

b

a

b

out � a && b out � a || b out � !a

354 Chapter 4 Processor Architecture

Figure 4.10
Combinational circuit to
test for bit equality. The
output will equal 1 when
both inputs are 0, or both
are 1.

a

b

eq

Bit equal

4.2.2 Combinational Circuits and HCL Boolean Expressions

By assembling a number of logic gates into a network, we can construct compu-
tational blocks known as combinational circuits. Two restrictions are placed on
how the networks are constructed:

. The outputs of two or more logic gates cannot be connected together. Other-
wise, the two could try to drive the wire in opposite directions, possibly causing
an invalid voltage or a circuit malfunction.

. The network must be acyclic. That is, there cannot be a path through a series
of gates that forms a loop in the network. Such loops can cause ambiguity in
the function computed by the network.

Figure 4.10 shows an example of a simple combinational circuit that we will
find useful. It has two inputs, a and b. It generates a single output eq, such that
the output will equal 1 if either a and b are both 1 (detected by the upper And
gate) or are both 0 (detected by the lower And gate). We write the function of
this network in HCL as

bool eq = (a && b) || (!a && !b);

This code simply defines the bit-level (denoted by data type bool) signal eq as a
function of inputs a and b. As this example shows, HCL uses C-style syntax, with
‘=’ associating a signal name with an expression. Unlike C, however, we do not
view this as performing a computation and assigning the result to some memory
location. Instead, it is simply a way to give a name to an expression.

Practice Problem 4.8
Write an HCL expression for a signal xor, equal to the Exclusive-Or of inputs a
and b. What is the relation between the signals xor and eq defined above?

Figure 4.11 shows another example of a simple but useful combinational
circuit known as a multiplexor (commonly referred to as a “MUX”). A multiplexor
selects a value from among a set of different data signals, depending on the value
of a control input signal. In this single-bit multiplexor, the two data signals are the
input bits a and b, while the control signal is the input bit s. The output will equal
a when s is 1, and it will equal b when s is 0. In this circuit, we can see that the two
And gates determine whether to pass their respective data inputs to the Or gate.

Section 4.2 Logic Design and the Hardware Control Language HCL 355

Figure 4.11
Single-bit multiplexor
circuit. The output will
equal input a if the control
signal s is 1 and will equal
input b when s is 0.

s

b

a

Bit MUX

out

The upper And gate passes signal b when s is 0 (since the other input to the gate
is !s), while the lower And gate passes signal a when s is 1. Again, we can write an
HCL expression for the output signal, using the same operations as are present in
the combinational circuit:

bool out = (s && a) || (!s && b);

Our HCL expressions demonstrate a clear parallel between combinational
logic circuits and logical expressions in C. They both use Boolean operations to
compute functions over their inputs. Several differences between these two ways
of expressing computation are worth noting:

. Since a combinational circuit consists of a series of logic gates, it has the
property that the outputs continually respond to changes in the inputs. If
some input to the circuit changes, then after some delay, the outputs will
change accordingly. In contrast, a C expression is only evaluated when it is
encountered during the execution of a program.

. Logical expressions in C allow arguments to be arbitrary integers, interpreting
0 as false and anything else as true. In contrast, our logic gates only operate
over the bit values 0 and 1.

. Logical expressions in C have the property that they might only be partially
evaluated. If the outcome of an And or Or operation can be determined
by just evaluating the first argument, then the second argument will not be
evaluated. For example, with the C expression

(a && !a) && func(b,c)

the function func will not be called, because the expression (a && !a) evalu-
ates to 0. In contrast, combinational logic does not have any partial evaluation
rules. The gates simply respond to changing inputs.

4.2.3 Word-Level Combinational Circuits and HCL Integer Expressions

By assembling large networks of logic gates, we can construct combinational
circuits that compute much more complex functions. Typically, we design circuits
that operate on data words. These are groups of bit-level signals that represent an
integer or some control pattern. For example, our processor designs will contain
numerous words, with word sizes ranging between 4 and 32 bits, representing
integers, addresses, instruction codes, and register identifiers.

356 Chapter 4 Processor Architecture

Figure 4.12
Word-level equality test
circuit. The output will
equal 1 when each bit
from word A equals its
counterpart from word B.
Word-level equality is one
of the operations in HCL.

(a) Bit-level implementation

Bit equal

Bit equal

Bit equal

Bit equal

b31

a31

b30

a30

b1

a1

b0

a0

eq31

eq1

eq0

eq30

Eq

. . .

. . .
(b) Word-level abstraction

A

B
A = B

�

Combinational circuits to perform word-level computations are constructed
using logic gates to compute the individual bits of the output word, based on the
individual bits of the input words. For example, Figure 4.12 shows a combinational
circuit that tests whether two 32-bit words A and B are equal. That is, the output will
equal 1 if and only if each bit of A equals the corresponding bit of B. This circuit
is implemented using 32 of the single-bit equality circuits shown in Figure 4.10.
The outputs of these single-bit circuits are combined with an And gate to form
the circuit output.

In HCL, we will declare any word-level signal as an int, without specifying
the word size. This is done for simplicity. In a full-featured hardware description
language, every word can be declared to have a specific number of bits. HCL allows
words to be compared for equality, and so the functionality of the circuit shown
in Figure 4.12 can be expressed at the word level as

bool Eq = (A == B);

where arguments A and B are of type int. Note that we use the same syntax
conventions as in C, where ‘=’ denotes assignment, while ‘==’ denotes the equality
operator.

As is shown on the right side of Figure 4.12, we will draw word-level circuits
using medium-thickness lines to represent the set of wires carrying the individual
bits of the word, and we will show the resulting Boolean signal as a dashed line.

Practice Problem 4.9
Suppose you want to implement a word-level equality circuit using the Exclusive-
Or circuits from Problem 4.8 rather than from bit-level equality circuits. Design
such a circuit for a 32-bit word consisting of 32 bit-level Exclusive-Or circuits and
two additional logic gates.

Section 4.2 Logic Design and the Hardware Control Language HCL 357

Figure 4.13
Word-level multiplexor
circuit. The output will
equal input word A when
the control signal s is
1, and it will equal B
otherwise. Multiplexors are
described in HCL using
case expressions.

(a) Bit-level implementation (b) Word-level abstraction

out31

out30

out0

s

s

B

A
OutMUX

int Out = [
 s : A;
 l : B;
];

b31

a31

b30

a30

b0

a0

. . .

Figure 4.13 shows the circuit for a word-level multiplexor. This circuit gener-
ates a 32-bit word Out equal to one of the two input words, A or B, depending on
the control input bit s. The circuit consists of 32 identical subcircuits, each having a
structure similar to the bit-level multiplexor from Figure 4.11. Rather than simply
replicating the bit-level multiplexor 32 times, the word-level version reduces the
number of inverters by generating !s once and reusing it at each bit position.

We will use many forms of multiplexors in our processor designs. They allow
us to select a word from a number of sources depending on some control condi-
tion. Multiplexing functions are described in HCL using case expressions. A case
expression has the following general form:

[

select 1 : expr 1
select 2 : expr 2

.

.

.

select k : expr k

]

The expression contains a series of cases, where each case i consists of a Boolean
expression selecti, indicating when this case should be selected, and an integer
expression expri, indicating the resulting value.

358 Chapter 4 Processor Architecture

Unlike the switch statement of C, we do not require the different selection
expressions to be mutually exclusive. Logically, the selection expressions are eval-
uated in sequence, and the case for the first one yielding 1 is selected. For example,
the word-level multiplexor of Figure 4.13 can be described in HCL as

int Out = [

s: A;

1: B;

];

In this code, the second selection expression is simply 1, indicating that this case
should be selected if no prior one has been. This is the way to specify a default
case in HCL. Nearly all case expressions end in this manner.

Allowing nonexclusive selection expressions makes the HCL code more read-
able. An actual hardware multiplexor must have mutually exclusive signals con-
trolling which input word should be passed to the output, such as the signals s and
!s in Figure 4.13. To translate an HCL case expression into hardware, a logic syn-
thesis program would need to analyze the set of selection expressions and resolve
any possible conflicts by making sure that only the first matching case would be
selected.

The selection expressions can be arbitrary Boolean expressions, and there can
be an arbitrary number of cases. This allows case expressions to describe blocks
where there are many choices of input signals with complex selection criteria. For
example, consider the diagram of a four-way multiplexor shown in Figure 4.14.
This circuit selects from among the four input words A, B, C, and D based on
the control signals s1 and s0, treating the controls as a 2-bit binary number.
We can express this in HCL using Boolean expressions to describe the different
combinations of control bit patterns:

int Out4 = [

!s1 && !s0 : A; # 00

!s1 : B; # 01

!s0 : C; # 10

1 : D; # 11

];

The comments on the right (any text starting with # and running for the rest of
the line is a comment) show which combination of s1 and s0 will cause the case to

Figure 4.14
Four-way multiplexor.
The different combinations
of control signals s1 and
s0 determine which data
input is transmitted to the
output.

D

s1

s0

Out4C
B
A

MUX4

Section 4.2 Logic Design and the Hardware Control Language HCL 359

be selected. Observe that the selection expressions can sometimes be simplified,
since only the first matching case is selected. For example, the second expression
can be written !s1, rather than the more complete !s1 && s0, since the only other
possibility having s1 equal to 0 was given as the first selection expression. Similarly,
the third expression can be written as !s0, while the fourth can simply be written
as 1.

As a final example, suppose we want to design a logic circuit that finds the
minimum value among a set of words A, B, and C, diagrammed as follows:

C
B
A

MIN3 Min3

We can express this using an HCL case expression as

int Min3 = [

A <= B && A <= C : A;

B <= A && B <= C : B;

1 : C;

];

Practice Problem 4.10
Write HCL code describing a circuit that for word inputs A, B, and C selects the
median of the three values. That is, the output equals the word lying between the
minimum and maximum of the three inputs.

Combinational logic circuits can be designed to perform many different types
of operations on word-level data. The detailed design of these is beyond the
scope of our presentation. One important combinational circuit, known as an
arithmetic/logic unit (ALU), is diagrammed at an abstract level in Figure 4.15.
This circuit has three inputs: two data inputs labeled A and B, and a control
input. Depending on the setting of the control input, the circuit will perform
different arithmetic or logical operations on the data inputs. Observe that the four

0

Y

X

X � Y
A
L
U

A

B

1

Y

X

X � Y
A
L
U

A

B

2

Y

X

X & Y
A
L
U

A

B

3

Y

X

X ^ Y
A
L
U

A

B

Figure 4.15 Arithmetic/logic unit (ALU). Depending on the setting of the function
input, the circuit will perform one of four different arithmetic and logical operations.

360 Chapter 4 Processor Architecture

operations diagrammed for this ALU correspond to the four different integer
operations supported by the Y86 instruction set, and the control values match
the function codes for these instructions (Figure 4.3). Note also the ordering
of operands for subtraction, where the A input is subtracted from the B input.
This ordering is chosen in anticipation of the ordering of arguments in the subl
instruction.

4.2.4 Set Membership

In our processor designs, we will find many examples where we want to compare
one signal against a number of possible matching signals, such as to test whether
the code for some instruction being processed matches some category of instruc-
tion codes. As a simple example, suppose we want to generate the signals s1 and
s0 for the four-way multiplexor of Figure 4.14 by selecting the high- and low-order
bits from a 2-bit signal code, as follows:

code

s1

s0

D
C
B

A

Control

MUX4 Out4

In this circuit, the 2-bit signal code would then control the selection among the
four data words A, B, C, and D. We can express the generation of signals s1 and s0
using equality tests based on the possible values of code:

bool s1 = code == 2 || code == 3;

bool s0 = code == 1 || code == 3;

A more concise expression can be written that expresses the property that s1
is 1 when code is in the set {2, 3}, and s0 is 1 when code is in the set {1, 3}:

bool s1 = code in { 2, 3 };

bool s0 = code in { 1, 3 };

The general form of a set membership test is

iexpr in {iexpr1, iexpr2, . . . , iexprk}

Section 4.2 Logic Design and the Hardware Control Language HCL 361

where the value being tested, iexpr, and the candidate matches, iexpr1 through
iexprk, are all integer expressions.

4.2.5 Memory and Clocking

Combinational circuits, by their very nature, do not store any information. Instead,
they simply react to the signals at their inputs, generating outputs equal to some
function of the inputs. To create sequential circuits, that is, systems that have state
and perform computations on that state, we must introduce devices that store
information represented as bits. Our storage devices are all controlled by a single
clock, a periodic signal that determines when new values are to be loaded into the
devices. We consider two classes of memory devices:

Clocked registers (or simply registers) store individual bits or words. The clock
signal controls the loading of the register with the value at its input.

Random-access memories (or simply memories) store multiple words, using
an address to select which word should be read or written. Examples
of random-access memories include (1) the virtual memory system of
a processor, where a combination of hardware and operating system
software make it appear to a processor that it can access any word within
a large address space; and (2) the register file, where register identifiers
serve as the addresses. In an IA32 or Y86 processor, the register file holds
the eight program registers (%eax, %ecx, etc.).

As we can see, the word “register” means two slightly different things when
speaking of hardware versus machine-language programming. In hardware, a
register is directly connected to the rest of the circuit by its input and output
wires. In machine-level programming, the registers represent a small collection
of addressable words in the CPU, where the addresses consist of register IDs.
These words are generally stored in the register file, although we will see that the
hardware can sometimes pass a word directly from one instruction to another to
avoid the delay of first writing and then reading the register file. When necessary
to avoid ambiguity, we will call the two classes of registers “hardware registers”
and “program registers,” respectively.

Figure 4.16 gives a more detailed view of a hardware register and how it
operates. For most of the time, the register remains in a fixed state (shown as
x), generating an output equal to its current state. Signals propagate through the
combinational logic preceding the register, creating a new value for the register
input (shown as y), but the register output remains fixed as long as the clock is low.
As the clock rises, the input signals are loaded into the register as its next state
(y), and this becomes the new register output until the next rising clock edge. A
key point is that the registers serve as barriers between the combinational logic
in different parts of the circuit. Values only propagate from a register input to its
output once every clock cycle at the rising clock edge. Our Y86 processors will

362 Chapter 4 Processor Architecture

State = x State = y

Input = y Output = x Output = yRising
clock

x y

Figure 4.16 Register operation. The register outputs remain held at the current register
state until the clock signal rises. When the clock rises, the values at the register inputs are
captured to become the new register state.

use clocked registers to hold the program counter (PC), the condition codes (CC),
and the program status (Stat).

The following diagram shows a typical register file:

Register
file

A

B

valA

valW

dstW

srcA

valB

srcB

clock

Write portWRead ports

This register file has two read ports, named A and B, and one write port, named
W. Such a multiported random-access memory allows multiple read and write
operations to take place simultaneously. In the register file diagrammed, the circuit
can read the values of two program registers and update the state of a third. Each
port has an address input, indicating which program register should be selected,
and a data output or input giving a value for that program register. The addresses
are register identifiers, using the encoding shown in Figure 4.4. The two read ports
have address inputs srcA and srcB (short for “source A” and “source B”) and data
outputs valA and valB (short for “value A” and “value B”). The write port has
address input dstW (short for “destination W”) and data input valW (short for
“value W”).

The register file is not a combinational circuit, since it has internal storage. In
our implementation, however, data can be read from the register file as if it were
a block of combinational logic having addresses as inputs and the data as outputs.
When either srcA or srcB is set to some register ID, then, after some delay, the
value stored in the corresponding program register will appear on either valA or
valB. For example, setting srcA to 3 will cause the value of program register %ebx
to be read, and this value will appear on output valA.

The writing of words to the register file is controlled by the clock signal in
a manner similar to the loading of values into a clocked register. Every time the
clock rises, the value on input valW is written to the program register indicated by

Section 4.2 Logic Design and the Hardware Control Language HCL 363

the register ID on input dstW. When dstW is set to the special ID value 0xF, no
program register is written. Since the register file can be both read and written, a
natural question to ask is “What happens if we attempt to read and write the same
register simultaneously?” The answer is straightforward: if we update a register
while using the same register ID on the read port, we would observe a transition
from the old value to the new. When we incorporate the register file into our
processor design, we will make sure that we take this property into consideration.

Our processor has a random-access memory for storing program data, as
illustrated below:

Data
memory

data out

data inaddress

error

read

write clock

This memory has a single address input, a data input for writing, and a data output
for reading. Like the register file, reading from our memory operates in a manner
similar to combinational logic: If we provide an address on the address input and
set the write control signal to 0, then after some delay, the value stored at that
address will appear on data out. The error signal will be set to 1 if the address is
out of range and to 0 otherwise. Writing to the memory is controlled by the clock:
we set address to the desired address, data in to the desired value, and write to
1. When we then operate the clock, the specified location in the memory will be
updated, as long as the address is valid. As with the read operation, the error signal
will be set to 1 if the address is invalid. This signal is generated by combinational
logic, since the required bounds checking is purely a function of the address input
and does not involve saving any state.

Aside Real-life memory design

The memory system in a full-scale microprocessor is far more complex than the simple one we assume
in our design. It consists of several forms of hardware memories, including several random-access
memories plus magnetic disk, as well as a variety of hardware and software mechanisms for managing
these devices. The design and characteristics of the memory system are described in Chapter 6.

Nonetheless, our simple memory design can be used for smaller systems, and it provides us with
an abstraction of the interface between the processor and memory for more complex systems.

Our processor includes an additional read-only memory for reading instruc-
tions. In most actual systems, these memories are merged into a single memory
with two ports: one for reading instructions and the other for reading or writing
data.

364 Chapter 4 Processor Architecture

4.3 Sequential Y86 Implementations

Now we have the components required to implement a Y86 processor. As a first
step, we describe a processor called SEQ (for “sequential” processor). On each
clock cycle, SEQ performs all the steps required to process a complete instruction.
This would require a very long cycle time, however, and so the clock rate would be
unacceptably low. Our purpose in developing SEQ is to provide a first step toward
our ultimate goal of implementing an efficient, pipelined processor.

4.3.1 Organizing Processing into Stages

In general, processing an instruction involves a number of operations. We organize
them in a particular sequence of stages, attempting to make all instructions follow
a uniform sequence, even though the instructions differ greatly in their actions.
The detailed processing at each step depends on the particular instruction being
executed. Creating this framework will allow us to design a processor that makes
best use of the hardware. The following is an informal description of the stages
and the operations performed within them:

Fetch: The fetch stage reads the bytes of an instruction from memory, using the
program counter (PC) as the memory address. From the instruction it
extracts the two 4-bit portions of the instruction specifier byte, referred
to as icode (the instruction code) and ifun (the instruction function).
It possibly fetches a register specifier byte, giving one or both of the
register operand specifiers rA and rB. It also possibly fetches a 4-byte
constant word valC. It computes valP to be the address of the instruction
following the current one in sequential order. That is, valP equals the
value of the PC plus the length of the fetched instruction.

Decode: The decode stage reads up to two operands from the register file, giving
values valA and/or valB. Typically, it reads the registers designated by
instruction fields rA and rB, but for some instructions it reads register
%esp.

Execute: In the execute stage, the arithmetic/logic unit (ALU) either performs the
operation specified by the instruction (according to the value of ifun),
computes the effective address of a memory reference, or increments or
decrements the stack pointer. We refer to the resulting value as valE. The
condition codes are possibly set. For a jump instruction, the stage tests
the condition codes and branch condition (given by ifun) to see whether
or not the branch should be taken.

Memory: The memory stage may write data to memory, or it may read data from
memory. We refer to the value read as valM.

Write back: The write-back stage writes up to two results to the register file.

PC update: The PC is set to the address of the next instruction.

The processor loops indefinitely, performing these stages. In our simplified im-
plementation, the processor will stop when any exception occurs: it executes a

Section 4.3 Sequential Y86 Implementations 365

1 0x000: 30f209000000 | irmovl $9, %edx

2 0x006: 30f315000000 | irmovl $21, %ebx

3 0x00c: 6123 | subl %edx, %ebx # subtract

4 0x00e: 30f480000000 | irmovl $128,%esp # Problem 4.11

5 0x014: 404364000000 | rmmovl %esp, 100(%ebx) # store

6 0x01a: a02f | pushl %edx # push

7 0x01c: b00f | popl %eax # Problem 4.12

8 0x01e: 7328000000 | je done # Not taken

9 0x023: 8029000000 | call proc # Problem 4.16

10 0x028: | done:

11 0x028: 00 | halt

12 0x029: | proc:

13 0x029: 90 | ret # Return

Figure 4.17 Sample Y86 instruction sequence. We will trace the processing of these
instructions through the different stages.

halt or invalid instruction, or it attempts to read or write an invalid address. In
a more complete design, the processor would enter an exception-handling mode
and begin executing special code determined by the type of exception.

As can be seen by the preceding description, there is a surprising amount of
processing required to execute a single instruction. Not only must we perform the
stated operation of the instruction, we must also compute addresses, update stack
pointers, and determine the next instruction address. Fortunately, the overall flow
can be similar for every instruction. Using a very simple and uniform structure is
important when designing hardware, since we want to minimize the total amount
of hardware, and we must ultimately map it onto the two-dimensional surface of an
integrated-circuit chip. One way to minimize the complexity is to have the different
instructions share as much of the hardware as possible. For example, each of our
processor designs contains a single arithmetic/logic unit that is used in different
ways depending on the type of instruction being executed. The cost of duplicating
blocks of logic in hardware is much higher than the cost of having multiple copies
of code in software. It is also more difficult to deal with many special cases and
idiosyncrasies in a hardware system than with software.

Our challenge is to arrange the computing required for each of the different
instructions to fit within this general framework. We will use the code shown in
Figure 4.17 to illustrate the processing of different Y86 instructions. Figures 4.18
through 4.21 contain tables describing how the different Y86 instructions proceed
through the stages. It is worth the effort to study these tables carefully. They are
in a form that enables a straightforward mapping into the hardware. Each line in
these tables describes an assignment to some signal or stored state (indicated by
the assignment operation ←). These should be read as if they were evaluated in
sequence from top to bottom. When we later map the computations to hardware,
we will find that we do not need to perform these evaluations in strict sequential
order.

366 Chapter 4 Processor Architecture

Stage OPl rA, rB rrmovl rA, rB irmovl V, rB

Fetch icode : ifun ← M1[PC] icode : ifun ← M1[PC] icode : ifun ← M1[PC]
rA : rB ← M1[PC + 1] rA : rB ← M1[PC + 1] rA : rB ← M1[PC + 1]

valC ← M4[PC + 2]
valP ← PC + 2 valP ← PC + 2 valP ← PC + 6

Decode valA ← R[rA] valA ← R[rA]
valB ← R[rB]

Execute valE ← valB OP valA valE ← 0 + valA valE ← 0 + valC
Set CC

Memory

Write back R[rB] ← valE R[rB] ← valE R[rB] ← valE

PC update PC ← valP PC ← valP PC ← valP

Figure 4.18 Computations in sequential implementation of Y86 instructions OPl,
rrmovl, and irmovl. These instructions compute a value and store the result in a
register. The notation icode: ifun indicates the two components of the instruction byte,
while rA: rB indicates the two components of the register specifier byte. The notation
M1[x] indicates accessing (either reading or writing) 1 byte at memory location x, while
M4[x] indicates accessing 4 bytes.

Figure 4.18 shows the processing required for instruction types OPl (integer
and logical operations), rrmovl (register-register move), and irmovl (immediate-
register move). Let us first consider the integer operations. Examining Figure 4.2,
we can see that we have carefully chosen an encoding of instructions so that the
four integer operations (addl, subl, andl, and xorl) all have the same value of
icode. We can handle them all by an identical sequence of steps, except that the
ALU computation must be set according to the particular instruction operation,
encoded in ifun.

The processing of an integer-operation instruction follows the general pattern
listed above. In the fetch stage, we do not require a constant word, and so valP
is computed as PC + 2. During the decode stage, we read both operands. These
are supplied to the ALU in the execute stage, along with the function specifier
ifun, so that valE becomes the instruction result. This computation is shown as the
expression valB OP valA, where OP indicates the operation specified by ifun. Note
the ordering of the two arguments—this order is consistent with the conventions
of Y86 (and IA32). For example, the instruction subl %eax,%edx is supposed to
compute the value R[%edx] − R[%eax]. Nothing happens in the memory stage for
these instructions, but valE is written to register rB in the write-back stage, and the
PC is set to valP to complete the instruction execution.

Section 4.3 Sequential Y86 Implementations 367

Aside Tracing the execution of a subl instruction

As an example, let us follow the processing of the subl instruction on line 3 of the object code shown
in Figure 4.17. We can see that the previous two instructions initialize registers %edx and %ebx to 9 and
21, respectively. We can also see that the instruction is located at address 0x00c and consists of 2 bytes,
having values 0x61 and 0x23. The stages would proceed as shown in the following table, which lists the
generic rule for processing an OPl instruction (Figure 4.18) on the left, and the computations for this
specific instruction on the right.

Generic Specific
Stage OPl rA, rB subl %edx, %ebx

Fetch icode : ifun ← M1[PC] icode : ifun ← M1[0x00c] = 6 : 1
rA : rB ← M1[PC + 1] rA : rB ← M1[0x00d] = 2 : 3

valP ← PC + 2 valP ← 0x00c+ 2 = 0x00e
Decode valA ← R[rA] valA ← R[%edx] = 9

valB ← R[rB] valB ← R[%ebx] = 21
Execute valE ← valB OP valA valE ← 21− 9= 12

Set CC ZF← 0, SF← 0, OF← 0
Memory

Write back R[rB] ← valE R[%ebx] ← valE = 12

PC update PC ← valP PC ← valP = 0x00e

As this trace shows, we achieve the desired effect of setting register %ebx to 12, setting all three condition
codes to zero, and incrementing the PC by 2.

Executing an rrmovl instruction proceeds much like an arithmetic operation.
We do not need to fetch the second register operand, however. Instead, we set the
second ALU input to zero and add this to the first, giving valE = valA, which is
then written to the register file. Similar processing occurs for irmovl, except that
we use constant value valC for the first ALU input. In addition, we must increment
the program counter by 6 for irmovl due to the long instruction format. Neither
of these instructions changes the condition codes.

Practice Problem 4.11
Fill in the right-hand column of the following table to describe the processing of
the irmovl instruction on line 4 of the object code in Figure 4.17:

368 Chapter 4 Processor Architecture

Generic Specific
Stage irmovl V, rB irmovl $128, %esp

Fetch icode : ifun ← M1[PC]
rA : rB ← M1[PC + 1]
valC ← M4[PC + 2]
valP ← PC + 6

Decode

Execute valE ← 0 + valC

Memory

Write back R[rB] ← valE

PC update PC ← valP

How does this instruction execution modify the registers and the PC?

Figure 4.19 shows the processing required for the memory write and read in-
structions rmmovl and mrmovl. We see the same basic flow as before, but using the
ALU to add valC to valB, giving the effective address (the sum of the displacement

Stage rmmovl rA, D(rB) mrmovl D(rB), rA

Fetch icode : ifun ← M1[PC] icode : ifun ← M1[PC]
rA : rB ← M1[PC + 1] rA : rB ← M1[PC + 1]
valC ← M4[PC + 2] valC ← M4[PC + 2]
valP ← PC + 6 valP ← PC + 6

Decode valA ← R[rA]
valB ← R[rB] valB ← R[rB]

Execute valE ← valB + valC valE ← valB + valC

Memory M4[valE] ← valA valM ← M4[valE]

Write back
R[rA] ← valM

PC update PC ← valP PC ← valP

Figure 4.19 Computations in sequential implementation of Y86 instructions rmmovl
and mrmovl. These instructions read or write memory.

Section 4.3 Sequential Y86 Implementations 369

and the base register value) for the memory operation. In the memory stage we
either write the register value valA to memory, or we read valM from memory.

Aside Tracing the execution of an rmmovl instruction

Let us trace the processing of the rmmovl instruction on line 5 of the object code shown in Figure 4.17.
We can see that the previous instruction initialized register %esp to 128, while %ebx still holds 12, as
computed by the subl instruction (line 3). We can also see that the instruction is located at address
0x014 and consists of 6 bytes. The first 2 have values 0x40 and 0x43, while the final 4 are a byte-reversed
version of the number 0x00000064 (decimal 100). The stages would proceed as follows:

Generic Specific
Stage rmmovl rA, D(rB) rmmovl %esp, 100(%ebx)

Fetch icode : ifun ← M1[PC] icode : ifun ← M1[0x014] = 4 : 0
rA : rB ← M1[PC + 1] rA : rB ← M1[0x015] = 4 : 3
valC ← M4[PC + 2] valC ← M4[0x016] = 100
valP ← PC + 6 valP ← 0x014+ 6 = 0x01a

Decode valA ← R[rA] valA ← R[%esp] = 128
valB ← R[rB] valB ← R[%ebx] = 12

Execute valE ← valB + valC valE ← 12+ 100= 112

Memory M4[valE] ← valA M4[112] ← 128

Write back

PC update PC ← valP PC ← 0x01a
As this trace shows, the instruction has the effect of writing 128 to memory address 112 and incrementing
the PC by 6.

Figure 4.20 shows the steps required to process pushl and popl instructions.
These are among the most difficult Y86 instructions to implement, because they in-
volve both accessing memory and incrementing or decrementing the stack pointer.
Although the two instructions have similar flows, they have important differences.

The pushl instruction starts much like our previous instructions, but in the
decode stage we use %esp as the identifier for the second register operand, giving
the stack pointer as value valB. In the execute stage, we use the ALU to decrement
the stack pointer by 4. This decremented value is used for the memory write
address and is also stored back to %esp in the write-back stage. By using valE as the
address for the write operation, we adhere to the Y86 (and IA32) convention that
pushl should decrement the stack pointer before writing, even though the actual
updating of the stack pointer does not occur until after the memory operation has
completed.

370 Chapter 4 Processor Architecture

Stage pushl rA popl rA

Fetch icode : ifun ← M1[PC] icode : ifun ← M1[PC]
rA : rB ← M1[PC + 1] rA : rB ← M1[PC + 1]

valP ← PC + 2 valP ← PC + 2

Decode valA ← R[rA] valA ← R[%esp]
valB ← R[%esp] valB ← R[%esp]

Execute valE ← valB + (−4) valE ← valB + 4

Memory M4[valE] ← valA valM ← M4[valA]

Write back R[%esp] ← valE R[%esp] ← valE
R[rA] ← valM

PC update PC ← valP PC ← valP

Figure 4.20 Computations in sequential implementation of Y86 instructions pushl
and popl. These instructions push and pop the stack.

Aside Tracing the execution of a pushl instruction

Let us trace the processing of the pushl instruction on line 6 of the object code shown in Figure 4.17.
At this point, we have 9 in register %edx and 128 in register %esp. We can also see that the instruction is
located at address 0x01a and consists of 2 bytes having values 0xa0 and 0x28. The stages would proceed
as follows:

Generic Specific
Stage pushl rA pushl %edx

Fetch icode : ifun ← M1[PC] icode : ifun ← M1[0x01a] = a : 0
rA : rB ← M1[PC + 1] rA : rB ← M1[0x01b] = 2 : 8

valP ← PC + 2 valP ← 0x01a + 2 = 0x01c
Decode valA ← R[rA] valA ← R[%edx] = 9

valB ← R[%esp] valB ← R[%esp] = 128
Execute valE ← valB + (−4) valE ← 128+ (−4) = 124

Memory M4[valE] ← valA M4[124] ← 9
Write back R[%esp] ← valE R[%esp] ← 124

PC update PC ← valP PC ← 0x01c

Section 4.3 Sequential Y86 Implementations 371

As this trace shows, the instruction has the effect of setting %esp to 124, writing 9 to address 124, and
incrementing the PC by 2.

The popl instruction proceeds much like pushl, except that we read two
copies of the stack pointer in the decode stage. This is clearly redundant, but we
will see that having the stack pointer as both valA and valB makes the subsequent
flow more similar to that of other instructions, enhancing the overall uniformity
of the design. We use the ALU to increment the stack pointer by 4 in the execute
stage, but use the unincremented value as the address for the memory operation.
In the write-back stage, we update both the stack pointer register with the incre-
mented stack pointer, and register rA with the value read from memory. Using
the unincremented stack pointer as the memory read address preserves the Y86
(and IA32) convention that popl should first read memory and then increment
the stack pointer.

Practice Problem 4.12
Fill in the right-hand column of the following table to describe the processing of
the popl instruction on line 7 of the object code in Figure 4.17:

Generic Specific
Stage popl rA popl %eax

Fetch icode : ifun ← M1[PC]
rA : rB ← M1[PC + 1]

valP ← PC + 2

Decode valA ← R[%esp]
valB ← R[%esp]

Execute valE ← valB + 4

Memory valM ← M4[valA]

Write back R[%esp] ← valE
R[rA] ← valM

PC update PC ← valP

What effect does this instruction execution have on the registers and the PC?

372 Chapter 4 Processor Architecture

Practice Problem 4.13
What would be the effect of the instruction pushl %esp according to the steps
listed in Figure 4.20? Does this conform to the desired behavior for Y86, as
determined in Problem 4.6?

Practice Problem 4.14
Assume the two register writes in the write-back stage for popl occur in the order
listed in Figure 4.20. What would be the effect of executing popl %esp? Does this
conform to the desired behavior for Y86, as determined in Problem 4.7?

Figure 4.21 indicates the processing of our three control transfer instructions:
the different jumps, call, and ret. We see that we can implement these instruc-
tions with the same overall flow as the preceding ones.

As with integer operations, we can process all of the jumps in a uniform
manner, since they differ only when determining whether or not to take the
branch. A jump instruction proceeds through fetch and decode much like the
previous instructions, except that it does not require a register specifier byte. In
the execute stage, we check the condition codes and the jump condition to deter-
mine whether or not to take the branch, yielding a 1-bit signal Cnd. During the
PC update stage, we test this flag, and set the PC to valC (the jump target) if the
flag is 1, and to valP (the address of the following instruction) if the flag is 0. Our
notation x ? a : b is similar to the conditional expression in C—it yields a when x

is nonzero and b when x is zero.

Stage jXX Dest call Dest ret

Fetch icode : ifun ← M1[PC] icode : ifun ← M1[PC] icode : ifun ← M1[PC]

valC ← M4[PC + 1] valC ← M4[PC + 1]
valP ← PC + 5 valP ← PC + 5 valP ← PC + 1

Decode valA ← R[%esp]
valB ← R[%esp] valB ← R[%esp]

Execute valE ← valB + (−4) valE ← valB + 4
Cnd ← Cond(CC, ifun)

Memory M4[valE] ← valP valM ← M4[valA]

Write back R[%esp] ← valE R[%esp] ← valE

PC update PC ← Cnd ? valC : valP PC ← valC PC ← valM

Figure 4.21 Computations in sequential implementation of Y86 instructions jXX,
call, and ret. These instructions cause control transfers.

Section 4.3 Sequential Y86 Implementations 373

Aside Tracing the execution of a je instruction

Let us trace the processing of the je instruction on line 8 of the object code shown in Figure 4.17. The
condition codes were all set to zero by the subl instruction (line 3), and so the branch will not be taken.
The instruction is located at address 0x01e and consists of 5 bytes. The first has value 0x73, while the
remaining 4 are a byte-reversed version of the number 0x00000028, the jump target. The stages would
proceed as follows:

Generic Specific
Stage jXX Dest je 0x028

Fetch icode : ifun ← M1[PC] icode : ifun ← M1[0x01e] = 7 : 3

valC ← M4[PC + 1] valC ← M4[0x01f] = 0x028
valP ← PC + 5 valP ← 0x01e+ 5 = 0x023

Decode

Execute
Cnd ← Cond(CC, ifun) Cnd ← Cond(〈0, 0, 0〉, 3) = 0

Memory
Write back

PC update PC ← Cnd ? valC : valP PC ← 0 ? 0x028 : 0x023= 0x023
As this trace shows, the instruction has the effect of incrementing the PC by 5.

Practice Problem 4.15
We can see by the instruction encodings (Figures 4.2 and 4.3) that the rmmovl
instruction is the unconditional version of a more general class of instructions
that include the conditional moves. Show how you would modify the steps for the
rrmovl instruction below to also handle the six conditional move instructions.
You may find it useful to see how the implementation of the jXX instructions
(Figure 4.21) handles conditional behavior.

Stage cmovXX rA, rB

Fetch icode : ifun ← M1[PC]
rA : rB ← M1[PC + 1]
valP ← PC + 2

Decode valA ← R[rA]
Execute valE ← 0 + valA

Memory
Write back

R[rB] ← valE
PC update PC ← valP

374 Chapter 4 Processor Architecture

Instructions call and retbear some similarity to instructions pushl andpopl,
except that we push and pop program counter values. With instruction call, we
push valP, the address of the instruction that follows the call instruction. During
the PC update stage, we set the PC to valC, the call destination. With instruction
ret, we assign valM, the value popped from the stack, to the PC in the PC update
stage.

Practice Problem 4.16
Fill in the right-hand column of the following table to describe the processing of
the call instruction on line 9 of the object code in Figure 4.17:

Generic Specific
Stage call Dest call 0x029

Fetch icode : ifun ← M1[PC]

valC ← M4[PC + 1]
valP ← PC + 5

Decode
valB ← R[%esp]

Execute valE ← valB + (−4)

Memory M4[valE] ← valP

Write back R[%esp] ← valE

PC update PC ← valC

What effect would this instruction execution have on the registers, the PC, and
the memory?

We have created a uniform framework that handles all of the different types of
Y86 instructions. Even though the instructions have widely varying behavior, we
can organize the processing into six stages. Our task now is to create a hardware
design that implements the stages and connects them together.

Aside Tracing the execution of a ret instruction

Let us trace the processing of the ret instruction on line 13 of the object code shown in Figure 4.17.
The instruction address is 0x029 and is encoded by a single byte 0x90. The previous call instruction
set %esp to 124 and stored the return address 0x028 at memory address 124. The stages would proceed
as follows:

Section 4.3 Sequential Y86 Implementations 375

Generic Specific
Stage ret ret

Fetch icode : ifun ← M1[PC] icode : ifun ← M1[0x029] = 9 : 0

valP ← PC + 1 valP ← 0x029+ 1 = 0x02a
Decode valA ← R[%esp] valA ← R[%esp] = 124

valB ← R[%esp] valB ← R[%esp] = 124
Execute valE ← valB + 4 valE ← 124+ 4 = 128

Memory valM ← M4[valA] valM ← M4[124] = 0x028
Write back R[%esp] ← valE R[%esp] ← 128

PC update PC ← valM PC ← 0x028
As this trace shows, the instruction has the effect of setting the PC to 0x028, the address of the halt
instruction. It also sets %esp to 128.

4.3.2 SEQ Hardware Structure

The computations required to implement all of the Y86 instructions can be orga-
nized as a series of six basic stages: fetch, decode, execute, memory, write back,
and PC update. Figure 4.22 shows an abstract view of a hardware structure that can
perform these computations. The program counter is stored in a register, shown
in the lower left-hand corner (labeled “PC”). Information then flows along wires
(shown grouped together as a heavy black line), first upward and then around to
the right. Processing is performed by hardware units associated with the different
stages. The feedback paths coming back down on the right-hand side contain the
updated values to write to the register file and the updated program counter. In
SEQ, all of the processing by the hardware units occurs within a single clock cycle,
as is discussed in Section 4.3.3. This diagram omits some small blocks of combi-
national logic as well as all of the control logic needed to operate the different
hardware units and to route the appropriate values to the units. We will add this
detail later. Our method of drawing processors with the flow going from bottom
to top is unconventional. We will explain the reason for our convention when we
start designing pipelined processors.

The hardware units are associated with the different processing stages:

Fetch: Using the program counter register as an address, the instruction
memory reads the bytes of an instruction. The PC incrementer computes
valP, the incremented program counter.

376 Chapter 4 Processor Architecture

Figure 4.22
Abstract view of SEQ,
a sequential implemen-
tation. The information
processed during exe-
cution of an instruction
follows a clockwise flow
starting with an instruction
fetch using the program
counter (PC), shown in the
lower left-hand corner of
the figure.

A B
M

E

PC

Write back

Memory

Execute

newPC

valE, valM

valM

Data
memory

Addr, Data

valE

CC ALUCnd

aluA, aluB

valA, valB

srcA, srcB
dstE, dstM

Register
file

valP

Decode

icode, ifun
rA, rB
valC

Fetch
Instruction
memory

PC
increment

PC

Section 4.3 Sequential Y86 Implementations 377

Decode: The register file has two read ports, A and B, via which register values
valA and valB are read simultaneously.

Execute: The execute stage uses the arithmetic/logic (ALU) unit for different
purposes according to the instruction type. For integer operations, it
performs the specified operation. For other instructions, it serves as
an adder to compute an incremented or decremented stack pointer, to
compute an effective address, or simply to pass one of its inputs to its
outputs by adding zero.

The condition code register (CC) holds the three condition-code bits.
New values for the condition codes are computed by the ALU. When
executing a jump instruction, the branch signal Cnd is computed based
on the condition codes and the jump type.

Memory: The data memory reads or writes a word of memory when executing a
memory instruction. The instruction and data memories access the same
memory locations, but for different purposes.

Write back: The register file has two write ports. Port E is used to write values
computed by the ALU, while port M is used to write values read from
the data memory.

Figure 4.23 gives a more detailed view of the hardware required to implement
SEQ (although we will not see the complete details until we examine the individual
stages). We see the same set of hardware units as earlier, but now the wires are
shown explicitly. In this figure, as well as in our other hardware diagrams, we use
the following drawing conventions:

. Hardware units are shown as light blue boxes. These include the memories,
the ALU, and so forth. We will use the same basic set of units for all of our
processor implementations. We will treat these units as “black boxes” and not
go into their detailed designs.

. Control logic blocks are drawn as gray rounded rectangles. These blocks serve
to select from among a set of signal sources, or to compute some Boolean func-
tion. We will examine these blocks in complete detail, including developing
HCL descriptions.

. Wire names are indicated in white round boxes. These are simply labels on the
wires, not any kind of hardware element.

. Word-wide data connections are shown as medium lines. Each of these lines
actually represents a bundle of 32 wires, connected in parallel, for transferring
a word from one part of the hardware to another.

. Byte and narrower data connections are shown as thin lines.Each of these lines
actually represents a bundle of four or eight wires, depending on what type of
values must be carried on the wires.

. Single-bit connections are shown as dotted lines.These represent control values
passed between the units and blocks on the chip.

All of the computations we have shown in Figures 4.18 through 4.21 have the
property that each line represents either the computation of a specific value, such

378 Chapter 4 Processor Architecture

stat

PC

Memory

Execute

Decode

Fetch

newPC

New PC

data out

dmem_error

read

write

Data
memory

Addr Data

Mem.
control

Cnd valE

valM

Stat

CC ALU
ALU
fun.

ALU
A

ALU
B

valA valB dstE dstM srcA srcB

dstE dstM srcA srcB

Register
File

Write back

A B

E

M

icode
instr_valid

imem_error
ifun rA rB valC valP

PC
increment

Instruction
memory

PC

Figure 4.23 Hardware structure of SEQ, a sequential implementation. Some of the
control signals, as well as the register and control word connections, are not shown.

Section 4.3 Sequential Y86 Implementations 379

Stage Computation OPl rA, rB mrmovl D(rB), rA

Fetch icode, ifun icode : ifun ← M1[PC] icode : ifun ← M1[PC]
rA, rB rA : rB ← M1[PC + 1] rA : rB ← M1[PC + 1]
valC valC ← M4[PC + 2]
valP valP ← PC + 2 valP ← PC + 6

Decode valA, srcA valA ← R[rA]
valB, srcB valB ← R[rB] valB ← R[rB]

Execute valE valE ← valB OP valA valE ← valB + valC
Cond. codes Set CC

Memory read/write valM ← M4[valE]

Write back E port, dstE R[rB] ← valE
M port, dstM R[rA] ← valM

PC update PC PC ← valP PC ← valP

Figure 4.24 Identifying the different computation steps in the sequential imple-
mentation. The second column identifies the value being computed or the operation
being performed in the stages of SEQ. The computations for instructions OPl and mrmovl
are shown as examples of the computations.

as valP, or the activation of some hardware unit, such as the memory. These com-
putations and actions are listed in the second column of Figure 4.24. In addition
to the signals we have already described, this list includes four register ID signals:
srcA, the source of valA; srcB, the source of valB; dstE, the register to which valE
gets written; and dstM, the register to which valM gets written.

The two right-hand columns of this figure show the computations for the
OPl and mrmovl instructions to illustrate the values being computed. To map the
computations into hardware, we want to implement control logic that will transfer
the data between the different hardware units and operate these units in such a way
that the specified operations are performed for each of the different instruction
types. That is the purpose of the control logic blocks, shown as gray rounded boxes
in Figure 4.23. Our task is to proceed through the individual stages and create
detailed designs for these blocks.

4.3.3 SEQ Timing

In introducing the tables of Figures 4.18 through 4.21, we stated that they should
be read as if they were written in a programming notation, with the assignments
performed in sequence from top to bottom. On the other hand, the hardware
structure of Figure 4.23 operates in a fundamentally different way, with a single
clock transition triggering a flow through combinational logic to execute an entire

380 Chapter 4 Processor Architecture

instruction. Let us see how the hardware can implement the behavior listed in
these tables.

Our implementation of SEQ consists of combinational logic and two forms
of memory devices: clocked registers (the program counter and condition code
register) and random-access memories (the register file, the instruction memory,
and the data memory). Combinational logic does not require any sequencing or
control—values propagate through a network of logic gates whenever the inputs
change. As we have described, we also assume that reading from a random-
access memory operates much like combinational logic, with the output word
generated based on the address input. This is a reasonable assumption for smaller
memories (such as the register file), and we can mimic this effect for larger circuits
using special clock circuits. Since our instruction memory is only used to read
instructions, we can therefore treat this unit as if it were combinational logic.

We are left with just four hardware units that require an explicit control
over their sequencing—the program counter, the condition code register, the data
memory, and the register file. These are controlled via a single clock signal that
triggers the loading of new values into the registers and the writing of values to the
random-access memories. The program counter is loaded with a new instruction
address every clock cycle. The condition code register is loaded only when an
integer operation instruction is executed. The data memory is written only when
an rmmovl, pushl, or call instruction is executed. The two write ports of the
register file allow two program registers to be updated on every cycle, but we can
use the special register ID 0xF as a port address to indicate that no write should
be performed for this port.

This clocking of the registers and memories is all that is required to control
the sequencing of activities in our processor. Our hardware achieves the same
effect as would a sequential execution of the assignments shown in the tables
of Figures 4.18 through 4.21, even though all of the state updates actually occur
simultaneously and only as the clock rises to start the next cycle. This equivalence
holds because of the nature of the Y86 instruction set, and because we have
organized the computations in such a way that our design obeys the following
principle:

The processor never needs to read back the state updated by an instruction in
order to complete the processing of this instruction.

This principle is crucial to the success of our implementation. As an illustration,
suppose we implemented the pushl instruction by first decrementing %esp by 4
and then using the updated value of %esp as the address of a write operation.
This approach would violate the principle stated above. It would require reading
the updated stack pointer from the register file in order to perform the memory
operation. Instead, our implementation (Figure 4.20) generates the decremented
value of the stack pointer as the signal valE and then uses this signal both as the
data for the register write and the address for the memory write. As a result, it
can perform the register and memory writes simultaneously as the clock rises to
begin the next clock cycle.

Section 4.3 Sequential Y86 Implementations 381

As another illustration of this principle, we can see that some instructions
(the integer operations) set the condition codes, and some instructions (the jump
instructions) read these condition codes, but no instruction must both set and then
read the condition codes. Even though the condition codes are not set until the
clock rises to begin the next clock cycle, they will be updated before any instruction
attempts to read them.

Figure 4.25 shows how the SEQ hardware would process the instructions at
lines 3 and 4 in the following code sequence, shown in assembly code with the
instruction addresses listed on the left:

1 0x000: irmovl $0x100,%ebx # %ebx <-- 0x100

2 0x006: irmovl $0x200,%edx # %edx <-- 0x200

3 0x00c: addl %edx,%ebx # %ebx <-- 0x300 CC <-- 000

4 0x00e: je dest # Not taken

5 0x013: rmmovl %ebx,0(%edx) # M[0x200] <-- 0x300

6 0x019: dest: halt

Each of the diagrams labeled 1 through 4 shows the four state elements plus
the combinational logic and the connections among the state elements. We show
the combinational logic as being wrapped around the condition code register,
because some of the combinational logic (such as the ALU) generates the input
to the condition code register, while other parts (such as the branch computation
and the PC selection logic) have the condition code register as input. We show the
register file and the data memory as having separate connections for reading and
writing, since the read operations propagate through these units as if they were
combinational logic, while the write operations are controlled by the clock.

The color coding in Figure 4.25 indicates how the circuit signals relate to the
different instructions being executed. We assume the processing starts with the
condition codes, listed in the order ZF, SF, and OF, set to 100. At the beginning of
clock cycle 3 (point 1), the state elements hold the state as updated by the second
irmovl instruction (line 2 of the listing), shown in light gray. The combinational
logic is shown in white, indicating that it has not yet had time to react to the
changed state. The clock cycle begins with address 0x00c loaded into the program
counter. This causes the addl instruction (line 3 of the listing), shown in blue, to
be fetched and processed. Values flow through the combinational logic, including
the reading of the random-access memories. By the end of the cycle (point 2),
the combinational logic has generated new values (000) for the condition codes,
an update for program register %ebx, and a new value (0x00e) for the program
counter. At this point, the combinational logic has been updated according to the
addl instruction (shown in blue), but the state still holds the values set by the
second irmovl instruction (shown in light gray).

As the clock rises to begin cycle 4 (point 3), the updates to the program
counter, the register file, and the condition code register occur, and so we show
these in blue, but the combinational logic has not yet reacted to these changes, and
so we show this in white. In this cycle, theje instruction (line 4 in the listing), shown
in dark gray, is fetched and executed. Since condition code ZF is 0, the branch is not

382 Chapter 4 Processor Architecture

Clock
Cycle 1

Cycle 1:

Cycle 2:

Cycle 3:

Cycle 4:

Cycle 5:

Beginning of cycle 3 End of cycle 3

Cycle 2 Cycle 3 Cycle 4

1

1

2

2

3 4

0x000: irmovl $0x100,%ebx # %ebx <-- 0x100

0x006: irmovl $0x200,%edx # %edx <-- 0x200

0x00c: addl %edx,%ebx # %ebx <-- 0x300 CC <-- 000

0x00e: je dest # Not taken

0x013: rmmov1 %ebx,0(%edx) # M[0x200] <-- 0x300

Combinational
Logic

Read

Read
Ports

Write

Data
memory

Combinational
Logic

Read

Read
Ports

Write
Ports

Write

%ebx

0x300

Beginning of cycle 4 End of cycle 43 4

Combinational
Logic

CC
000

Read

Read
Ports

Write
Ports

Write
Combinational

Logic

CC
000

Read

Read
Ports

Write
Ports

Write

000

0x00e

0x013

Write
Ports

Register
file

%ebx�0x100

PC
0x00c

CC
100

PC
0x00e

CC
100

PC
0x00c

Register
file

%ebx�0x100

Data
memory

Data
memory

Register
file

%ebx�0x300

PC
0x00e

Register
file

%ebx�0x300

Data
memory

Figure 4.25 Tracing two cycles of execution by SEQ. Each cycle begins with the state
elements (program counter, condition code register, register file, and data memory)
set according to the previous instruction. Signals propagate through the combinational
logic creating new values for the state elements. These values are loaded into the state
elements to start the next cycle.

Section 4.3 Sequential Y86 Implementations 383

taken. By the end of the cycle (point 4), a new value of 0x013 has been generated
for the program counter. The combinational logic has been updated according to
the je instruction (shown in dark gray), but the state still holds the values set by
the addl instruction (shown in blue) until the next cycle begins.

As this example illustrates, the use of a clock to control the updating of the
state elements, combined with the propagation of values through combinational
logic, suffices to control the computations performed for each instruction in our
implementation of SEQ. Every time the clock transitions from low to high, the
processor begins executing a new instruction.

4.3.4 SEQ Stage Implementations

In this section, we devise HCL descriptions for the control logic blocks required
to implement SEQ. A complete HCL description for SEQ is given in Web Aside
arch:hcl. We show some example blocks here, while others are given as practice
problems. We recommend that you work these practice problems as a way to check
your understanding of how the blocks relate to the computational requirements
of the different instructions.

Part of the HCL description of SEQ that we do not include here is a definition
of the different integer and Boolean signals that can be used as arguments to the
HCL operations. These include the names of the different hardware signals, as
well as constant values for the different instruction codes, function codes, register
names, ALU operations, and status codes. Only those that must be explicitly
referenced in the control logic are shown. The constants we use are documented
in Figure 4.26. By convention, we use uppercase names for constant values.

In addition to the instructions shown in Figures 4.18 to 4.21, we include the
processing for the nop and halt instructions. The nop instruction simply flows
through stages without much processing, except to increment the PC by 1. The
halt instruction causes the processor status to be set to HLT, causing it to halt
operation.

Fetch Stage

As shown in Figure 4.27, the fetch stage includes the instruction memory hardware
unit. This unit reads 6 bytes from memory at a time, using the PC as the address of
the first byte (byte 0). This byte is interpreted as the instruction byte and is split (by
the unit labeled “Split”) into two 4-bit quantities. The control logic blocks labeled
“icode” and “ifun” then compute the instruction and function codes as equaling
either the values read from memory or, in the event that the instruction address
is not valid (as indicated by the signal imem_error), the values corresponding to
a nop instruction. Based on the value of icode, we can compute three 1-bit signals
(shown as dashed lines):

instr_valid: Does this byte correspond to a legal Y86 instruction? This signal is
used to detect an illegal instruction.

need_regids: Does this instruction include a register specifier byte?

need_valC: Does this instruction include a constant word?

384 Chapter 4 Processor Architecture

Name Value (Hex) Meaning

INOP 0 Code for nop instruction
IHALT 1 Code for halt instruction
IRRMOVL 2 Code for rrmovl instruction
IIRMOVL 3 Code for irmovl instruction
IRMMOVL 4 Code for rmmovl instruction
IMRMOVL 5 Code for mrmovl instruction
IOPL 6 Code for integer operation instructions
IJXX 7 Code for jump instructions
ICALL 8 Code for call instruction
IRET 9 Code for ret instruction
IPUSHL A Code for pushl instruction
IPOPL B Code for popl instruction

FNONE 0 Default function code

RESP 4 Register ID for %esp
RNONE F Indicates no register file access

ALUADD 0 Function for addition operation

SAOK 1 Status code for normal operation
SADR 2 Status code for address exception
SINS 3 Status code for illegal instruction exception
SHLT 4 Status code for halt

Figure 4.26 Constant values used in HCL descriptions. These values represent the
encodings of the instructions, function codes, register IDs, ALU operations, and status
codes.

The signals instr_valid and imem_error (generated when the instruction address
is out of bounds) are used to generate the status code in the memory stage.

As an example, the HCL description for need_regids simply determines
whether the value of icode is one of the instructions that has a register specifier
byte:

bool need_regids =

icode in { IRRMOVL, IOPL, IPUSHL, IPOPL,

IIRMOVL, IRMMOVL, IMRMOVL };

Practice Problem 4.17
Write HCL code for the signal need_valC in the SEQ implementation.

Section 4.3 Sequential Y86 Implementations 385

Figure 4.27
SEQ fetch stage. Six
bytes are read from the
instruction memory using
the PC as the starting
address. From these bytes,
we generate the different
instruction fields. The PC
increment block computes
signal valP.

icode ifun rA rB valC valP

Need
valC

Need
regids

PC
increment

Align

Bytes 1–5Byte 0

imem_error

Instruction
memory

PC

Split

Instr
valid

icode ifun

As Figure 4.27 shows, the remaining 5 bytes read from the instruction memory
encode some combination of the register specifier byte and the constant word.
These bytes are processed by the hardware unit labeled “Align” into the register
fields and the constant word. When the computed signal need_regids is 1, then
byte 1 is split into register specifiers rA and rB. Otherwise, these two fields are set to
0xF (RNONE), indicating there are no registers specified by this instruction. Recall
also (Figure 4.2) that for any instruction having only one register operand, the
other field of the register specifier byte will be 0xF (RNONE). Thus, we can assume
that the signals rA and rB either encode registers we want to access or indicate
that register access is not required. The unit labeled “Align” also generates the
constant word valC. This will either be bytes 1 to 4 or bytes 2 to 5, depending on
the value of signal need_regids.

The PC incrementer hardware unit generates the signal valP, based on the
current value of the PC, and the two signals need_regids and need_valC. For PC
value p, need_regids value r , and need_valC value i, the incrementer generates
the value p + 1 + r + 4i.

Decode and Write-Back Stages

Figure 4.28 provides a detailed view of logic that implements both the decode
and write-back stages in SEQ. These two stages are combined because they both
access the register file.

The register file has four ports. It supports up to two simultaneous reads (on
ports A and B) and two simultaneous writes (on ports E and M). Each port has
both an address connection and a data connection, where the address connection
is a register ID, and the data connection is a set of 32 wires serving as either an
output word (for a read port) or an input word (for a write port) of the register
file. The two read ports have address inputs srcA and srcB, while the two write

386 Chapter 4 Processor Architecture

valACnd valB valM valE

Register
file

A

dstE dstM srcA srcB

dstE dstM srcA srcB

rAicode rB

B M

E

Figure 4.28 SEQ decode and write-back stage. The instruction fields are decoded to
generate register identifiers for four addresses (two read and two write) used by the
register file. The values read from the register file become the signals valA and valB. The
two write-back values valE and valM serve as the data for the writes.

ports have address inputs dstE and dstM. The special identifier 0xF (RNONE) on an
address port indicates that no register should be accessed.

The four blocks at the bottom of Figure 4.28 generate the four different
register IDs for the register file, based on the instruction code icode, the register
specifiers rA and rB, and possibly the condition signal Cnd computed in the execute
stage. Register ID srcA indicates which register should be read to generate valA.
The desired value depends on the instruction type, as shown in the first row for the
decode stage in Figures 4.18 to 4.21. Combining all of these entries into a single
computation gives the following HCL description of srcA (recall that RESP is the
register ID of %esp):

Code from SEQ

int srcA = [

icode in { IRRMOVL, IRMMOVL, IOPL, IPUSHL } : rA;

icode in { IPOPL, IRET } : RESP;

1 : RNONE; # Don’t need register

];

Practice Problem 4.18
The register signal srcB indicates which register should be read to generate the
signal valB. The desired value is shown as the second step in the decode stage in
Figures 4.18 to 4.21. Write HCL code for srcB.

Register ID dstE indicates the destination register for write port E, where the
computed value valE is stored. This is shown in Figures 4.18 to 4.21 as the first
step in the write-back stage. If we ignore for the moment the conditional move
instructions, then we can combine the destination registers for all of the different
instructions to give the following HCL description of dstE:

Section 4.3 Sequential Y86 Implementations 387

WARNING: Conditional move not implemented correctly here

int dstE = [

icode in { IRRMOVL } : rB;

icode in { IIRMOVL, IOPL} : rB;

icode in { IPUSHL, IPOPL, ICALL, IRET } : RESP;

1 : RNONE; # Don’t write any register

];

We will revisit this signal and how to implement conditional moves when we
examine the execute stage.

Practice Problem 4.19
Register ID dstM indicates the destination register for write port M, where valM,
the value read from memory, is stored. This is shown in Figures 4.18 to 4.21 as the
second step in the write-back stage. Write HCL code for dstM.

Practice Problem 4.20
Only the popl instruction uses both register file write ports simultaneously. For
the instruction popl %esp, the same address will be used for both the E and M
write ports, but with different data. To handle this conflict, we must establish a
priority among the two write ports so that when both attempt to write the same
register on the same cycle, only the write from the higher-priority port takes place.
Which of the two ports should be given priority in order to implement the desired
behavior, as determined in Problem 4.7?

Execute Stage

The execute stage includes the arithmetic/logic unit (ALU). This unit performs the
operation add, subtract, and, or Exclusive-Or on inputs aluA and aluB based
on the setting of the alufun signal. These data and control signals are generated
by three control blocks, as diagrammed in Figure 4.29. The ALU output becomes
the signal valE.

Figure 4.29
SEQ execute stage. The
ALU either performs the
operation for an integer
operation instruction or
it acts as an adder. The
condition code registers
are set according to the
ALU value. The condition
code values are tested to
determine whether or not
a branch should be taken.

Cnd valE

cond

CC

Set
CC

ALU
ALU
fun.

ALU
B

ALU
A

valC valA valBicode ifun

388 Chapter 4 Processor Architecture

In Figures 4.18 to 4.21, the ALU computation for each instruction is shown as
the first step in the execute stage. The operands are listed with aluB first, followed
by aluA to make sure the subl instruction subtracts valA from valB. We can see
that the value of aluA can be valA, valC, or either −4 or +4, depending on the
instruction type. We can therefore express the behavior of the control block that
generates aluA as follows:

int aluA = [

icode in { IRRMOVL, IOPL } : valA;

icode in { IIRMOVL, IRMMOVL, IMRMOVL } : valC;

icode in { ICALL, IPUSHL } : -4;

icode in { IRET, IPOPL } : 4;

Other instructions don’t need ALU

];

Practice Problem 4.21
Based on the first operand of the first step of the execute stage in Figures 4.18 to
4.21, write an HCL description for the signal aluB in SEQ.

Looking at the operations performed by the ALU in the execute stage, we
can see that it is mostly used as an adder. For the OPl instructions, however, we
want it to use the operation encoded in the ifun field of the instruction. We can
therefore write the HCL description for the ALU control as follows:

int alufun = [

icode == IOPL : ifun;

1 : ALUADD;

];

The execute stage also includes the condition code register. Our ALU gen-
erates the three signals on which the condition codes are based—zero, sign, and
overflow—every time it operates. However, we only want to set the condition
codes when an OPl instruction is executed. We therefore generate a signal set_cc
that controls whether or not the condition code register should be updated:

bool set_cc = icode in { IOPL };

The hardware unit labeled “cond” uses a combination of the condition codes
and the function code to determine whether a conditional branch or data transfer
should take place (Figure 4.3). It generates the Cnd signal used both for the setting
of dstE with conditional moves, and in the next PC logic for conditional branches.
For other instructions, the Cnd signal may be set to either 1 or 0, depending on
the instruction’s function code and the setting of the condition codes, but it will
be ignored by the control logic. We omit the detailed design of this unit.

Section 4.3 Sequential Y86 Implementations 389

Figure 4.30
SEQ memory stage. The
data memory can either
write or read memory
values. The value read from
memory forms the signal
valM.

stat

Stat

valM

data out
Mem.
read

Mem.
write write

read

dmem_error

imem_error

instr_valid

Mem.
addr

Mem.
data

icode valE valA valP

data in

Data
memory

Practice Problem 4.22
The conditional move instructions, abbreviated cmovXX, have instruction code
IRRMOVL. As Figure 4.28 shows, we can implement these instructions by making
use of the Cnd signal, generated in the execute stage. Modify the HCL code for
dstE to implement these instructions.

Memory Stage

The memory stage has the task of either reading or writing program data. As
shown in Figure 4.30, two control blocks generate the values for the memory
address and the memory input data (for write operations). Two other blocks
generate the control signals indicating whether to perform a read or a write
operation. When a read operation is performed, the data memory generates the
value valM.

The desired memory operation for each instruction type is shown in the
memory stage of Figures 4.18 to 4.21. Observe that the address for memory reads
and writes is always valE or valA. We can describe this block in HCL as follows:

int mem_addr = [

icode in { IRMMOVL, IPUSHL, ICALL, IMRMOVL } : valE;

icode in { IPOPL, IRET } : valA;

Other instructions don’t need address

];

Practice Problem 4.23
Looking at the memory operations for the different instructions shown in Fig-
ures 4.18 to 4.21, we can see that the data for memory writes is always either valA
or valP. Write HCL code for the signal mem_data in SEQ.

390 Chapter 4 Processor Architecture

We want to set the control signal mem_read only for instructions that read
data from memory, as expressed by the following HCL code:

bool mem_read = icode in { IMRMOVL, IPOPL, IRET };

Practice Problem 4.24
We want to set the control signal mem_write only for instructions that write data
to memory. Write HCL code for the signal mem_write in SEQ.

A final function for the memory stage is to compute the status code Stat result-
ing from the instruction execution, according to the values of icode, imem_error,
instr_valid generated in the fetch stage, and the signal dmem_error generated by
the data memory.

Practice Problem 4.25
Write HCL code for Stat, generating the four status codes SAOK, SADR, SINS, and
SHLT (see Figure 4.26).

PC Update Stage

The final stage in SEQ generates the new value of the program counter. (See
Figure 4.31.) As the final steps in Figures 4.18 to 4.21 show, the new PC will be
valC, valM, or valP, depending on the instruction type and whether or not a branch
should be taken. This selection can be described in HCL as follows:

int new_pc = [

Call. Use instruction constant

icode == ICALL : valC;

Taken branch. Use instruction constant

icode == IJXX && Cnd : valC;

Completion of RET instruction. Use value from stack

icode == IRET : valM;

Default: Use incremented PC

1 : valP;

];

Figure 4.31
SEQ PC update stage.
The next value of the PC
is selected from among
the signals valC, valM, and
valP, depending on the
instruction code and the
branch flag.

PC

New
PC

icode Cnd valC valM valP

Section 4.4 General Principles of Pipelining 391

Surveying SEQ

We have now stepped through a complete design for a Y86 processor. We have
seen that by organizing the steps required to execute each of the different in-
structions into a uniform flow, we can implement the entire processor with a small
number of different hardware units and with a single clock to control the sequenc-
ing of computations. The control logic must then route the signals between these
units and generate the proper control signals based on the instruction types and
the branch conditions.

The only problem with SEQ is that it is too slow. The clock must run slowly
enough so that signals can propagate through all of the stages within a single
cycle. As an example, consider the processing of a ret instruction. Starting with an
updated program counter at the beginning of the clock cycle, the instruction must
be read from the instruction memory, the stack pointer must be read from the
register file, the ALU must decrement the stack pointer, and the return address
must be read from the memory in order to determine the next value for the
program counter. All of this must be completed by the end of the clock cycle.

This style of implementation does not make very good use of our hardware
units, since each unit is only active for a fraction of the total clock cycle. We will
see that we can achieve much better performance by introducing pipelining.

4.4 General Principles of Pipelining

Before attempting to design a pipelined Y86 processor, let us consider some
general properties and principles of pipelined systems. Such systems are familiar
to anyone who has been through the serving line at a cafeteria or run a car through
an automated car wash. In a pipelined system, the task to be performed is divided
into a series of discrete stages. In a cafeteria, this involves supplying salad, a
main dish, dessert, and beverage. In a car wash, this involves spraying water and
soap, scrubbing, applying wax, and drying. Rather than having one customer run
through the entire sequence from beginning to end before the next can begin,
we allow multiple customers to proceed through the system at once. In a typical
cafeteria line, the customers maintain the same order in the pipeline and pass
through all stages, even if they do not want some of the courses. In the case of
the car wash, a new car is allowed to enter the spraying stage as the preceding car
moves from the spraying stage to the scrubbing stage. In general, the cars must
move through the system at the same rate to avoid having one car crash into the
next.

A key feature of pipelining is that it increases the throughput of the system,
that is, the number of customers served per unit time, but it may also slightly
increase the latency, that is, the time required to service an individual customer.
For example, a customer in a cafeteria who only wants a salad could pass through
a nonpipelined system very quickly, stopping only at the salad stage. A customer
in a pipelined system who attempts to go directly to the salad stage risks incurring
the wrath of other customers.

392 Chapter 4 Processor Architecture

Figure 4.32
Unpipelined computation
hardware. On each 320
ps cycle, the system
spends 300 ps evaluating
a combinational logic
function and 20 ps storing
the results in an output
register. (a) Hardware: Unpipelined

(b) Pipeline diagram

300 ps 20 ps

Delay � 320 ps
Throughput � 3.12 GIPS

Combinational
logic

R
e
g

Clock

I1

I2

I3
Time

4.4.1 Computational Pipelines

Shifting our focus to computational pipelines, the “customers” are instructions and
the stages perform some portion of the instruction execution. Figure 4.32 shows
an example of a simple nonpipelined hardware system. It consists of some logic
that performs a computation, followed by a register to hold the results of this
computation. A clock signal controls the loading of the register at some regular
time interval. An example of such a system is the decoder in a compact disk (CD)
player. The incoming signals are the bits read from the surface of the CD, and
the logic decodes these to generate audio signals. The computational block in the
figure is implemented as combinational logic, meaning that the signals will pass
through a series of logic gates, with the outputs becoming some function of the
inputs after some time delay.

In contemporary logic design, we measure circuit delays in units of picosec-
onds (abbreviated “ps”), or 10−12 seconds. In this example, we assume the combi-
national logic requires 300 picoseconds, while the loading of the register requires
20 ps. Figure 4.32 also shows a form of timing diagram known as a pipeline dia-
gram. In this diagram, time flows from left to right. A series of instructions (here
named I1, I2, and I3) are written from top to bottom. The solid rectangles indicate
the times during which these instructions are executed. In this implementation, we
must complete one instruction before beginning the next. Hence, the boxes do not
overlap one another vertically. The following formula gives the maximum rate at
which we could operate the system:

Throughput = 1 instruction
(20 + 300) picosecond

.
1000 picosecond

1 nanosecond
≈ 3.12 GIPS

We express throughput in units of giga-instructions per second (abbreviated
GIPS), or billions of instructions per second. The total time required to perform
a single instruction from beginning to end is known as the latency. In this system,
the latency is 320 ps, the reciprocal of the throughput.

Section 4.4 General Principles of Pipelining 393

Clock

Comb.
logic

A

R
e
g

(a) Hardware: Three-stage pipeline

100 ps 20 ps

Comb.
logic

B

R
e
g

100 ps 20 ps

Comb.
logic

C

R
e
g

100 ps 20 ps

(b) Pipeline diagram

Time

Delay � 360 ps
Throughput � 8.33 GIPS

I1

I2

I3

A B C
A B C

A B C

Figure 4.33 Three-stage pipelined computation hardware. The computation is split
into stages A, B, and C. On each 120-ps cycle, each instruction progresses through one
stage.

Suppose we could divide the computation performed by our system into three
stages, A, B, and C, where each requires 100 ps, as illustrated in Figure 4.33. Then
we could put pipeline registers between the stages so that each instruction moves
through the system in three steps, requiring three complete clock cycles from
beginning to end. As the pipeline diagram in Figure 4.33 illustrates, we could allow
I2 to enter stage A as soon as I1moves from A to B, and so on. In steady state, all
three stages would be active, with one instruction leaving and a new one entering
the system every clock cycle. We can see this during the third clock cycle in the
pipeline diagram where I1 is in stage C, I2 is in stage B, and I3 is in stage A. In
this system, we could cycle the clocks every 100 + 20 = 120 picoseconds, giving
a throughput of around 8.33 GIPS. Since processing a single instruction requires
3 clock cycles, the latency of this pipeline is 3 × 120 = 360 ps. We have increased
the throughput of the system by a factor of 8.33/3.12 = 2.67 at the expense of
some added hardware and a slight increase in the latency (360/320 = 1.12). The
increased latency is due to the time overhead of the added pipeline registers.

4.4.2 A Detailed Look at Pipeline Operation

To better understand how pipelining works, let us look in some detail at the timing
and operation of pipeline computations. Figure 4.34 shows the pipeline diagram
for the three-stage pipeline we have already looked at (Figure 4.33). The transfer
of the instructions between pipeline stages is controlled by a clock signal, as shown
above the pipeline diagram. Every 120 ps, this signal rises from 0 to 1, initiating
the next set of pipeline stage evaluations.

394 Chapter 4 Processor Architecture

Figure 4.34
Three-stage pipeline
timing. The rising edge of
the clock signal controls the
movement of instructions
from one pipeline stage to
the next.

Clock

I1

I2

I3

1200 240 360

Time

480 600

A B C
A B C

A B C

Figure 4.35 traces the circuit activity between times 240 and 360, as instruction
I1 (shown in dark gray) propagates through stage C, I2 (shown in blue) propa-
gates through stage B, and I3 (shown in light gray) propagates through stage A.
Just before the rising clock at time 240 (point 1), the values computed in stage A
for instruction I2 have reached the input of the first pipeline register, but its state
and output remain set to those computed during stage A for instruction I1. The
values computed in stage B for instruction I1 have reached the input of the second
pipeline register. As the clock rises, these inputs are loaded into the pipeline reg-
isters, becoming the register outputs (point 2). In addition, the input to stage A
is set to initiate the computation of instruction I3. The signals then propagate
through the combinational logic for the different stages (point 3). As the curved
wavefronts in the diagram at point 3 suggest, signals can propagate through differ-
ent sections at different rates. Before time 360, the result values reach the inputs
of the pipeline registers (point 4). When the clock rises at time 360, each of the
instructions will have progressed through one pipeline stage.

We can see from this detailed view of pipeline operation that slowing down
the clock would not change the pipeline behavior. The signals propagate to the
pipeline register inputs, but no change in the register states will occur until the
clock rises. On the other hand, we could have disastrous effects if the clock
were run too fast. The values would not have time to propagate through the
combinational logic, and so the register inputs would not yet be valid when the
clock rises.

As with our discussion of the timing for the SEQ processor (Section 4.3.3),
we see that the simple mechanism of having clocked registers between blocks of
combinational logic suffices to control the flow of instructions in the pipeline. As
the clock rises and falls repeatedly, the different instructions flow through the
stages of the pipeline without interfering with one another.

4.4.3 Limitations of Pipelining

The example of Figure 4.33 shows an ideal pipelined system in which we are able
to divide the computation into three independent stages, each requiring one-third
of the time required by the original logic. Unfortunately, other factors often arise
that diminish the effectiveness of pipelining.

Section 4.4 General Principles of Pipelining 395

Figure 4.35
One clock cycle of pipeline
operation. Just before the
clock rises at time 240
(point 1), instructions I1
(shown in dark gray) and
I2 (shown in blue) have
completed stages B and
A. After the clock rises,
these instructions begin
propagating through
stages C and B, while
instruction I3 (shown
in light gray) begins
propagating through
stage A (points 2 and
3). Just before the clock
rises again, the results
for the instructions have
propagated to the inputs
of the pipeline registers
(point 4).

B
A

C
B
A

Clock

Clock

Clock

Clock

Clock

I1

I2

I3

Time

Time � 239

120 240 360
21

1

Time � 2412

Time � 3003

Time � 3594

3 4

Comb.
logic

A

R
e
g

100 ps 20 ps

Comb.
logic

B

R
e
g

100 ps 20 ps

Comb.
logic

C

R
e
g

100 ps 20 ps

Comb.
logic

A

R
e
g

100 ps 20 ps

Comb.
logic

B

R
e
g

100 ps 20 ps

Comb.
logic

C

R
e
g

100 ps 20 ps

Comb.
logic

A

R
e
g

100 ps 20 ps

Comb.
logic

B

R
e
g

100 ps 20 ps

Comb.
logic

C

R
e
g

100 ps 20 ps

Comb.
logic

A

R
e
g

100 ps 20 ps

Comb.
logic

B

R
e
g

100 ps 20 ps

Comb.
logic

C

R
e
g

100 ps 20 ps

Nonuniform Partitioning

Figure 4.36 shows a system in which we divide the computation into three stages
as before, but the delays through the stages range from 50 to 150 ps. The sum of
the delays through all of the stages remains 300 ps. However, the rate at which we

396 Chapter 4 Processor Architecture

I1

I2

I3

A B C
A B C

A B C

Time

Clock

Comb.
logic

A

R
e
g

(a) Hardware: Three-stage pipeline, nonuniform stage delays

50 ps 20 ps

Comb.
logic

B

R
e
g

150 ps 20 ps

Comb.
logic

C

R
e
g

100 ps 20 ps

(b) Pipeline diagram

Delay � 510 ps
Throughput � 5.88 GIPS

Figure 4.36 Limitations of pipelining due to nonuniform stage delays. The system
throughput is limited by the speed of the slowest stage.

can operate the clock is limited by the delay of the slowest stage. As the pipeline
diagram in this figure shows, stage A will be idle (shown as a white box) for 100 ps
every clock cycle, while stage C will be idle for 50 ps every clock cycle. Only
stage B will be continuously active. We must set the clock cycle to 150 + 20 = 170
picoseconds, giving a throughput of 5.88 GIPS. In addition, the latency would
increase to 510 ps due to the slower clock rate.

Devising a partitioning of the system computation into a series of stages
having uniform delays can be a major challenge for hardware designers. Often,
some of the hardware units in a processor, such as the ALU and the memories,
cannot be subdivided into multiple units with shorter delay. This makes it difficult
to create a set of balanced stages. We will not concern ourselves with this level of
detail in designing our pipelined Y86 processor, but it is important to appreciate
the importance of timing optimization in actual system design.

Practice Problem 4.26
Suppose we analyze the combinational logic of Figure 4.32 and determine that it
can be separated into a sequence of six blocks, named A to F, having delays of 80,
30, 60, 50, 70, and 10 ps, respectively, illustrated as follows:

80 ps 30 ps 60 ps 50 ps 70 ps 10 ps

A E FCB D

20 ps

Clock

R
e
g

Section 4.4 General Principles of Pipelining 397

We can create pipelined versions of this design by inserting pipeline registers
between pairs of these blocks. Different combinations of pipeline depth (how
many stages) and maximum throughput arise, depending on where we insert the
pipeline registers. Assume that a pipeline register has a delay of 20 ps.

A. Inserting a single register gives a two-stage pipeline. Where should the
register be inserted to maximize throughput? What would be the throughput
and latency?

B. Where should two registers be inserted to maximize the throughput of a
three-stage pipeline? What would be the throughput and latency?

C. Where should three registers be inserted to maximize the throughput of a
four-stage pipeline? What would be the throughput and latency?

D. What is the minimum number of stages that would yield a design with the
maximum achievable throughput? Describe this design, its throughput, and
its latency.

Diminishing Returns of Deep Pipelining

Figure 4.37 illustrates another limitation of pipelining. In this example, we have
divided the computation into six stages, each requiring 50 ps. Inserting a pipeline
register between each pair of stages yields a six-stage pipeline. The minimum
clock period for this system is 50 + 20 = 70 picoseconds, giving a throughput of
14.29 GIPS. Thus, in doubling the number of pipeline stages, we improve the
performance by a factor of 14.29/8.33 = 1.71. Even though we have cut the time
required for each computation block by a factor of 2, we do not get a doubling of
the throughput, due to the delay through the pipeline registers. This delay becomes
a limiting factor in the throughput of the pipeline. In our new design, this delay
consumes 28.6% of the total clock period.

Modern processors employ very deep (15 or more stages) pipelines in an
attempt to maximize the processor clock rate. The processor architects divide the
instruction execution into a large number of very simple steps so that each stage
can have a very small delay. The circuit designers carefully design the pipeline
registers to minimize their delay. The chip designers must also carefully design the

Comb.
logic

Comb.
logic

Comb.
logic

Comb.
logic

Comb.
logic

Comb.
logic

50 ps

R
e
g

50 ps20 ps 20 ps 20 ps 20 ps 20 ps 20 ps50 ps

R
e
g

50 ps

Delay = 420 ps, Throughput = 14.29 GIPSClock

R
e
g

50 ps

R
e
g

50 ps

R
e
g

R
e
g

Figure 4.37 Limitations of pipelining due to overhead. As the combinational logic is split into shorter
blocks, the delay due to register updating becomes a limiting factor.

398 Chapter 4 Processor Architecture

clock distribution network to ensure that the clock changes at the exact same time
across the entire chip. All of these factors contribute to the challenge of designing
high-speed microprocessors.

Practice Problem 4.27
Suppose we could take the system of Figure 4.32 and divide it into an arbitrary
number of pipeline stages k, each having a delay of 300/k, and with each pipeline
register having a delay of 20 ps.

A. What would be the latency and the throughput of the system, as functions
of k?

B. What would be the ultimate limit on the throughput?

4.4.4 Pipelining a System with Feedback

Up to this point, we have considered only systems in which the objects passing
through the pipeline—whether cars, people, or instructions—are completely in-
dependent of one another. For a system that executes machine programs such
as IA32 or Y86, however, there are potential dependencies between successive
instructions. For example, consider the following Y86 instruction sequence:

1 irmovl $50, %eax

2 addl %eax , %ebx

3 mrmovl 100(%ebx), %edx

1 irmovl $50,%eax

2 addl %eax,%ebx

3 mrmovl 100(%ebx),%edx

In this three-instruction sequence, there is a data dependency between each succes-
sive pair of instructions, as indicated by the circled register names and the arrows
between them. The irmovl instruction (line 1) stores its result in %eax, which then
must be read by the addl instruction (line 2); and this instruction stores its result
in %ebx, which must then be read by the mrmovl instruction (line 3).

Another source of sequential dependencies occurs due to the instruction
control flow. Consider the following Y86 instruction sequence:

1 loop:

2 subl %edx,%ebx

3 jne targ

4 irmovl $10,%edx

5 jmp loop

6 targ:

7 halt

Section 4.4 General Principles of Pipelining 399

Figure 4.38
Limitations of pipelining
due to logical depen-
dencies. In going from an
unpipelined system with
feedback (a) to a pipelined
one (c), we change its
computational behavior,
as can be seen by the two
pipeline diagrams
(b and d).

Time

Clock

Time

(a) Hardware: Unpipelined with feedback

(b) Pipeline diagram

(d) Pipeline diagram

(c) Hardware: Three-stage pipeline with feedback

Combinational
logic

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

R
e
g

I1

I2

I3

I1

I2

I3

A B C
A B C

A B C
I4 A B C

The jne instruction (line 3) creates a control dependency since the outcome
of the conditional test determines whether the next instruction to execute will be
the irmovl instruction (line 4) or the halt instruction (line 7). In our design for
SEQ, these dependencies were handled by the feedback paths shown on the right-
hand side of Figure 4.22. This feedback brings the updated register values down
to the register file and the new PC value down to the PC register.

Figure 4.38 illustrates the perils of introducing pipelining into a system con-
taining feedback paths. In the original system (Figure 4.38(a)), the result of each
instruction is fed back around to the next instruction. This is illustrated by the
pipeline diagram (Figure 4.38(b)), where the result of I1 becomes an input to

400 Chapter 4 Processor Architecture

I2, and so on. If we attempt to convert this to a three-stage pipeline in the most
straightforward manner (Figure 4.38(c)), we change the behavior of the system.
As Figure 4.38(c) shows, the result of I1 becomes an input to I4. In attempting to
speed up the system via pipelining, we have changed the system behavior.

When we introduce pipelining into a Y86 processor, we must deal with feed-
back effects properly. Clearly, it would be unacceptable to alter the system be-
havior as occurred in the example of Figure 4.38. Somehow we must deal with the
data and control dependencies between instructions so that the resulting behavior
matches the model defined by the ISA.

4.5 Pipelined Y86 Implementations

We are finally ready for the major task of this chapter—designing a pipelined Y86
processor. We start by making a small adaptation of the sequential processor SEQ
to shift the computation of the PC into the fetch stage. We then add pipeline
registers between the stages. Our first attempt at this does not handle the dif-
ferent data and control dependencies properly. By making some modifications,
however, we achieve our goal of an efficient pipelined processor that implements
the Y86 ISA.

4.5.1 SEQ+: Rearranging the Computation Stages

As a transitional step toward a pipelined design, we must slightly rearrange the
order of the five stages in SEQ so that the PC update stage comes at the beginning
of the clock cycle, rather than at the end. This transformation requires only
minimal change to the overall hardware structure, and it will work better with
the sequencing of activities within the pipeline stages. We refer to this modified
design as “SEQ+.”

We can move the PC update stage so that its logic is active at the beginning of
the clock cycle by making it compute the PC value for the current instruction.
Figure 4.39 shows how SEQ and SEQ+ differ in their PC computation. With
SEQ (Figure 4.39(a)), the PC computation takes place at the end of the clock
cycle, computing the new value for the PC register based on the values of signals

PC

New
PC

icode Cnd valC

(a) SEQ new PC computation (b) SEQ� PC selection

valM valP

PC

PC

plcode pValCpValMCnd pValP

Figure 4.39 Shifting the timing of the PC computation. With SEQ+, we compute
the value of the program counter for the current state as the first step in instruction
execution.

Section 4.5 Pipelined Y86 Implementations 401

computed during the current clock cycle. With SEQ+ (Figure 4.39(b)), we create
state registers to hold the signals computed during an instruction. Then, as a
new clock cycle begins, the values propagate through the exact same logic to
compute the PC for the now-current instruction. We label the registers “pIcode,”
“pCnd,” and so on, to indicate that on any given cycle, they hold the control signals
generated during the previous cycle.

Figure 4.40 shows a more detailed view of the SEQ+ hardware. We can see
that it contains the exact same hardware units and control blocks that we had in
SEQ (Figure 4.23), but with the PC logic shifted from the top, where it was active
at the end of the clock cycle, to the bottom, where it is active at the beginning.

Aside Where is the PC in SEQ+?

One curious feature of SEQ+ is that there is no hardware register storing the program counter. Instead,
the PC is computed dynamically based on some state information stored from the previous instruction.
This is a small illustration of the fact that we can implement a processor in a way that differs from the
conceptual model implied by the ISA, as long as the processor correctly executes arbitrary machine-
language programs. We need not encode the state in the form indicated by the programmer-visible state,
as long as the processor can generate correct values for any part of the programmer-visible state (such
as the program counter). We will exploit this principle even more in creating a pipelined design. Out-
of-order processing techniques, as described in Section 5.7, take this idea to an extreme by executing
instructions in a completely different order than they occur in the machine-level program.

The shift of state elements from SEQ to SEQ+ is an example of a general
transformation known as circuit retiming [65]. Retiming changes the state repre-
sentation for a system without changing its logical behavior. It is often used to
balance the delays between different stages of a system.

4.5.2 Inserting Pipeline Registers

In our first attempt at creating a pipelined Y86 processor, we insert pipeline
registers between the stages of SEQ+ and rearrange signals somewhat, yielding
the PIPE– processor, where the “–” in the name signifies that this processor has
somewhat less performance than our ultimate processor design. The structure of
PIPE– is illustrated in Figure 4.41. The pipeline registers are shown in this figure
as black boxes, each containing different fields that are shown as white boxes. As
indicated by the multiple fields, each pipeline register holds multiple bytes and
words. Unlike the labels shown in rounded boxes in the hardware structure of the
two sequential processors (Figures 4.23 and 4.40), these white boxes represent
actual hardware components.

Observe that PIPE– uses nearly the same set of hardware units as our sequen-
tial design SEQ (Figure 4.40), but with the pipeline registers separating the stages.
The differences between the signals in the two systems is discussed in Section 4.5.3.

402 Chapter 4 Processor Architecture

Memory

Execute

Decode

Fetch

PC

valM

data out

read

write

Data
memory

Addr Data

Mem.
control

Cnd valE

CC ALU
ALU
fun.

ALU
A

ALU
B

valA valB dstE dstM srcA srcB

dstE dstM srcA srcB

Register
file

Write back

A B

E

M

icode ifun rA rB valC valP

PC
increment

Instruction
memory

PC

PC

plcode pValCpValMpCnd pValP

stat

dmem_error

Stat

instr_valid

imem_error

Figure 4.40 SEQ+ hardware structure. Shifting the PC computation from the end of
the clock cycle to the beginning makes it more suitable for pipelining.

Section 4.5 Pipelined Y86 Implementations 403

Stat

stat

valA

stat

stat

Write
back

W icode valE valM dstE dstM

ALU
A

ALU
B

ALU
fun.

M icode Cnd valE valA dstE dstM

E icode ifun valC valA valB dstM srcA srcBdstE

D icodestat

stat

stat

ifun valC valPrBrA

F predPC

data out

data in

M_Cnd

e_Cnd

Memory

ALU

Execute

dstE dstM srcA srcBSelect
A

Predict
PC

Select
PC

d_srcA
d_rvalA

d_srcB

W_valM

M_valA

W_valE

M_valA
f_pc

f_stat

D_stat

E_stat

M_stat

m_stat

W_stat

imem_error
instr_valid

W_valM

CC

Decode

Fetch

read

dmem_error

write

Addr

Mem.
control

Register
file

A B

E

M

PC
increment

Instruction
memory

dstE

Data
memory

stat

Figure 4.41 Hardware structure of PIPE–, an initial pipelined implementation. By
inserting pipeline registers into SEQ+ (Figure 4.40), we create a five-stage pipeline. There
are several shortcomings of this version that we will deal with shortly.

404 Chapter 4 Processor Architecture

The pipeline registers are labeled as follows:

F holds a predicted value of the program counter, as will be discussed shortly.

D sits between the fetch and decode stages. It holds information about the most
recently fetched instruction for processing by the decode stage.

E sits between the decode and execute stages. It holds information about the
most recently decoded instruction and the values read from the register
file for processing by the execute stage.

M sits between the execute and memory stages. It holds the results of the
most recently executed instruction for processing by the memory stage.
It also holds information about branch conditions and branch targets for
processing conditional jumps.

W sits between the memory stage and the feedback paths that supply the
computed results to the register file for writing and the return address
to the PC selection logic when completing a ret instruction.

Figure 4.42 shows how the following code sequence would flow through our
five-stage pipeline, where the comments identify the instructions as I1 to I5 for
reference:

1 irmovl $1,%eax # I1

2 irmovl $2,%ebx # I2

3 irmovl $3,%ecx # I3

4 irmovl $4,%edx # I4

5 halt # I5

The right side of the figure shows a pipeline diagram for this instruction
sequence. As with the pipeline diagrams for the simple pipelined computation
units of Section 4.4, this diagram shows the progression of each instruction through
the pipeline stages, with time increasing from left to right. The numbers along the
top identify the clock cycles at which the different stages occur. For example, in
cycle 1, instruction I1 is fetched, and it then proceeds through the pipeline stages,
with its result being written to the register file after the end of cycle 5. Instruction
I2 is fetched in cycle 2, and its result is written back after the end of cycle 6, and
so on. At the bottom, we show an expanded view of the pipeline for cycle 5. At
this point, there is an instruction in each of the pipeline stages.

From Figure 4.42, we can also justify our convention of drawing processors
so that the instructions flow from bottom to top. The expanded view for cycle 5
shows the pipeline stages with the fetch stage on the bottom and the write-back
stage on the top, just as do our diagrams of the pipeline hardware (Figure 4.41).
If we look at the ordering of instructions in the pipeline stages, we see that they
appear in the same order as they do in the program listing. Since normal program
flow goes from top to bottom of a listing, we preserve this ordering by having the
pipeline flow go from bottom to top. This convention is particularly useful when
working with the simulators that accompany this text.

Section 4.5 Pipelined Y86 Implementations 405

irmovl $1,%eax #Il

irmovl $2,%ebx #I2

irmovl $3,%ecx #I3

irmovl $4,%edx #I4

halt #I5

F D E M W

1 2 3 4 5

F D E M W

6

F D E M W

7

F D E M W

8

F D E M W

9

Cycle 5

W

Il

M

I2

E

I3

D

I4

F

I5

Figure 4.42 Example of instruction flow through pipeline.

4.5.3 Rearranging and Relabeling Signals

Our sequential implementations SEQ and SEQ+ only process one instruction at
a time, and so there are unique values for signals such as valC, srcA, and valE. In
our pipelined design, there will be multiple versions of these values associated
with the different instructions flowing through the system. For example, in the
detailed structure of PIPE–, there are four white boxes labeled “stat” that hold
the status codes for four different instructions. (See Figure 4.41.) We need to take
great care to make sure we use the proper version of a signal, or else we could
have serious errors, such as storing the result computed for one instruction at the
destination register specified by another instruction. We adopt a naming scheme
where a signal stored in a pipeline register can be uniquely identified by prefixing
its name with that of the pipe register written in uppercase. For example, the four
status codes are named D_stat, E_stat, M_stat, and W_stat. We also need to refer
to some signals that have just been computed within a stage. These are labeled
by prefixing the signal name with the first character of the stage name, written
in lowercase. Using the status codes as examples, we can see control logic blocks
labeled “stat” in the fetch and memory stages. The outputs of these blocks are
therefore named f_stat and m_stat. We can also see that the actual status of the
overall processor Stat is computed by a block in the write-back stage, based on
the status value in pipeline register W.

406 Chapter 4 Processor Architecture

Aside What is the difference between signals M_stat and m_stat?

With our naming system, the uppercase prefixes “D,” “E,” “M,” and “W” refer to pipeline registers,
and so M_stat refers to the status code field of pipeline register M. The lowercase prefixes “f,” “d,”
“e,” “m,” and “w” refer to the pipeline stages, and so m_stat refers to the status signal generated in the
memory stage by a control logic block.

Understanding this naming convention is critical to understanding the operation of our pipelined
processors.

The decode stages of SEQ+ and PIPE– both generate signals dstE and dstM
indicating the destination register for values valE and valM. In SEQ+, we could
connect these signals directly to the address inputs of the register file write ports.
With PIPE–, these signals are carried along in the pipeline through the execute and
memory stages, and are directed to the register file only once they reach the write-
back stage (shown in the more detailed views of the stages). We do this to make
sure the write port address and data inputs hold values from the same instruction.
Otherwise, the write back would be writing the values for the instruction in the
write-back stage, but with register IDs from the instruction in the decode stage.
As a general principle, we want to keep all of the information about a particular
instruction contained within a single pipeline stage.

One block of PIPE– that is not present in SEQ+ in the exact same form is the
block labeled “Select A” in the decode stage. We can see that this block generates
the value valA for the pipeline register E by choosing either valP from pipeline
register D or the value read from the A port of the register file. This block is
included to reduce the amount of state that must be carried forward to pipeline
registers E and M. Of all the different instructions, only the call requires valP
in the memory stage. Only the jump instructions require the value of valP in the
execute stage (in the event the jump is not taken). None of these instructions
requires a value read from the register file. Therefore, we can reduce the amount
of pipeline register state by merging these two signals and carrying them through
the pipeline as a single signal valA. This eliminates the need for the block labeled
“Data” in SEQ (Figure 4.23) and SEQ+ (Figure 4.40), which served a similar
purpose. In hardware design, it is common to carefully identify how signals get
used and then reduce the amount of register state and wiring by merging signals
such as these.

As shown in Figure 4.41, our pipeline registers include a field for the status
code Stat, initially computed during the fetch stage and possibly modified during
the memory stage. We will discuss how to implement the processing of exceptional
events in Section 4.5.9, after we have covered the implementation of normal in-
struction execution. Suffice it to say at this point that the most systematic approach
is to associate a status code with each instruction as it passes through the pipeline,
as we have indicated in the figure.

4.5.4 Next PC Prediction

We have taken some measures in the design of PIPE– to properly handle control
dependencies. Our goal in the pipelined design is to issue a new instruction on

Section 4.5 Pipelined Y86 Implementations 407

every clock cycle, meaning that on each clock cycle, a new instruction proceeds
into the execute stage and will ultimately be completed. Achieving this goal would
yield a throughput of one instruction per cycle. To do this, we must determine
the location of the next instruction right after fetching the current instruction.
Unfortunately, if the fetched instruction is a conditional branch, we will not
know whether or not the branch should be taken until several cycles later, after
the instruction has passed through the execute stage. Similarly, if the fetched
instruction is a ret, we cannot determine the return location until the instruction
has passed through the memory stage.

With the exception of conditional jump instructions and ret, we can deter-
mine the address of the next instruction based on information computed during
the fetch stage. For call and jmp (unconditional jump), it will be valC, the con-
stant word in the instruction, while for all others it will be valP, the address of the
next instruction. We can therefore achieve our goal of issuing a new instruction
every clock cycle in most cases by predicting the next value of the PC. For most in-
struction types, our prediction will be completely reliable. For conditional jumps,
we can predict either that a jump will be taken, so that the new PC value would be
valC, or we can predict that it will not be taken, so that the new PC value would
be valP. In either case, we must somehow deal with the case where our prediction
was incorrect and therefore we have fetched and partially executed the wrong
instructions. We will return to this matter in Section 4.5.11.

This technique of guessing the branch direction and then initiating the fetching
of instructions according to our guess is known as branch prediction. It is used in
some form by virtually all processors. Extensive experiments have been conducted
on effective strategies for predicting whether or not branches will be taken [49,
Section 2.3]. Some systems devote large amounts of hardware to this task. In our
design, we will use the simple strategy of predicting that conditional branches are
always taken, and so we predict the new value of the PC to be valC.

Aside Other branch prediction strategies

Our design uses an always taken branch prediction strategy. Studies show this strategy has around a
60% success rate [47, 120]. Conversely, a never taken (NT) strategy has around a 40% success rate. A
slightly more sophisticated strategy, known as backward taken, forward not-taken (BTFNT), predicts
that branches to lower addresses than the next instruction will be taken, while those to higher addresses
will not be taken. This strategy has a success rate of around 65%. This improvement stems from the fact
that loops are closed by backward branches, and loops are generally executed multiple times. Forward
branches are used for conditional operations, and these are less likely to be taken. In Problems 4.54 and
4.55, you can modify the Y86 pipeline processor to implement the NT and BTFNT branch prediction
strategies.

As we saw in Section 3.6.6, mispredicted branches can degrade the performance of a program
considerably, thus motivating the use of conditional data transfer rather than conditional control
transfer when possible.

We are still left with predicting the new PC value resulting from a ret in-
struction. Unlike conditional jumps, we have a nearly unbounded set of possible

408 Chapter 4 Processor Architecture

results, since the return address will be whatever word is on the top of the stack.
In our design, we will not attempt to predict any value for the return address.
Instead, we will simply hold off processing any more instructions until the ret
instruction passes through the write-back stage. We will return to this part of the
implementation in Section 4.5.11.

Aside Return address prediction with a stack

With most programs, it is very easy to predict return addresses, since procedure calls and returns occur
in matched pairs. Most of the time that a procedure is called, it returns to the instruction following the
call. This property is exploited in high-performance processors by including a hardware stack within
the instruction fetch unit that holds the return address generated by procedure call instructions. Every
time a procedure call instruction is executed, its return address is pushed onto the stack. When a return
instruction is fetched, the top value is popped from this stack and used as the predicted return address.
Like branch prediction, a mechanism must be provided to recover when the prediction was incorrect,
since there are times when calls and returns do not match. In general, the prediction is highly reliable.
This hardware stack is not part of the programmer-visible state.

The PIPE– fetch stage, diagrammed at the bottom of Figure 4.41, is responsi-
ble for both predicting the next value of the PC and for selecting the actual PC for
the instruction fetch. We can see the block labeled “Predict PC” can choose either
valP, as computed by the PC incrementer or valC, from the fetched instruction.
This value is stored in pipeline register F as the predicted value of the program
counter. The block labeled “Select PC” is similar to the block labeled “PC” in the
SEQ+ PC selection stage (Figure 4.40). It chooses one of three values to serve as
the address for the instruction memory: the predicted PC, the value of valP for
a not-taken branch instruction that reaches pipeline register M (stored in regis-
ter M_valA), or the value of the return address when a ret instruction reaches
pipeline register W (stored in W_valM).

We will return to the handling of jump and return instructions when we
complete the pipeline control logic in Section 4.5.11.

4.5.5 Pipeline Hazards

Our structure PIPE– is a good start at creating a pipelined Y86 processor. Recall
from our discussion in Section 4.4.4, however, that introducing pipelining into a
system with feedback can lead to problems when there are dependencies between
successive instructions. We must resolve this issue before we can complete our
design. These dependencies can take two forms: (1) data dependencies, where the
results computed by one instruction are used as the data for a following instruction,
and (2) control dependencies, where one instruction determines the location of
the following instruction, such as when executing a jump, call, or return. When
such dependencies have the potential to cause an erroneous computation by the
pipeline, they are called hazards. Like dependencies, hazards can be classified
as either data hazards or control hazards. In this section, we concern ourselves

Section 4.5 Pipelined Y86 Implementations 409

F0x000: irmovl $10,%edx

progl# progl

0x006: irmovl $3,%eax

0x00c: nop

0x00d: nop

0x00e: nop

0x00f: addl %edx,%eax

0x011: halt

D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

Cycle 6

Cycle 7

1 2 3 4 5 6 7 8 9 10 11

W

D

R[%eax] 3

valA R[%edx] � 10
valB R[%eax] � 3

Figure 4.43 Pipelined execution of prog1without special pipeline control. In cycle 6, the second irmovl
writes its result to program register %eax. The addl instruction reads its source operands in cycle 7, so it gets
correct values for both %edx and %eax.

with data hazards. Control hazards will be discussed as part of the overall pipeline
control (Section 4.5.11).

Figure 4.43 illustrates the processing of a sequence of instructions we refer to
as prog1 by the PIPE– processor. Let us assume in this example and successive
ones that the program registers initially all have value 0. The code loads values
10 and 3 into program registers %edx and %eax, executes three nop instructions,
and then adds register %edx to %eax. We focus our attention on the potential data
hazards resulting from the data dependencies between the twoirmovl instructions
and the addl instruction. On the right-hand side of the figure, we show a pipeline
diagram for the instruction sequence. The pipeline stages for cycles 6 and 7 are
shown highlighted in the pipeline diagram. Below this, we show an expanded view
of the write-back activity in cycle 6 and the decode activity during cycle 7. After
the start of cycle 7, both of the irmovl instructions have passed through the write-
back stage, and so the register file holds the updated values of %edx and %eax.
As the addl instruction passes through the decode stage during cycle 7, it will
therefore read the correct values for its source operands. The data dependencies
between the two irmovl instructions and the addl instruction have not created
data hazards in this example.

410 Chapter 4 Processor Architecture

D

valA R[%edx] � 10
valB R[%eax] � 0

F0x000: irmovl $10,%edx

prog2# prog2

0x006: irmovl $3,%eax

0x00c: nop

0x00d: nop

0x00e: addl %edx,%eax

0x010: halt

D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

Cycle 6

1 2 3 4 5 6 7 8 9 10

W

R[%eax] 3

Error

. . .

Figure 4.44 Pipelined execution of prog2 without special pipeline control. The
write to program register %eax does not occur until the start of cycle 7, and so the addl
instruction gets the incorrect value for this register in the decode stage.

We saw that prog1 will flow through our pipeline and get the correct results,
because the three nop instructions create a delay between instructions with data
dependencies. Let us see what happens as these nop instructions are removed.
Figure 4.44 illustrates the pipeline flow of a program, named prog2, containing
two nop instructions between the two irmovl instructions generating values for
registers %edx and %eax, and the addl instruction having these two registers as
operands. In this case, the crucial step occurs in cycle 6, when the addl instruc-
tion reads its operands from the register file. An expanded view of the pipeline
activities during this cycle is shown at the bottom of the figure. The first irmovl
instruction has passed through the write-back stage, and so program register %edx
has been updated in the register file. The second irmovl instruction is in the write-
back stage during this cycle, and so the write to program register %eax only occurs
at the start of cycle 7 as the clock rises. As a result, the incorrect value zero would
be read for register %eax (recall that we assume all registers are initially 0), since
the pending write for this register has not yet occurred. Clearly we will have to
adapt our pipeline to handle this hazard properly.

Figure 4.45 shows what happens when we have only one nop instruction
between the irmovl instructions and the addl instruction, yielding a program

Section 4.5 Pipelined Y86 Implementations 411

M

M_valE � 3
M_dstE � %eax

D

valA R[%edx] � 0
valB R[%eax] � 0

F0x000: irmovl $10,%edx

prog3# prog3

0x006: irmovl $3,%eax

0x00c: nop

0x00d: addl %edx,%eax

0x00f: halt

D E M W

F D E M W

F D E M W

F D E M W

F D E M W

Cycle 5

1 2 3 4 5 6 7 8 9

W

R[%edx] 10

Error

. . .

Figure 4.45 Pipelined execution of prog3without special pipeline control. In cycle 5,
the addl instruction reads its source operands from the register file. The pending write
to register %edx is still in the write-back stage, and the pending write to register %eax is
still in the memory stage. Both operands valA and valB get incorrect values.

prog3. Now we must examine the behavior of the pipeline during cycle 5 as the
addl instruction passes through the decode stage. Unfortunately, the pending
write to register %edx is still in the write-back stage, and the pending write to
%eax is still in the memory stage. Therefore, the addl instruction would get the
incorrect values for both operands.

Figure 4.46 shows what happens when we remove all of the nop instructions
between the irmovl instructions and the addl instruction, yielding a program
prog4. Now we must examine the behavior of the pipeline during cycle 4 as the
addl instruction passes through the decode stage. Unfortunately, the pending
write to register %edx is still in the memory stage, and the new value for %eax
is just being computed in the execute stage. Therefore, the addl instruction would
get the incorrect values for both operands.

These examples illustrate that a data hazard can arise for an instruction
when one of its operands is updated by any of the three preceding instructions.
These hazards occur because our pipelined processor reads the operands for an

412 Chapter 4 Processor Architecture

e_valE 0 � 3 � 3
E_dstE � %eax

M_valE � 10
M_dstE � %edx

D

valA R[%edx] � 0
valB R[%eax] � 0

F0x000: irmovl $10,%edx

prog4# prog4

0x006: irmovl $3,%eax

0x00c: addl %edx,%eax

0x00e: halt

D E M W

F D E M W

F D E M W

F D E M W

Cycle 4

1 2 3 4 5 6 7 8

M

E

Error

Figure 4.46 Pipelined execution of prog4without special pipeline control. In cycle 4,
the addl instruction reads its source operands from the register file. The pending write
to register %edx is still in the memory stage, and the new value for register %eax is just
being computed in the execute stage. Both operands valA and valB get incorrect values.

instruction from the register file in the decode stage but does not write the results
for the instruction to the register file until three cycles later, after the instruction
passes through the write-back stage.

Aside Enumerating classes of data hazards

Hazards can potentially occur when one instruction updates part of the program state that will be read
by a later instruction. For Y86, the program state includes the program registers, the program counter,
the memory, the condition code register, and the status register. Let us look at the hazard possibilities
in our proposed design for each of these forms of state.

Program registers: These are the hazards we have already identified. They arise because the register
file is read in one stage and written in another, leading to possible unintended interactions
between different instructions.

Program counter: Conflicts between updating and reading the program counter give rise to control
hazards. No hazard arises when our fetch-stage logic correctly predicts the new value of
the program counter before fetching the next instruction. Mispredicted branches and ret
instructions require special handling, as will be discussed in Section 4.5.11.

Section 4.5 Pipelined Y86 Implementations 413

Memory: Writes and reads of the data memory both occur in the memory stage. By the time an
instruction reading memory reaches this stage, any preceding instructions writing memory
will have already done so. On the other hand, there can be interference between instructions
writing data in the memory stage and the reading of instructions in the fetch stage, since the
instruction and data memories reference a single address space. This can only happen with
programs containing self-modifying code, where instructions write to a portion of memory
from which instructions are later fetched. Some systems have complex mechanisms to detect
and avoid such hazards, while others simply mandate that programs should not use self-
modifying code. We will assume for simplicity that programs do not modify themselves, and
therefore we do not need to take special measures to update the instruction memory based
on updates to the data memory during program execution.

Condition code register: These are written by integer operations in the execute stage. They are read
by conditional moves in the execute stage and by conditional jumps in the memory stage. By
the time a conditional move or jump reaches the execute stage, any preceding integer operation
will have already completed this stage. No hazards can arise.

Status register: The program status can be affected by instructions as they flow through the pipeline.
Our mechanism of associating a status code with each instruction in the pipeline enables
the processor to come to an orderly halt when an exception occurs, as will be discussed in
Section 4.5.9.

This analysis shows that we only need to deal with register data hazards, control hazards, and
making sure exceptions are handled properly. A systematic analysis of this form is important when
designing a complex system. It can identify the potential difficulties in implementing the system, and it
can guide the generation of test programs to be used in checking the correctness of the system.

4.5.6 Avoiding Data Hazards by Stalling

One very general technique for avoiding hazards involves stalling, where the
processor holds back one or more instructions in the pipeline until the hazard
condition no longer holds. Our processor can avoid data hazards by holding back
an instruction in the decode stage until the instructions generating its source
operands have passed through the write-back stage. The details of this mechanism
will be discussed in Section 4.5.11. It involves simple enhancements to the pipeline
control logic. The effect of stalling is diagrammed in Figures 4.47 (prog2) and 4.48
(prog4). (We omit prog3 from this discussion, since it operates similarly to the
other two examples.) When the addl instruction is in the decode stage, the pipeline
control logic detects that at least one of the instructions in the execute, memory,
or write-back stage will update either register %edx or register %eax. Rather than
letting theaddl instruction pass through the stage with the incorrect results, it stalls
the instruction, holding it back in the decode stage for either one (for prog2) or
three (for prog4) extra cycles. For all three programs, the addl instruction finally
gets correct values for its two source operands in cycle 7 and then proceeds down
the pipeline.

414 Chapter 4 Processor Architecture

F0x000: irmovl $10,%edx

prog2# prog2

0x006: irmovl $3,%eax

0x00c: nop

0x00d: nop

 bubblebubble

0x00e: addl %edx,%eax

0x010: halt

D E M W

F D E M W

F D E M W

F D E M W

E M W

F D D E WM

F F D E WM

1 2 3 4 5 6 7 8 9 10 11

Figure 4.47 Pipelined execution of prog2 using stalls. After decoding the addl instruction in cycle 6,
the stall control logic detects a data hazard due to the pending write to register %eax in the write-back
stage. It injects a bubble into execute stage and repeats the decoding of the addl instruction in cycle 7. In
effect, the machine has dynamically inserted a nop instruction, giving a flow similar to that shown for prog1
(Figure 4.43).

F0x000: irmovl $10,%edx

prog4# prog4

0x006: irmovl $3,%eax

bubblebubble

bubblebubble

bubblebubble

0x00c: addl %edx,%eax

0x00e: halt

D E M W

F D E M W

E M W

E M W

E M W

DDF

FF

D D E WM

F F D E WM

1 2 3 4 5 6 7 8 9 10 11

Figure 4.48 Pipelined execution of prog4 using stalls. After decoding the addl instruction in cycle 4, the
stall control logic detects data hazards for both source registers. It injects a bubble into the execute stage and
repeats the decoding of the addl instruction on cycle 5. It again detects hazards for both source registers,
injects a bubble into the execute stage, and repeats the decoding of the addl instruction on cycle 6. Still, it
detects a hazard for source register %eax, injects a bubble into the execute stage, and repeats the decoding
of the addl instruction on cycle 7. In effect, the machine has dynamically inserted three nop instructions,
giving a flow similar to that shown for prog1 (Figure 4.43).

In holding back the addl instruction in the decode stage, we must also hold
back the halt instruction following it in the fetch stage. We can do this by keeping
the program counter at a fixed value, so that the halt instruction will be fetched
repeatedly until the stall has completed.

Stalling involves holding back one group of instructions in their stages while
allowing other instructions to continue flowing through the pipeline. What then
should we do in the stages that would normally be processing the addl instruction?
We handle these by injecting a bubble into the execute stage each time we hold
an instruction back in the decode stage. A bubble is like a dynamically generated
nop instruction—it does not cause any changes to the registers, the memory, the
condition codes, or the program status. These are shown as white boxes in the
pipeline diagrams of Figures 4.47 and 4.48. In these figures, the arrow between
the box labeled “D” for the addl instruction and the box labeled “E” for one of

Section 4.5 Pipelined Y86 Implementations 415

the pipeline bubbles indicates that a bubble was injected into the execute stage in
place of the addl instruction that would normally have passed from the decode to
the execute stage. We will look at the detailed mechanisms for making the pipeline
stall and for injecting bubbles in Section 4.5.11.

In using stalling to handle data hazards, we effectively execute programs
prog2 and prog4 by dynamically generating the pipeline flow seen for prog1 (Fig-
ure 4.43). Injecting one bubble for prog2 and three for prog4has the same effect as
having three nop instructions between the second irmovl instruction and the addl
instruction. This mechanism can be implemented fairly easily (see Problem 4.51),
but the resulting performance is not very good. There are numerous cases in which
one instruction updates a register and a closely following instruction uses the same
register. This will cause the pipeline to stall for up to three cycles, reducing the
overall throughput significantly.

4.5.7 Avoiding Data Hazards by Forwarding

Our design for PIPE– reads source operands from the register file in the decode
stage, but there can also be a pending write to one of these source registers in
the write-back stage. Rather than stalling until the write has completed, it can
simply pass the value that is about to be written to pipeline register E as the
source operand. Figure 4.49 shows this strategy with an expanded view of the

. . .

0x000: irmovl $10,%edx

prog2# prog2

0x006: irmovl $3,%eax

0x00c: nop

0x00d: nop

0x00e: addl %edx,%eax

0x010: halt

srcA � %edx
srcB � %eax

W_dstE � %eax
W_valE � 3

D

valA R[%edx] � 10
valB W_valE � 3

M

Cycle 6

R[%eax] 3

F

1 2 3 4 5 6 7 8 9 10

F D E M W

F D E M W

F D E M W

D E M W

F D E M W

F D E M W

Figure 4.49 Pipelined execution of prog2 using forwarding. In cycle 6, the decode-
stage logic detects the presence of a pending write to register %eax in the write-back
stage. It uses this value for source operand valB rather than the value read from the
register file.

416 Chapter 4 Processor Architecture

. . .

F0x000: irmovl $10,%edx

prog3# prog3

0x006: irmovl $3,%eax

0x00c: nop

0x00d: addl %edx,%eax

0x00f: halt

D E M W

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5 6 7 8 9

srcA � %edx
srcB � %eax

W_dstE � %edx
W_valE � 10

valA W_valE � 10
valB M_valE � 3

Cycle 5

R[%edx] 10

D

W

M_dstE � %eax
M_valE � 3

M

Figure 4.50 Pipelined execution of prog3 using forwarding. In cycle 5, the decode-
stage logic detects a pending write to register %edx in the write-back stage and to register
%eax in the memory stage. It uses these as the values for valA and valB rather than the
values read from the register file.

pipeline diagram for cycle 6 of prog2. The decode-stage logic detects that register
%eax is the source register for operand valB, and that there is also a pending
write to %eax on write port E. It can therefore avoid stalling by simply using the
data word supplied to port E (signal W_valE) as the value for operand valB. This
technique of passing a result value directly from one pipeline stage to an earlier
one is commonly known as data forwarding (or simply forwarding, and sometimes
bypassing). It allows the instructions of prog2 to proceed through the pipeline
without any stalling. Data forwarding requires adding additional data connections
and control logic to the basic hardware structure.

As Figure 4.50 illustrates, data forwarding can also be used when there is
a pending write to a register in the memory stage, avoiding the need to stall
for program prog3. In cycle 5, the decode-stage logic detects a pending write to
register %edxon port E in the write-back stage, as well as a pending write to register
%eax that is on its way to port E but is still in the memory stage. Rather than stalling
until the writes have occurred, it can use the value in the write-back stage (signal
W_valE) for operand valA and the value in the memory stage (signal M_valE) for
operand valB.

Section 4.5 Pipelined Y86 Implementations 417

F0x000: irmovl $10,%edx

prog4# prog4

0x006: irmovl $3,%eax

0x00c: addl %edx,%eax

0x00e: halt

D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5 6 7 8

srcA � %edx
srcB � %eax

M_dstE � %edx
M_valE � 10

valA M_valE � 10
valB e_valE � 3

Cycle 4

D

M

E_dstE � %eax
e_valE 0 � 3 � 3

E

Figure 4.51 Pipelined execution of prog4 using forwarding. In cycle 4, the decode-
stage logic detects a pending write to register %edx in the memory stage. It also detects
that a new value is being computed for register %eax in the execute stage. It uses these
as the values for valA and valB rather than the values read from the register file.

To exploit data forwarding to its full extent, we can also pass newly computed
values from the execute stage to the decode stage, avoiding the need to stall for
program prog4, as illustrated in Figure 4.51. In cycle 4, the decode-stage logic
detects a pending write to register %edx in the memory stage, and also that the
value being computed by the ALU in the execute stage will later be written to
register %eax. It can use the value in the memory stage (signal M_valE) for operand
valA. It can also use the ALU output (signal e_valE) for operand valB. Note that
using the ALU output does not introduce any timing problems. The decode stage
only needs to generate signals valA and valB by the end of the clock cycle so that
pipeline register E can be loaded with the results from the decode stage as the
clock rises to start the next cycle. The ALU output will be valid before this point.

The uses of forwarding illustrated in programs prog2 to prog4 all involve
the forwarding of values generated by the ALU and destined for write port E.
Forwarding can also be used with values read from the memory and destined for
write port M. From the memory stage, we can forward the value that has just been
read from the data memory (signal m_valM). From the write-back stage, we can
forward the pending write to port M (signal W_valM). This gives a total of five
different forwarding sources (e_valE, m_valM, M_valE, W_valM, and W_valE) and
two different forwarding destinations (valA and valB).

418 Chapter 4 Processor Architecture

The expanded diagrams of Figures 4.49 to 4.51 also show how the decode-
stage logic can determine whether to use a value from the register file or to use
a forwarded value. Associated with every value that will be written back to the
register file is the destination register ID. The logic can compare these IDs with
the source register IDs srcA and srcB to detect a case for forwarding. It is possible
to have multiple destination register IDs match one of the source IDs. We must
establish a priority among the different forwarding sources to handle such cases.
This will be discussed when we look at the detailed design of the forwarding logic.

Figure 4.52 shows the structure of PIPE, an extension of PIPE– that can
handle data hazards by forwarding. Comparing this to the structure of PIPE–
(Figure 4.41), we can see that the values from the five forwarding sources are fed
back to the two blocks labeled “Sel+Fwd A” and “Fwd B” in the decode stage.
The block labeled “Sel+Fwd A” combines the role of the block labeled “Select A”
in PIPE– with the forwarding logic. It allows valA for pipeline register E to be
either the incremented program counter valP, the value read from the A port
of the register file, or one of the forwarded values. The block labeled “Fwd B”
implements the forwarding logic for source operand valB.

4.5.8 Load/Use Data Hazards

One class of data hazards cannot be handled purely by forwarding, because mem-
ory reads occur late in the pipeline. Figure 4.53 illustrates an example of a load/use
hazard, where one instruction (the mrmovl at address 0x018) reads a value from
memory for register %eax while the next instruction (the addl at address 0x01e)
needs this value as a source operand. Expanded views of cycles 7 and 8 are shown
in the lower part of the figure, where we assume all program registers initially have
value 0. The addl instruction requires the value of the register in cycle 7, but it is
not generated by the mrmovl instruction until cycle 8. In order to “forward” from
the mrmovl to the addl, the forwarding logic would have to make the value go
backward in time! Since this is clearly impossible, we must find some other mech-
anism for handling this form of data hazard. (The data hazard for register %ebx,
with the value being generated by the irmovl instruction at address 0x012 and
used by the addl instruction at address 0x01e, can be handled by forwarding.)

As Figure 4.54 demonstrates, we can avoid a load/use data hazard with a
combination of stalling and forwarding. This requires modifications of the con-
trol logic, but it can use existing bypass paths. As the mrmovl instruction passes
through the execute stage, the pipeline control logic detects that the instruction
in the decode stage (the addl) requires the result read from memory. It stalls the
instruction in the decode stage for one cycle, causing a bubble to be injected into
the execute stage. As the expanded view of cycle 8 shows, the value read from
memory can then be forwarded from the memory stage to the addl instruction
in the decode stage. The value for register %ebx is also forwarded from the write-
back to the memory stage. As indicated in the pipeline diagram by the arrow from
the box labeled “D” in cycle 7 to the box labeled “E” in cycle 8, the injected bub-
ble replaces the addl instruction that would normally continue flowing through
the pipeline.

Section 4.5 Pipelined Y86 Implementations 419

valA

Fwd
B

W icode valE valM dstE dstM

ALU
A

ALU
B

ALU
fun.

M icode Cnd valE valA dstE dstM

E icode ifun valC valA valB dstM srcA srcBdstE

D icode ifun valC valPrBrA

F predPC

data out

data in

M_Cnd

dmem_error
m_stat

M_valE

m_valM

e_Cnd

Memory

ALU

Execute

dstE

dstE

dstM srcA srcB

Sel+Fwd
A

Predict
PC

Select
PC

d_srcA d_srcB

W_valM

e_dstE

M_valA

W_valM

W_valE

W_valE

M_valA

W_valM

CC

Decode

Fetch

read

write

Data
memory

Addr

Mem.
control

Register
file

A B

E

M

PC
increment

Instruction
memory

f_pc

stat

stat

imem_error
instr_valid

Stat

stat

stat

Write
back

stat

stat

stat

Figure 4.52 Hardware structure of PIPE, our final pipelined implementation. The additional bypassing
paths enable forwarding the results from the three preceding instructions. This allows us to handle most forms
of data hazards without stalling the pipeline.

420 Chapter 4 Processor Architecture

M_dstE � %ebx
M_valE � 10

M

M_dstM � %eax
m_valM M[128] � 3

M

F0x000: irmovl $128,%edx

prog5# prog5

0x006: irmovl $3,%ecx

0x00c: rmmovl %ecx, 0(%edx)

0x012: irmovl $10,%ebx

0x018: mrmovl 0(%edx),%eax # Load %eax

0x01e: addl %ebx,%eax # Use %eax

0x020: halt

D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

1 2 3 4 5 6 7 8 9 10 11

D

valA M_valE � 10
valB R[%eax] � 0

Cycle 7 Cycle 8

Error

. . .

Figure 4.53 Example of load/use data hazard. The addl instruction requires the value of register %eax
during the decode stage in cycle 7. The preceding mrmovl reads a new value for this register during the
memory stage in cycle 8, which is too late for the addl instruction.

This use of a stall to handle a load/use hazard is called a load interlock. Load
interlocks combined with forwarding suffice to handle all possible forms of data
hazards. Since only load interlocks reduce the pipeline throughput, we can nearly
achieve our throughput goal of issuing one new instruction on every clock cycle.

4.5.9 Exception Handling

As we will discuss in Chapter 8, a variety of activities in a processor can lead
to exceptional control flow, where the normal chain of program execution gets
broken. Exceptions can be generated either internally, by the executing program,
or externally, by some outside signal. Our instruction set architecture includes
three different internally generated exceptions, caused by (1) a halt instruction,
(2) an instruction with an invalid combination of instruction and function code,
and (3) an attempt to access an invalid address, either for instruction fetch or
data read or write. A more complete processor design would also handle external
exceptions, such as when the processor receives a signal that the network interface
has received a new packet, or the user has clicked a mouse button. Handling
exceptions correctly is a challenging aspect of any microprocessor design. They can

Section 4.5 Pipelined Y86 Implementations 421

W_dstE � %ebx
W_valE � 10

W

M_dstM � %eax
m_valM M[128] � 3

M

F0x000: irmovl $128,%edx

0x006: irmovl $3,%ecx

0x00c: rmmovl %ecx, 0(%edx)

0x012: irmovl $10,%ebx

0x018: mrmovl 0(%edx),%eax # Load %eax

0x01e: addl %ebx,%eax # Use %eax

0x020: halt

prog5# prog5

D E M W

F D E M W

F D E M W

F D E M W

F D E M W

E M W

DF D E M W

FF D E M W

1 2 3 4 5 6 7 8 9 10 11 12

D

valA W_valE � 10
valB m_valM � 3

Cycle 8

. . .

bubblebubble

Figure 4.54 Handling a load/use hazard by stalling. By stalling the addl instruction for one cycle in the
decode stage, the value for valB can be forwarded from the mrmovl instruction in the memory stage to the
addl instruction in the decode stage.

occur at unpredictable times, and they require creating a clean break in the flow
of instructions through the processor pipeline. Our handling of the three internal
exceptions gives just a glimpse of the true complexity of correctly detecting and
handling exceptions.

Let us refer to the instruction causing the exception as the excepting instruc-
tion. In the case of an invalid instruction address, there is no actual excepting
instruction, but it is useful to think of there being a sort of “virtual instruction”
at the invalid address. In our simplified ISA model, we want the processor to halt
when it reaches an exception and to set the appropriate status code, as listed in Fig-
ure 4.5. It should appear that all instructions up to the excepting instruction have
completed, but none of the following instructions should have any effect on the
programmer-visible state. In a more complete design, the processor would con-
tinue by invoking an exception handler, a procedure that is part of the operating

422 Chapter 4 Processor Architecture

system, but implementing this part of exception handling is beyond the scope of
our presentation.

In a pipelined system, exception handling involves several subtleties. First, it is
possible to have exceptions triggered by multiple instructions simultaneously. For
example, during one cycle of pipeline operation, we could have a halt instruction
in the fetch stage, and the data memory could report an out-of-bounds data
address for the instruction in the memory stage. We must determine which of these
exceptions the processor should report to the operating system. The basic rule is to
put priority on the exception triggered by the instruction that is furthest along the
pipeline. In the example above, this would be the out-of-bounds address attempted
by the instruction in the memory stage. In terms of the machine-language program,
the instruction in the memory stage should appear to execute before one in the
fetch stage, and therefore only this exception should be reported to the operating
system.

A second subtlety occurs when an instruction is first fetched and begins
execution, causes an exception, and later is canceled due to a mispredicted branch.
The following is an example of such a program in its object code form:

0x000: 6300 | xorl %eax,%eax

0x002: 740e000000 | jne Target # Not taken

0x007: 30f001000000 | irmovl $1, %eax # Fall through

0x00d: 00 | halt

0x00e: | Target:

0x00e: ff | .byte 0xFF # Invalid instruction code

In this program, the pipeline will predict that the branch should be taken,
and so it will fetch and attempt to use a byte with value 0xFF as an instruction
(generated in the assembly code using the .byte directive). The decode stage will
therefore detect an invalid instruction exception. Later, the pipeline will discover
that the branch should not be taken, and so the instruction at address 0x00e
should never even have been fetched. The pipeline control logic will cancel this
instruction, but we want to avoid raising an exception.

A third subtlety arises because a pipelined processor updates different parts
of the system state in different stages. It is possible for an instruction following
one causing an exception to alter some part of the state before the excepting
instruction completes. For example, consider the following code sequence, in
which we assume that user programs are not allowed to access addresses greater
than 0xc0000000 (as is the case for 32-bit versions of Linux):

1 irmovl $1,%eax

2 xorl %esp,%esp # Set stack pointer to 0 and CC to 100

3 pushl %eax # Attempt to write to 0xfffffffc

4 addl %eax,%eax # (Should not be executed) Would set CC to 000

The pushl instruction causes an address exception, because decrementing the
stack pointer causes it to wrap around to 0xfffffffc. This exception is detected in
the memory stage. On the same cycle, the addl instruction is in the execute stage,

Section 4.5 Pipelined Y86 Implementations 423

and it will cause the condition codes to be set to new values. This would violate
our requirement that none of the instructions following the excepting instruction
should have had any effect on the system state.

In general, we can both correctly choose among the different exceptions and
avoid raising exceptions for instructions that are fetched due to mispredicted
branches by merging the exception-handling logic into the pipeline structure. That
is the motivation for us to include a status code Stat in each of our pipeline registers
(Figures 4.41 and 4.52). If an instruction generates an exception at some stage in
its processing, the status field is set to indicate the nature of the exception. The
exception status propagates through the pipeline with the rest of the information
for that instruction, until it reaches the write-back stage. At this point, the pipeline
control logic detects the occurrence of the exception and stops execution.

To avoid having any updating of the programmer-visible state by instructions
beyond the excepting instruction, the pipeline control logic must disable any
updating of the condition code register or the data memory when an instruction in
the memory or write-back stages has caused an exception. In the example program
above, the control logic would detect that the pushl in the memory stage has
caused an exception, and therefore the updating of the condition code register by
the addl instruction would be disabled.

Let us consider how this method of handling exceptions deals with the sub-
tleties we have mentioned. When an exception occurs in one or more stages of a
pipeline, the information is simply stored in the status fields of the pipeline reg-
isters. The event has no effect on the flow of instructions in the pipeline until an
excepting instruction reaches the final pipeline stage, except to disable any updat-
ing of the programmer-visible state (the condition code register and the memory)
by later instructions in the pipeline. Since instructions reach the write-back stage
in the same order as they would be executed in a nonpipelined processor, we are
guaranteed that the first instruction encountering an exception will arrive first in
the write-back stage, at which point program execution can stop and the status
code in pipeline register W can be recorded as the program status. If some in-
struction is fetched but later canceled, any exception status information about the
instruction gets canceled as well. No instruction following one that causes an ex-
ception can alter the programmer-visible state. The simple rule of carrying the
exception status together with all other information about an instruction through
the pipeline provides a simple and reliable mechanism for handling exceptions.

4.5.10 PIPE Stage Implementations

We have now created an overall structure for PIPE, our pipelined Y86 processor
with forwarding. It uses the same set of hardware units as the earlier sequential
designs, with the addition of pipeline registers, some reconfigured logic blocks, and
additional pipeline control logic. In this section, we go through the design of the
different logic blocks, deferring the design of the pipeline control logic to the next
section. Many of the logic blocks are identical to their counterparts in SEQ and
SEQ+, except that we must choose proper versions of the different signals from the
pipeline registers (written with the pipeline register name, written in uppercase,

424 Chapter 4 Processor Architecture

as a prefix) or from the stage computations (written with the first character of the
stage name, written in lowercase, as a prefix).

As an example, compare the HCL code for the logic that generates the srcA
signal in SEQ to the corresponding code in PIPE:

Code from SEQ

int srcA = [

icode in { IRRMOVL, IRMMOVL, IOPL, IPUSHL } : rA;

icode in { IPOPL, IRET } : RESP;

1 : RNONE; # Don’t need register

];

Code from PIPE

int d_srcA = [

D_icode in { IRRMOVL, IRMMOVL, IOPL, IPUSHL } : D_rA;

D_icode in { IPOPL, IRET } : RESP;

1 : RNONE; # Don’t need register

];

They differ only in the prefixes added to the PIPE signals: “D_” for the source
values, to indicate that the signals come from pipeline register D, and “d_” for the
result value, to indicate that it is generated in the decode stage. To avoid repetition,
we will not show the HCL code here for blocks that only differ from those in SEQ
because of the prefixes on names. As a reference, the complete HCL code for
PIPE is given in Web Aside arch:hcl.

PC Selection and Fetch Stage

Figure 4.55 provides a detailed view of the PIPE fetch stage logic. As discussed
earlier, this stage must also select a current value for the program counter and
predict the next PC value. The hardware units for reading the instruction from
memory and for extracting the different instruction fields are the same as those
we considered for SEQ (see the fetch stage in Section 4.3.4).

The PC selection logic chooses between three program counter sources. As a
mispredicted branch enters the memory stage, the value of valP for this instruction
(indicating the address of the following instruction) is read from pipeline register
M (signal M_valA). When a ret instruction enters the write-back stage, the return
address is read from pipeline register W (signal W_valM). All other cases use the
predicted value of the PC, stored in pipeline register F (signal F_predPC):

int f_pc = [

Mispredicted branch. Fetch at incremented PC

M_icode == IJXX && !M_Cnd : M_valA;

Completion of RET instruction.

W_icode == IRET : W_valM;

Default: Use predicted value of PC

1 : F_predPC;

];

Section 4.5 Pipelined Y86 Implementations 425

Need
valC

Need
regids

Predict
PC

Select
PC

PC
increment

Align

Bytes 1–5

f_pc

Byte 0

imem_error

Instruction
memory

Split

Instr
valid

D icodestat ifun valC valPrBrA

F predPC

M_icode

M_Bch

M_valA

W_icode

W_valM

icode

stat

ifun

Figure 4.55 PIPE PC selection and fetch logic. Within the one cycle time limit, the
processor can only predict the address of the next instruction.

The PC prediction logic chooses valC for the fetched instruction when it is
either a call or a jump, and valP otherwise:

int f_predPC = [

f_icode in { IJXX, ICALL } : f_valC;

1 : f_valP;

];

The logic blocks labeled “Instr valid,” “Need regids,” and “Need valC” are
the same as for SEQ, with appropriately named source signals.

Unlike in SEQ, we must split the computation of the instruction status into
two parts. In the fetch stage, we can test for a memory error due to an out-of-range
instruction address, and we can detect an illegal instruction or a halt instruction.
Detecting an invalid data address must be deferred to the memory stage.

Practice Problem 4.28
Write HCL code for the signal f_stat, providing the provisional status for the
fetched instruction.

426 Chapter 4 Processor Architecture

D icode ifun valC valPrBrA

A B

srcA srcB

dstM

M

dstE

E

Register
file

e_dstE

e_valE

d_rvalA d_rvalB

E icodestat

stat

ifun valC valA valB

Sel+Fwd
A

Fwd
B

dstE dstM srcA srcB

dstE dstM srcA srcB

M_dstE

M_valE

M_dstM

m_valM

W_dstM

W_valM

W_dstE

W_valE

d_srcA

d_srcB

Figure 4.56 PIPE decode and write-back stage logic. No instruction requires both valP and the value read
from register port A, and so these two can be merged to form the signal valA for later stages. The block labeled
“Sel+Fwd A” performs this task and also implements the forwarding logic for source operand valA. The block
labeled “Fwd B” implements the forwarding logic for source operand valB. The register write locations are
specified by the dstE and dstM signals from the write-back stage rather than from the decode stage, since it
is writing the results of the instruction currently in the write-back stage.

Decode and Write-Back Stages

Figure 4.56 gives a detailed view of the decode and write-back logic for PIPE. The
blocks labeled “dstE”, “dstM”, “srcA”, and “srcB” are very similar to their coun-
terparts in the implementation of SEQ. Observe that the register IDs supplied
to the write ports come from the write-back stage (signals W_dstE and W_dstM),
rather than from the decode stage. This is because we want the writes to occur to
the destination registers specified by the instruction in the write-back stage.

Practice Problem 4.29
The block labeled “dstE” in the decode stage generates the register ID for the E
port of the register file, based on fields from the fetched instruction in pipeline

Section 4.5 Pipelined Y86 Implementations 427

register D. The resulting signal is named d_dstE in the HCL description of PIPE.
Write HCL code for this signal, based on the HCL description of the SEQ signal
dstE. (See the decode stage for SEQ in Section 4.3.4.) Do not concern yourself
with the logic to implement conditional moves yet.

Most of the complexity of this stage is associated with the forwarding logic.
As mentioned earlier, the block labeled “Sel+Fwd A” serves two roles. It merges
the valP signal into the valA signal for later stages in order to reduce the amount
of state in the pipeline register. It also implements the forwarding logic for source
operand valA.

The merging of signals valA and valP exploits the fact that only the call and
jump instructions need the value of valP in later stages, and these instructions
do not need the value read from the A port of the register file. This selection is
controlled by the icode signal for this stage. When signal D_icode matches the
instruction code for either call or jXX, this block should select D_valP as its
output.

As mentioned in Section 4.5.7, there are five different forwarding sources,
each with a data word and a destination register ID:

Data word Register ID Source description

e_valE e_dstE ALU output
m_valM M_dstM Memory output
M_valE M_dstE Pending write to port E in memory stage
W_valM W_dstM Pending write to port M in write-back stage
W_valE W_dstE Pending write to port E in write-back stage

If none of the forwarding conditions hold, the block should select d_rvalA, the
value read from register port A as its output.

Putting all of this together, we get the following HCL description for the new
value of valA for pipeline register E:

int d_valA = [

D_icode in { ICALL, IJXX } : D_valP; # Use incremented PC

d_srcA == e_dstE : e_valE; # Forward valE from execute

d_srcA == M_dstM : m_valM; # Forward valM from memory

d_srcA == M_dstE : M_valE; # Forward valE from memory

d_srcA == W_dstM : W_valM; # Forward valM from write back

d_srcA == W_dstE : W_valE; # Forward valE from write back

1 : d_rvalA; # Use value read from register file

];

The priority given to the five forwarding sources in the above HCL code is
very important. This priority is determined in the HCL code by the order in which

428 Chapter 4 Processor Architecture

W

F0x000: irmovl $10,%edx

0x006: irmovl $3,%edx

0x00c: rrmovl %edx,%eax

0x00e: halt

prog6# prog6

D E M W

F D E M W

F D E M

F D E M W

1 2 3 4 5 6 7 8

D

valA e_valE � 3

Cycle 4

M_dstE � %edx
M_valE � 10

srcA � %edx

M

E_dstE � %edx
e_valE 0 � 3 � 3

E

Figure 4.57 Demonstration of forwarding priority. In cycle 4, values for %edx are
available from both the execute and memory stages. The forwarding logic should choose
the one in the execute stage, since it represents the most recently generated value for
this register.

the five destination register IDs are tested. If any order other than the one shown
were chosen, the pipeline would behave incorrectly for some programs. Figure
4.57 shows an example of a program that requires a correct setting of priority
among the forwarding sources in the execute and memory stages. In this program,
the first two instructions write to register %edx, while the third uses this register
as its source operand. When the rrmovl instruction reaches the decode stage in
cycle 4, the forwarding logic must choose between two values destined for its
source register. Which one should it choose? To set the priority, we must consider
the behavior of the machine-language program when it is executed one instruction
at a time. The first irmovl instruction would set register %edx to 10, the second
would set the register to 3, and then the rrmovl instruction would read 3 from
%edx. To imitate this behavior, our pipelined implementation should always give
priority to the forwarding source in the earliest pipeline stage, since it holds the
latest instruction in the program sequence setting the register. Thus, the logic in
the HCL code above first tests the forwarding source in the execute stage, then
those in the memory stage, and finally the sources in the write-back stage.

The forwarding priority between the two sources in either the memory or the
write-back stages are only a concern for the instruction popl %esp, since only this
instruction can write two registers simultaneously.

Section 4.5 Pipelined Y86 Implementations 429

Practice Problem 4.30
Suppose the order of the third and fourth cases (the two forwarding sources
from the memory stage) in the HCL code for d_valA were reversed. Describe the
resulting behavior of the rrmovl instruction (line 5) for the following program:

1 irmovl $5, %edx

2 irmovl $0x100,%esp

3 rmmovl %edx,0(%esp)

4 popl %esp

5 rrmovl %esp,%eax

Practice Problem 4.31
Suppose the order of the fifth and sixth cases (the two forwarding sources from the
write-back stage) in the HCL code for d_valA were reversed. Write a Y86 program
that would be executed incorrectly. Describe how the error would occur and its
effect on the program behavior.

Practice Problem 4.32
Write HCL code for the signal d_valB, giving the value for source operand valB
supplied to pipeline register E.

One small part of the write-back stage remains. As shown in Figure 4.52, the
overall processor status Stat is computed by a block based on the status value in
pipeline register W. Recall from Section 4.1.1 that the code should indicate either
normal operation (AOK) or one of the three exception conditions. Since pipeline
register W holds the state of the most recently completed instruction, it is natural
to use this value as an indication of the overall processor status. The only special
case to consider is when there is a bubble in the write-back stage. This is part of
normal operation, and so we want the status code to be AOK for this case as well:

int Stat = [

W_stat == SBUB : SAOK;

1 : W_stat;

];

Execute Stage

Figure 4.58 shows the execute stage logic for PIPE. The hardware units and the
logic blocks are identical to those in SEQ, with an appropriate renaming of signals.
We can see the signals e_valE and e_dstE directed toward the decode stage as one of
the forwarding sources. One difference is that the logic labeled “Set CC,” which
determines whether or not update the condition codes, has signals m_stat and

430 Chapter 4 Processor Architecture

e_Cnd

W_stat
m_stat

e_valE
e_dstE

M icodestat

stat

Cnd valE valA dstE dstM

E icode ifun valC valA valB dstM srcA srcBdstE

ALU
A

Set
CC

ALU
B

ALU
fun.

ALUCC

cond dstE

Figure 4.58 PIPE execute stage logic. This part of the design is very similar to the logic
in the SEQ implementation.

W_stat as inputs. These signals are used to detect cases where an instruction
causing an exception is passing through later pipeline stages, and therefore any
updating of the condition codes should be suppressed. This aspect of the design is
discussed in Section 4.5.11.

Practice Problem 4.33
Our second case in the HCL code for d_valA uses signal e_dstE to see whether
to select the ALU output e_valE as the forwarding source. Suppose instead that
we use signal E_dstE, the destination register ID in pipeline register E for this
selection. Write a Y86 program that would give an incorrect result with this
modified forwarding logic.

Memory Stage

Figure 4.59 shows the memory stage logic for PIPE. Comparing this to the memory
stage for SEQ (Figure 4.30), we see that, as noted before, the block labeled “Data”
in SEQ is not present in PIPE. This block served to select between data sources
valP (for call instructions) and valA, but this selection is now performed by the
block labeled “Sel+Fwd A” in the decode stage. Most other blocks in this stage
are identical to their counterparts in SEQ, with an appropriate renaming of the
signals. In this figure, you can also see that many of the values in pipeline registers
and M and W are supplied to other parts of the circuit as part of the forwarding
and pipeline control logic.

Section 4.5 Pipelined Y86 Implementations 431

Stat

stat

M_icode

M_Cnd

W_icode W_dstM

m_valM

M_dstE
M_dstM

M_valA

M_valE

W_dstE
W_valM
W_valE

W icode valE valM dstE dstM

M icode

stat

stat Cnd valE valA dstE dstM

data out

data in

read

m_stat
dmem_error

write

Data
memory

Addr

stat
Mem.
read

Mem.
write

Figure 4.59 PIPE memory stage logic. Many of the signals from pipeline registers M and W are passed down
to earlier stages to provide write-back results, instruction addresses, and forwarded results.

Practice Problem 4.34
In this stage, we can complete the computation of the status code Stat by detecting
the case of an invalid address for the data memory. Write HCL code for the signal
m_stat.

4.5.11 Pipeline Control Logic

We are now ready to complete our design for PIPE by creating the pipeline control
logic. This logic must handle the following four control cases for which other
mechanisms, such as data forwarding and branch prediction, do not suffice:

Processing ret: The pipeline must stall until the ret instruction reaches the
write-back stage.

Load/use hazards: The pipeline must stall for one cycle between an instruction
that reads a value from memory and an instruction that uses this value.

Mispredicted branches: By the time the branch logic detects that a jump should
not have been taken, several instructions at the branch target will have
started down the pipeline. These instructions must be removed from the
pipeline.

Exceptions: When an instruction causes an exception, we want to disable the
updating of the programmer-visible state by later instructions and halt
execution once the excepting instruction reaches the write-back stage.

We will go through the desired actions for each of these cases and then develop
control logic to handle all of them.

432 Chapter 4 Processor Architecture

Desired Handling of Special Control Cases

For the ret instruction, consider the following example program. This program
is shown in assembly code, but with the addresses of the different instructions on
the left for reference:

0x000: irmovl Stack,%esp # Initialize stack pointer

0x006: call Proc # procedure call

0x00b: irmovl $10,%edx # return point

0x011: halt

0x020: .pos 0x20

0x020: Proc: # Proc:

0x020: ret # return immediately

0x021: rrmovl %edx,%ebx # not executed

0x030: .pos 0x30

0x030: Stack: # Stack: Stack pointer

Figure 4.60 shows how we want the pipeline to process the ret instruction.
As with our earlier pipeline diagrams, this figure shows the pipeline activity with
time growing to the right. Unlike before, the instructions are not listed in the
same order they occur in the program, since this program involves a control flow
where instructions are not executed in a linear sequence. Look at the instruction
addresses to see from where the different instructions come in the program.

As this diagram shows, the ret instruction is fetched during cycle 3 and
proceeds down the pipeline, reaching the write-back stage in cycle 7. While it
passes through the decode, execute, and memory stages, the pipeline cannot do
any useful activity. Instead, we want to inject three bubbles into the pipeline. Once
the ret instruction reaches the write-back stage, the PC selection logic will set the
program counter to the return address, and therefore the fetch stage will fetch the
irmovl instruction at the return point (address 0x00b).

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

0x000: irmovl Stack,%edx

0x006: call proc

0x020: ret

0x00b: irmovl $10,%edx # Return point

bubblebubble

bubblebubble

bubblebubble

prog7# prog7 1 2 3 4 5 6 7 8 9 10 11

Figure 4.60 Simplified view of ret instruction processing. The pipeline should stall while the ret passes
through the decode, execute, and memory stages, injecting three bubbles in the process. The PC selection
logic will choose the return address as the instruction fetch address once the ret reaches the write-back stage
(cycle 7).

Section 4.5 Pipelined Y86 Implementations 433

F D E M W

F D E M W

F D E M W

F

D E M W

F

D

F

E M W

F D E M W

0x000: irmovl Stack,%edx

0x006: call proc

0x020: ret

0x021: rrmovl %edx,%ebx # Not executed

0x021: rrmovl %edx,%ebx # Not executed

0x021: rrmovl %edx,%ebx # Not executed

0x00b: irmovl $10,%edx # Return point

bubblebubble

bubblebubble

bubblebubble

prog7# prog7 1 2 3 4 5 6 7 8 9 10 11

D E M W

Figure 4.61 Actual processing of the ret instruction. The fetch stage repeatedly fetches the rrmovl
instruction following the ret instruction, but then the pipeline control logic injects a bubble into the decode
stage rather than allowing the rrmovl instruction to proceed. The resulting behavior is equivalent to that
shown in Figure 4.60.

Figure 4.61 shows the actual processing of the ret instruction for the example
program. The key observation here is that there is no way to inject a bubble into the
fetch stage of our pipeline. On every cycle, the fetch stage reads some instruction
from the instruction memory. Looking at the HCL code for implementing the PC
prediction logic in Section 4.5.10, we can see that for the ret instruction the new
value of the PC is predicted to be valP, the address of the following instruction. In
our example program, this would be 0x021, the address of the rrmovl instruction
following the ret. This prediction is not correct for this example, nor would it be
for most cases, but we are not attempting to predict return addresses correctly
in our design. For three clock cycles, the fetch stage stalls, causing the rrmovl
instruction to be fetched but then replaced by a bubble in the decode stage. This
process is illustrated in Figure 4.61 by the three fetches, with an arrow leading
down to the bubbles passing through the remaining pipeline stages. Finally, the
irmovl instruction is fetched on cycle 7. Comparing Figure 4.61 with Figure 4.60,
we see that our implementation achieves the desired effect, but with a slightly
peculiar fetching of an incorrect instruction for 3 consecutive cycles.

For a load/use hazard, we have already described the desired pipeline opera-
tion in Section 4.5.8, as illustrated by the example of Figure 4.54. Only the mrmovl
and popl instructions read data from memory. When either of these is in the ex-
ecute stage, and an instruction requiring the destination register is in the decode
stage, we want to hold back the second instruction in the decode stage and inject
a bubble into the execute stage on the next cycle. After this, the forwarding logic
will resolve the data hazard. The pipeline can hold back an instruction in the de-
code stage by keeping pipeline register D in a fixed state. In doing so, it should also
keep pipeline register F in a fixed state, so that the next instruction will be fetched
a second time. In summary, implementing this pipeline flow requires detecting the

434 Chapter 4 Processor Architecture

F D E M W

F D E M W

F D

E M W

F

D E M W

F D E M W

F D E M W

0x000: xorl %eax,%eax

0x002: jne target # Not taken

0x00e: irmovl $2,%edx # Target

0x014: irmovl $3,%ebx # Target�1

0x007: irmovl $1,%eax # Fall through

0x00d: halt

prog8 1 2 3 4 5 6 7 8 9 10

bubblebubble

bubblebubble

Figure 4.62 Processing mispredicted branch instructions. The pipeline predicts
branches will be taken and so starts fetching instructions at the jump target. Two
instructions are fetched before the misprediction is detected in cycle 4 when the jump
instruction flows through the execute stage. In cycle 5, the pipeline cancels the two
target instructions by injecting bubbles into the decode and execute stages, and it also
fetches the instruction following the jump.

hazard condition, keeping pipeline register F and D fixed, and injecting a bubble
into the execute stage.

To handle a mispredicted branch, consider the following program, shown in
assembly code, but with the instruction addresses shown on the left for reference:

0x000: xorl %eax,%eax

0x002: jne target # Not taken

0x007: irmovl $1, %eax # Fall through

0x00d: halt

0x00e: target:

0x00e: irmovl $2, %edx # Target

0x014: irmovl $3, %ebx # Target+1

0x01a: halt

Figure 4.62 shows how these instructions are processed. As before, the instruc-
tions are listed in the order they enter the pipeline, rather than the order they occur
in the program. Since the jump instruction is predicted as being taken, the instruc-
tion at the jump target will be fetched in cycle 3, and the instruction following this
one will be fetched in cycle 4. By the time the branch logic detects that the jump
should not be taken during cycle 4, two instructions have been fetched that should
not continue being executed. Fortunately, neither of these instructions has caused
a change in the programmer-visible state. That can only occur when an instruction
reaches the execute stage, where it can cause the condition codes to change. We
can simply cancel (sometimes called instruction squashing) the two misfetched in-
structions by injecting bubbles into the decode and execute instructions on the
following cycle while also fetching the instruction following the jump instruction.
The two misfetched instructions will then simply disappear from the pipeline. As
we will discuss in Section 4.5.11, a simple extension to the basic clocked register

Section 4.5 Pipelined Y86 Implementations 435

design will enable us to inject bubbles into pipeline registers as part of the pipeline
control logic.

For an instruction that causes an exception, we must make the pipelined im-
plementation match the desired ISA behavior, with all prior instructions complet-
ing and with none of the following instructions having any effect on the program
state. Achieving these effects is complicated by the facts that (1) exceptions are
detected during two different stages (fetch and memory) of program execution,
and (2) the program state is updated in three different stages (execute, memory,
and write-back).

Our stage designs include a status code stat in each pipeline register to track
the status of each instruction as it passes through the pipeline stages. When an
exception occurs, we record that information as part of the instruction’s status
and continue fetching, decoding, and executing instructions as if nothing were
amiss. As the excepting instruction reaches the memory stage, we take steps to pre-
vent later instructions from modifying programmer-visible state by (1) disabling
the setting of condition codes by instructions in the execute stage, (2) injecting
bubbles into the memory stage to disable any writing to the data memory, and
(3) stalling the write-back stage when it has an excepting instruction, thus bringing
the pipeline to a halt.

The pipeline diagram in Figure 4.63 illustrates how our pipeline control han-
dles the situation where an instruction causing an exception is followed by one that
would change the condition codes. On cycle 6, the pushl instruction reaches the
memory stage and generates a memory error. On the same cycle, the addl instruc-
tion in the execute stage generates new values for the condition codes. We disable

F D E M W

F D E M W

F D E

F D E

F D E

M W W W W

0x000: irmovl $1,%eax

0x006: xorl %esp,%esp #CC = 100

0x008: pushl %eax

0x00a: addl %eax,%eax

0x00c: irmovl $2,%eax

prog10# prog10 1 2 3 4 5 6 7 8 9 10

. . .

Cycle 6

mem_error � 1
set_cc ← 0

M

New CC � 000

E

Figure 4.63 Processing invalid memory reference exception. On cycle 6, the invalid memory reference by
the pushl instruction causes the updating of the condition codes to be disabled. The pipeline starts injecting
bubbles into the memory stage and stalling the excepting instruction in the write-back stage.

436 Chapter 4 Processor Architecture

Condition Trigger

Processing ret IRET ∈ {D icode, E icode, M icode}
Load/use hazard E icode ∈ {IMRMOVL, IPOPL} && E dstM ∈ {d srcA, d srcB}
Mispredicted branch E icode = IJXX && !e Cnd
Exception m stat ∈ {SADR, SINS, SHLT} ||W stat ∈ {SADR, SINS, SHLT}
Figure 4.64 Detection conditions for pipeline control logic. Four different conditions
require altering the pipeline flow by either stalling the pipeline or canceling partially
executed instructions.

the setting of condition codes when an excepting instruction is in the memory or
write-back stage (by examining the signals m_stat and W_stat and then setting the
signal set_cc to zero). We can also see the combination of injecting bubbles into
the memory stage and stalling the excepting instruction in the write-back stage
in the example of Figure 4.63—the pushl instruction remains stalled in the write-
back stage, and none of the subsequent instructions get past the execute stage.

By this combination of pipelining the status signals, controlling the setting of
condition codes, and controlling the pipeline stages, we achieve the desired behav-
ior for exceptions: all instructions prior to the excepting instruction are completed,
while none of the following instructions has any effect on the programmer-visible
state.

Detecting Special Control Conditions

Figure 4.64 summarizes the conditions requiring special pipeline control. It gives
expressions describing the conditions under which the three special cases arise.
These expressions are implemented by simple blocks of combinational logic that
must generate their results before the end of the clock cycle in order to control
the action of the pipeline registers as the clock rises to start the next cycle. During
a clock cycle, pipeline registers D, E, and M hold the states of the instructions
that are in the decode, execute, and memory pipeline stages, respectively. As
we approach the end of the clock cycle, signals d_srcA and d_srcB will be set to
the register IDs of the source operands for the instruction in the decode stage.
Detecting a ret instruction as it passes through the pipeline simply involves
checking the instruction codes of the instructions in the decode, execute, and
memory stages. Detecting a load/use hazard involves checking the instruction
type (mrmovl or popl) of the instruction in the execute stage and comparing its
destination register with the source registers of the instruction in the decode stage.
The pipeline control logic should detect a mispredicted branch while the jump
instruction is in the execute stage, so that it can set up the conditions required to
recover from the misprediction as the instruction enters the memory stage. When a
jump instruction is in the execute stage, the signal e_Cnd indicates whether or not
the jump should be taken. We detect an excepting instruction by examining the
instruction status values in the memory and write-back stages. For the memory
stage, we use the signal m_stat, computed within the stage, rather than M_stat

Section 4.5 Pipelined Y86 Implementations 437

x y

x

x
n
o
p

x

State � x

(a) Normal

State � y

Input � y

stall
� 0

bubble
� 0

Output � x Output � yRising
clock

State � x

(b) Stall

State � x

Input � y

stall
� 1

bubble
� 0

Output � x Output � xRising
clock

State � x

(c) Bubble

State � nop

Input � y

stall
� 0

bubble
� 1

Output � x Output � nopRising
clock

Figure 4.65 Additional pipeline register operations. (a) Under normal conditions, the
state and output of the register are set to the value at the input when the clock rises.
(b) When operated in stall mode, the state is held fixed at its previous value. (c) When
operated in bubble mode, the state is overwritten with that of a nop operation.

from the pipeline register. This internal signal incorporates the possibility of a
data memory address error.

Pipeline Control Mechanisms

Figure 4.65 shows low-level mechanisms that allow the pipeline control logic to
hold back an instruction in a pipeline register or to inject a bubble into the pipeline.
These mechanisms involve small extensions to the basic clocked register described
in Section 4.2.5. Suppose that each pipeline register has two control inputs stall
and bubble. The settings of these signals determine how the pipeline register is
updated as the clock rises. Under normal operation (Figure 4.65(a)), both of these
inputs are set to 0, causing the register to load its input as its new state. When
the stall signal is set to 1 (Figure 4.65(b)), the updating of the state is disabled.
Instead, the register will remain in its previous state. This makes it possible to

438 Chapter 4 Processor Architecture

Pipeline register

Condition F D E M W

Processing ret stall bubble normal normal normal
Load/use hazard stall stall bubble normal normal
Mispredicted branch normal bubble bubble normal normal

Figure 4.66 Actions for pipeline control logic. The different conditions require altering
the pipeline flow by either stalling the pipeline or by canceling partially executed
instructions.

hold back an instruction in some pipeline stage. When the bubble signal is set to 1
(Figure 4.65(c)), the state of the register will be set to some fixed reset configuration
giving a state equivalent to that of a nop instruction. The particular pattern of ones
and zeros for a pipeline register’s reset configuration depends on the set of fields
in the pipeline register. For example, to inject a bubble into pipeline register D, we
want the icode field to be set to the constant value INOP (Figure 4.26). To inject
a bubble into pipeline register E, we want the icode field to be set to INOP and
the dstE, dstM, srcA, and srcB fields to be set to the constant RNONE. Determining
the reset configuration is one of the tasks for the hardware designer in designing
a pipeline register. We will not concern ourselves with the details here. We will
consider it an error to set both the bubble and the stall signals to 1.

The table in Figure 4.66 shows the actions the different pipeline stages should
take for each of the three special conditions. Each involves some combination of
normal, stall, and bubble operations for the pipeline registers.

In terms of timing, the stall and bubble control signals for the pipeline registers
are generated by blocks of combinational logic. These values must be valid as the
clock rises, causing each of the pipeline registers to either load, stall, or bubble
as the next clock cycle begins. With this small extension to the pipeline register
designs, we can implement a complete pipeline, including all of its control, using
the basic building blocks of combinational logic, clocked registers, and random-
access memories.

Combinations of Control Conditions

In our discussion of the special pipeline control conditions so far, we assumed that
at most one special case could arise during any single clock cycle. A common bug in
designing a system is to fail to handle instances where multiple special conditions
arise simultaneously. Let us analyze such possibilities. We need not worry about
combinations involving program exceptions, since we have carefully designed
our exception-handling mechanism to consider other instructions in the pipeline.
Figure 4.67 diagrams the pipeline states that cause the other three special control
conditions. These diagrams show blocks for the decode, execute, and memory
stages. The shaded boxes represent particular constraints that must be satisfied
for the condition to arise. A load/use hazard requires that the instruction in the

Section 4.5 Pipelined Y86 Implementations 439

Figure 4.67
Pipeline states for special
control conditions. The
two pairs indicated can
arise simultaneously.

Load/use

M

Mispredict ret 1 ret 2 ret 3

E
D

M
E JXXLoad

retUse bubble
ret

bubble
bubble

ret

D

M

Combination A

Combination B

E
D

M
E
D

M
E
D

execute stage reads a value from memory into a register, and that the instruction
in the decode stage has this register as a source operand. A mispredicted branch
requires the instruction in the execute stage to have a jump instruction. There are
three possible cases for ret—the instruction can be in either the decode, execute,
or memory stage. As the ret instruction moves through the pipeline, the earlier
pipeline stages will have bubbles.

We can see by these diagrams that most of the control conditions are mutually
exclusive. For example, it is not possible to have a load/use hazard and a mispre-
dicted branch simultaneously, since one requires a load instruction (mrmovl or
popl) in the execute stage, while the other requires a jump. Similarly, the second
and third ret combinations cannot occur at the same time as a load/use hazard or
a mispredicted branch. Only the two combinations indicated by arrows can arise
simultaneously.

Combination A involves a not-taken jump instruction in the execute stage and
a ret instruction in the decode stage. Setting up this combination requires the ret
to be at the target of a not-taken branch. The pipeline control logic should detect
that the branch was mispredicted and therefore cancel the ret instruction.

Practice Problem 4.35
Write a Y86 assembly-language program that causes combination A to arise and
determines whether the control logic handles it correctly.

Combining the control actions for the combination A conditions (Figure 4.66),
we get the following pipeline control actions (assuming that either a bubble or a
stall overrides the normal case):

Pipeline register

Condition F D E M W

Processing ret stall bubble normal normal normal
Mispredicted branch normal bubble bubble normal normal

Combination stall bubble bubble normal normal

That is, it would be handled like a mispredicted branch, but with a stall in the
fetch stage. Fortunately, on the next cycle, the PC selection logic will choose the
address of the instruction following the jump, rather than the predicted program

440 Chapter 4 Processor Architecture

counter, and so it does not matter what happens with the pipeline register F. We
conclude that the pipeline will correctly handle this combination.

Combination B involves a load/use hazard, where the loading instruction sets
register %esp, and the ret instruction then uses this register as a source operand,
since it must pop the return address from the stack. The pipeline control logic
should hold back the ret instruction in the decode stage.

Practice Problem 4.36
Write a Y86 assembly-language program that causes combination B to arise and
completes with a halt instruction if the pipeline operates correctly.

Combining the control actions for the combination B conditions (Figure 4.66),
we get the following pipeline control actions:

Pipeline register

Condition F D E M W

Processing ret stall bubble normal normal normal
Load/use hazard stall stall bubble normal normal

Combination stall bubble+stall bubble normal normal

Desired stall stall bubble normal normal

If both sets of actions were triggered, the control logic would try to stall theret
instruction to avoid the load/use hazard but also inject a bubble into the decode
stage due to the ret instruction. Clearly, we do not want the pipeline to perform
both sets of actions. Instead, we want it to just take the actions for the load/use
hazard. The actions for processing the ret instruction should be delayed for one
cycle.

This analysis shows that combination B requires special handling. In fact, our
original implementation of the PIPE control logic did not handle this combination
correctly. Even though the design had passed many simulation tests, it had a subtle
bug that was uncovered only by the analysis we have just shown. When a program
having combination B was executed, the control logic would set both the bubble
and the stall signals for pipeline register D to 1. This example shows the importance
of systematic analysis. It would be unlikely to uncover this bug by just running
normal programs. If left undetected, the pipeline would not faithfully implement
the ISA behavior.

Control Logic Implementation

Figure 4.68 shows the overall structure of the pipeline control logic. Based on
signals from the pipeline registers and pipeline stages, the control logic generates
stall and bubble control signals for the pipeline registers, and also determines
whether the condition code registers should be updated. We can combine the

Section 4.5 Pipelined Y86 Implementations 441

F

CC

W icode valE valM dstEstat

stat

stat

stat

dstM

M icode Cnd valE valA dstE dstM

E icode ifun valC valA valB dstM srcA srcBdstE

D icode ifun valC valPrBrA

F predPC

srcA
srcB

stat

Pipe
control
logic

M_icode

W_stat

e_Cnd

m_stat

E_dstM

d_srcB

d_srcA

D_icode

E_icode

E_bubble

set_cc

W_stall

M_bubble

D_bubble

D_stall

F_stall

Figure 4.68 PIPE pipeline control logic. This logic overrides the normal flow of instructions through the
pipeline to handle special conditions such as procedure returns, mispredicted branches, load/use hazards,
and program exceptions.

detection conditions of Figure 4.64 with the actions of Figure 4.66 to create HCL
descriptions for the different pipeline control signals.

Pipeline register F must be stalled for either a load/use hazard or a ret
instruction:

bool F_stall =

Conditions for a load/use hazard

E_icode in { IMRMOVL, IPOPL } &&

E_dstM in { d_srcA, d_srcB } ||

Stalling at fetch while ret passes through pipeline

IRET in { D_icode, E_icode, M_icode };

Practice Problem 4.37
Write HCL code for the signal D_stall in the PIPE implementation.

Pipeline register D must be set to bubble for a mispredicted branch or a ret
instruction. As the analysis in the preceding section shows, however, it should

442 Chapter 4 Processor Architecture

not inject a bubble when there is a load/use hazard in combination with a ret
instruction:

bool D_bubble =

Mispredicted branch

(E_icode == IJXX && !e_Cnd) ||

Stalling at fetch while ret passes through pipeline

but not condition for a load/use hazard

!(E_icode in { IMRMOVL, IPOPL }

&& E_dstM in { d_srcA, d_srcB })

&& IRET in { D_icode, E_icode, M_icode };

Practice Problem 4.38
Write HCL code for the signal E_bubble in the PIPE implementation.

Practice Problem 4.39
Write HCL code for the signal set_cc in the PIPE implementation. This should
only occur for OPl instructions, and should consider the effects of program excep-
tions.

Practice Problem 4.40
Write HCL code for the signals M_bubble and W_stall in the PIPE implemen-
tation. The latter signal requires modifying the exception condition listed in Fig-
ure 4.64.

This covers all of the special pipeline control signal values. In the complete
HCL code for PIPE, all other pipeline control signals are set to zero.

Aside Testing the design

As we have seen, there are many ways to introduce bugs into a design even for a simple microprocessor.
With pipelining, there are many subtle interactions between the instructions at different pipeline stages.
We have seen that many of the design challenges involve unusual instructions (such as popping to the
stack pointer) or unusual instruction combinations (such as a not-taken jump followed by a ret). We
also see that exception handling adds an entirely new dimension to the possible pipeline behaviors.
How then can we be sure that our design is correct? For hardware manufacturers, this is a dominant
concern, since they cannot simply report an error and have users download code patches over the
Internet. Even a simple logic design error can have serious consequences, especially as microprocessors
are increasingly used to operate systems that are critical to our lives and health, such as automotive
antilock braking systems, heart pacemakers, and aircraft control systems.

Section 4.5 Pipelined Y86 Implementations 443

Simply simulating a design while running a number of “typical” programs is not a sufficient means
of testing a system. Instead, thorough testing requires devising ways of systematically generating many
tests that will exercise as many different instructions and instruction combinations as possible. In
creating our Y86 processor designs, we also devised a number of testing scripts, each of which generates
many different tests, runs simulations of the processor, and compares the resulting register and memory
values to those produced by our yis instruction set simulator. Here is a brief description of the scripts:

optest: Runs 49 tests of different Y86 instructions with different source and destination registers

jtest: Runs 64 tests of the different jump and call instructions, with different combinations of whether
or not the branches are taken

cmtest: Runs 28 tests of the different conditional move instructions, with different control combi-
nations

htest: Runs 600 tests of different data hazard possibilities, with different combinations of source
and destination instructions, and with different numbers of nop instructions between the
instruction pairs

ctest: Tests 22 different control combinations, based on an analysis similar to what we did in Sec-
tion 4.5.11

etest: Tests 12 different combinations of instructions causing exceptions and instructions following
it that could alter the programmer-visible state

The key idea of this testing method is that we want to be as systematic as possible, generating tests that
create the different conditions that are likely to cause pipeline errors.

Aside Formally verifying our design

Even when a design passes an extensive set of tests, we cannot be certain that it will operate correctly for
all possible programs. The number of possible programs we could test is unimaginably large, even if we
only consider tests consisting of short code segments. Newer methods of formal verification, however,
hold the promise that we can have tools that rigorously consider all possible behaviors of a system and
determine whether or not there are any design errors.

We were able to apply formal verification to an earlier version of our Y86 processors [13]. We
set up a framework to compare the behavior of the pipelined design PIPE to the unpipelined version
SEQ. That is, it was able to prove that for an arbitrary Y86 program, the two processors would have
identical effects on the programmer-visible state. Of course, our verifier cannot actually run all possible
programs, since there are an infinite number of them. Instead, it uses a form of proof by induction,
showing a consistency between the two processors on a cycle-by-cycle basis. Carrying out this analysis
requires reasoning about the hardware using symbolic methods in which we consider all program values
to be arbitrary integers, and we abstract the ALU as a sort of “black box,” computing some unspecified
function over its arguments. We assume only that the ALUs for SEQ and PIPE compute identical
functions.

We used the HCL descriptions of the control logic to generate the control logic for our symbolic
processor models, and so we could catch any bugs in the HCL code. Being able to show that SEQ and
PIPE are identical does not guarantee that either of them faithfully implements the Y86 instruction set

444 Chapter 4 Processor Architecture

architecture. However, it would uncover any bug due to an incorrect pipeline design, and this is the
major source of design errors.

In our experiments, we verified not only the version of PIPE we have considered in this chapter but
also several variants that we give as homework problems, in which we add more instructions, modify
the hardware capabilities, or use different branch prediction strategies. Interestingly, we found only one
bug in all of our designs, involving control combination B (described in Section 4.5.11) for our solution
to the variant described in Problem 4.57. This exposed a weakness in our testing regime that caused us
to add additional cases to the ctest testing script.

Formal verification is still in an early stage of development. The tools are often difficult to use, and
they do not have the capacity to verify large-scale designs. We were able to verify our Y86 processors
in part because of their relative simplicity. Even then, it required several weeks of effort and multiple
runs of the tools, each requiring up to eight hours of computer time. This is an active area of research,
with some tools becoming commercially available, and some in use at companies such as Intel, AMD,
and IBM.

Web Aside ARCH:VLOG Verilog implementation of a pipelined Y86 processor

As we have mentioned, modern logic design involves writing textual representations of hardware
designs in a hardware description language. The design can then be tested by both simulation and by a
variety of formal verification tools. Once we have confidence in the design, we can use logic synthesis
tools to translate the design into actual logic circuits.

We have developed models of our Y86 processor designs in the Verilog hardware description
language. These designs combine modules implementing the basic building blocks of the processor,
along with control logic generated directly from the HCL descriptions. We have been able to synthesize
some of these designs, download the logic circuit descriptions onto field-programmable gate array
(FPGA) hardware, and run the processors on actual Y86 programs.

4.5.12 Performance Analysis

We can see that the conditions requiring special action by the pipeline control
logic all cause our pipeline to fall short of the goal of issuing a new instruction on
every clock cycle. We can measure this inefficiency by determining how often a
bubble gets injected into the pipeline, since these cause unused pipeline cycles. A
return instruction generates three bubbles, a load/use hazard generates one, and
a mispredicted branch generates two. We can quantify the effect these penalties
have on the overall performance by computing an estimate of the average number
of clock cycles PIPE would require per instruction it executes, a measure known
as the CPI (for “cycles per instruction”). This measure is the reciprocal of the
average throughput of the pipeline, but with time measured in clock cycles rather
than picoseconds. It is a useful measure of the architectural efficiency of a design.

If we ignore the performance implications of exceptions (which, by definition,
will only occur rarely), another way to think about CPI is to imagine we run the
processor on some benchmark program and observe the operation of the execute
stage. On each cycle, the execute stage would either process an instruction, and
this instruction would then continue through the remaining stages to completion,

Section 4.5 Pipelined Y86 Implementations 445

or it would process a bubble, injected due to one of the three special cases. If
the stage processes a total of Ci instructions and Cb bubbles, then the processor
has required around Ci + Cb total clock cycles to execute Ci instructions. We say
“around” because we ignore the cycles required to start the instructions flowing
through the pipeline. We can then compute the CPI for this benchmark as follows:

CPI = Ci + Cb

Ci

= 1.0 + Cb

Ci

That is, the CPI equals 1.0 plus a penalty term Cb/Ci indicating the average number
of bubbles injected per instruction executed. Since only three different instruction
types can cause a bubble to be injected, we can break this penalty term into three
components:

CPI = 1.0 + lp + mp + rp

where lp (for “load penalty”) is the average frequency with which bubbles are in-
jected while stalling for load/use hazards, mp (for “mispredicted branch penalty”)
is the average frequency with which bubbles are injected when canceling instruc-
tions due to mispredicted branches, and rp (for “return penalty”) is the average
frequency with which bubbles are injected while stalling for ret instructions. Each
of these penalties indicates the total number of bubbles injected for the stated
reason (some portion of Cb) divided by the total number of instructions that were
executed (Ci).

To estimate each of these penalties, we need to know how frequently the
relevant instructions (load, conditional branch, and return) occur, and for each of
these how frequently the particular condition arises. Let us pick the following set
of frequencies for our CPI computation (these are comparable to measurements
reported in [47] and [49]):

. Load instructions (mrmovl and popl) account for 25% of all instructions
executed. Of these, 20% cause load/use hazards.

. Conditional branches account for 20% of all instructions executed. Of these,
60% are taken and 40% are not taken.

. Return instructions account for 2% of all instructions executed.

We can therefore estimate each of our penalties as the product of the fre-
quency of the instruction type, the frequency the condition arises, and the number
of bubbles that get injected when the condition occurs:

Instruction Condition
Cause Name frequency frequency Bubbles Product

Load/Use lp 0.25 0.20 1 0.05
Mispredict mp 0.20 0.40 2 0.16
Return rp 0.02 1.00 3 0.06

Total Penalty 0.27

The sum of the three penalties is 0.27, giving a CPI of 1.27.

446 Chapter 4 Processor Architecture

Our goal was to design a pipeline that can issue one instruction per cycle,
giving a CPI of 1.0. We did not quite meet this goal, but the overall performance
is still quite good. We can also see that any effort to reduce the CPI further should
focus on mispredicted branches. They account for 0.16 of our total penalty of 0.27,
because conditional branches are common, our prediction strategy often fails, and
we cancel two instructions for every misprediction.

Practice Problem 4.41
Suppose we use a branch prediction strategy that achieves a success rate of 65%,
such as backward taken, forward not-taken, as described in Section 4.5.4. What
would be the impact on CPI, assuming all of the other frequencies are not affected?

Practice Problem 4.42
Let us analyze the relative performance of using conditional data transfers versus
conditional control transfers for the programs you wrote for Problems 4.4 and 4.5.
Assume we are using these programs to compute the sum of the absolute values
of a very long array, and so the overall performance is determined largely by the
number of cycles required by the inner loop. Assume our jump instructions are
predicted as being taken, and that around 50% of the array values are positive.

A. On average, how many instructions are executed in the inner loops of the
two programs?

B. On average, how many bubbles would be injected into the inner loop of the
two programs?

C. What is the average number of clock cycles required per array element for
the two programs?

4.5.13 Unfinished Business

We have created a structure for the PIPE pipelined microprocessor, designed the
control logic blocks, and implemented pipeline control logic to handle special
cases where normal pipeline flow does not suffice. Still, PIPE lacks several key
features that would be required in an actual microprocessor design. We highlight
a few of these and discuss what would be required to add them.

Multicycle Instructions

All of the instructions in the Y86 instruction set involve simple operations such as
adding numbers. These can be processed in a single clock cycle within the execute
stage. In a more complete instruction set, we would also need to implement
instructions requiring more complex operations such as integer multiplication
and division, and floating-point operations. In a medium-performance processor
such as PIPE, typical execution times for these operations range from 3 or 4

Section 4.5 Pipelined Y86 Implementations 447

cycles for floating-point addition up to 32 for integer division. To implement these
instructions, we require both additional hardware to perform the computations
and a mechanism to coordinate the processing of these instructions with the rest
of the pipeline.

One simple approach to implementing multicycle instructions is to simply
expand the capabilities of the execute stage logic with integer and floating-point
arithmetic units. An instruction remains in the execute stage for as many clock
cycles as it requires, causing the fetch and decode stages to stall. This approach is
simple to implement, but the resulting performance is not very good.

Better performance can be achieved by handling the more complex opera-
tions with special hardware functional units that operate independently of the
main pipeline. Typically, there is one functional unit for performing integer mul-
tiplication and division, and another for performing floating-point operations. As
an instruction enters the decode stage, it can be issued to the special unit. While the
unit performs the operation, the pipeline continues processing other instructions.
Typically, the floating-point unit is itself pipelined, and thus multiple operations
can execute concurrently in the main pipeline and in the different units.

The operations of the different units must be synchronized to avoid incorrect
behavior. For example, if there are data dependencies between the different
operations being handled by different units, the control logic may need to stall
one part of the system until the results from an operation handled by some other
part of the system have been completed. Often, different forms of forwarding are
used to convey results from one part of the system to other parts, just as we saw
between the different stages of PIPE. The overall design becomes more complex
than we have seen with PIPE, but the same techniques of stalling, forwarding, and
pipeline control can be used to make the overall behavior match the sequential
ISA model.

Interfacing with the Memory System

In our presentation of PIPE, we assumed that both the instruction fetch unit
and the data memory could read or write any memory location in one clock
cycle. We also ignored the possible hazards caused by self-modifying code where
one instruction writes to the region of memory from which later instructions are
fetched. Furthermore, we reference memory locations according to their virtual
addresses, and these require a translation into physical addresses before the actual
read or write operation can be performed. Clearly, it is unrealistic to do all of this
processing in a single clock cycle. Even worse, the memory values being accessed
may reside on disk, requiring millions of clock cycles to read into the processor
memory.

As will be discussed in Chapters 6 and 9, the memory system of a processor
uses a combination of multiple hardware memories and operating system soft-
ware to manage the virtual memory system. The memory system is organized as a
hierarchy, with faster but smaller memories holding a subset of the memory being
backed up by slower and larger memories. At the level closest to the processor,
the cache memories provide fast access to the most heavily referenced memory

448 Chapter 4 Processor Architecture

locations. A typical processor has two first-level caches—one for reading instruc-
tions and one for reading and writing data. Another type of cache memory, known
as a translation look-aside buffer, or TLB, provides a fast translation from virtual
to physical addresses. Using a combination of TLBs and caches, it is indeed pos-
sible to read instructions and read or write data in a single clock cycle most of
the time. Thus, our simplified view of memory referencing by our processors is
actually quite reasonable.

Although the caches hold the most heavily referenced memory locations,
there will be times when a cache miss occurs, where some reference is made to
a location that is not held in the cache. In the best case, the missing data can be
retrieved from a higher-level cache or from the main memory of the processor,
requiring 3 to 20 clock cycles. Meanwhile, the pipeline simply stalls, holding the
instruction in the fetch or memory stage until the cache can perform the read
or write operation. In terms of our pipeline design, this can be implemented by
adding more stall conditions to the pipeline control logic. A cache miss and the
consequent synchronization with the pipeline is handled completely by hardware,
keeping the time required down to a small number of clock cycles.

In some cases, the memory location being referenced is actually stored in the
disk memory. When this occurs, the hardware signals a page fault exception. Like
other exceptions, this will cause the processor to invoke the operating system’s
exception handler code. This code will then set up a transfer from the disk to
the main memory. Once this completes, the operating system will return back
to the original program, where the instruction causing the page fault will be re-
executed. This time, the memory reference will succeed, although it might cause a
cache miss. Having the hardware invoke an operating system routine, which then
returns control back to the hardware, allows the hardware and system software
to cooperate in the handling of page faults. Since accessing a disk can require
millions of clock cycles, the several thousand cycles of processing performed by
the OS page fault handler has little impact on performance.

From the perspective of the processor, the combination of stalling to han-
dle short-duration cache misses and exception handling to handle long-duration
page faults takes care of any unpredictability in memory access times due to the
structure of the memory hierarchy.

Aside State-of-the-art microprocessor design

A five-stage pipeline, such as we have shown with the PIPE processor, represented the state of the art in
processor design in the mid-1980s. The prototype RISC processor developed by Patterson’s research
group at Berkeley formed the basis for the first SPARC processor, developed by Sun Microsystems
in 1987. The processor developed by Hennessy’s research group at Stanford was commercialized by
MIPS Technologies (a company founded by Hennessy) in 1986. Both of these used five-stage pipelines.
The Intel i486 processor also uses a five-stage pipeline, although with a different partitioning of
responsibilities among the stages, with two decode stages and a combined execute/memory stage [33].

These pipelined designs are limited to a throughput of at most one instruction per clock cycle. The
CPI (for “cycles per instruction”) measure described in Section 4.5.12 can never be less than 1.0. The
different stages can only process one instruction at a time. More recent processors support superscalar

Section 4.6 Summary 449

operation, meaning that they can achieve a CPI less than 1.0 by fetching, decoding, and executing
multiple instructions in parallel. As superscalar processors have become widespread, the accepted
performance measure has shifted from CPI to its reciprocal—the average number of instructions
executed per cycle, or IPC. It can exceed 1.0 for superscalar processors. The most advanced designs
use a technique known as out-of-order execution to execute multiple instructions in parallel, possibly
in a totally different order than they occur in the program, while preserving the overall behavior implied
by the sequential ISA model. This form of execution is described in Chapter 5 as part of our discussion
of program optimization.

Pipelined processors are not just historical artifacts, however. The majority of processors sold are
used in embedded systems, controlling automotive functions, consumer products, and other devices
where the processor is not directly visible to the system user. In these applications, the simplicity of
a pipelined processor, such as the one we have explored in this chapter, reduces its cost and power
requirements compared to higher-performance models.

More recently, as multicore processors have gained a following, some have argued that we could
get more overall computing power by integrating many simple processors on a single chip rather
than a smaller number of more complex ones. This strategy is sometimes referred to as “many-core”
processors [10].

4.6 Summary

We have seen that the instruction set architecture, or ISA, provides a layer of
abstraction between the behavior of a processor—in terms of the set of instructions
and their encodings—and how the processor is implemented. The ISA provides
a very sequential view of program execution, with one instruction executed to
completion before the next one begins.

We defined the Y86 instruction set by starting with the IA32 instructions and
simplifying the data types, address modes, and instruction encoding considerably.
The resulting ISA has attributes of both RISC and CISC instruction sets. We then
organized the processing required for the different instructions into a series of
five stages, where the operations at each stage vary according to the instruction
being executed. From this, we constructed the SEQ processor, in which an en-
tire instruction is executed every clock cycle by having it flow through all five
stages.

Pipelining improves the throughput performance of a system by letting the
different stages operate concurrently. At any given time, multiple operations are
being processed by the different stages. In introducing this concurrency, we must
be careful to provide the same program-level behavior as would a sequential
execution of the program. We introduced pipelining by reordering parts of SEQ
to get SEQ+, and then adding pipeline registers to create the PIPE– pipeline.
We enhanced the pipeline performance by adding forwarding logic to speed the
sending of a result from one instruction to another. Several special cases require
additional pipeline control logic to stall or cancel some of the pipeline stages.

Our design included rudimentary mechanisms to handle exceptions, where
we make sure that only instructions up to the excepting instruction affect the
programmer-visible state. Implementing a complete handling of exceptions would

450 Chapter 4 Processor Architecture

be significantly more challenging. Properly handling exceptions gets even more
complex in systems that employ greater degrees of pipelining and parallelism.

In this chapter, we have learned several important lessons about processor
design:

. Managing complexity is a top priority. We want to make optimum use of the
hardware resources to get maximum performance at minimum cost. We did
this by creating a very simple and uniform framework for processing all of the
different instruction types. With this framework, we could share the hardware
units among the logic for processing the different instruction types.

. We do not need to implement the ISA directly. A direct implementation of the
ISA would imply a very sequential design. To achieve higher performance,
we want to exploit the ability in hardware to perform many operations si-
multaneously. This led to the use of a pipelined design. By careful design and
analysis, we can handle the various pipeline hazards, so that the overall effect
of running a program exactly matches what would be obtained with the ISA
model.

. Hardware designers must be meticulous. Once a chip has been fabricated,
it is nearly impossible to correct any errors. It is very important to get the
design right on the first try. This means carefully analyzing different instruction
types and combinations, even ones that do not seem to make sense, such
as popping to the stack pointer. Designs must be thoroughly tested with
systematic simulation test programs. In developing the control logic for PIPE,
our design had a subtle bug that was uncovered only after a careful and
systematic analysis of control combinations.

Web Aside ARCH:HCL HCL descriptions of Y86 processors

In this chapter, we have looked at portions of the HCL code for several simple logic designs, and for
the control logic for Y86 processors SEQ and PIPE. For reference, we provide documentation of the
HCL language and complete HCL descriptions for the control logic of the two processors. Each of
these descriptions requires only 5–7 pages of HCL code, and it is worthwhile to study them in their
entirety.

4.6.1 Y86 Simulators

The lab materials for this chapter include simulators for the SEQ and PIPE
processors. Each simulator has two versions:

. The GUI (graphic user interface) version displays the memory, program code,
and processor state in graphic windows. This provides a way to readily see how
the instructions flow through the processors. The control panel also allows you
to reset, single-step, or run the simulator interactively.

. The text version runs the same simulator, but it only displays information by
printing to the terminal. This version is not as useful for debugging, but it
allows automated testing of the processor.

Homework Problems 451

The control logic for the simulators is generated by translating the HCL
declarations of the logic blocks into C code. This code is then compiled and linked
with the rest of the simulation code. This combination makes it possible for you
to test out variants of the original designs using the simulators. Testing scripts are
also available that thoroughly exercise the different instructions and the different
hazard possibilities.

Bibliographic Notes

For those interested in learning more about logic design, Katz’s logic design
textbook [56] is a standard introductory text, emphasizing the use of hardware
description languages.

Hennessy and Patterson’s computer architecture textbook [49] provides ex-
tensive coverage of processor design, including both simple pipelines, such as the
one we have presented here, and more advanced processors that execute more
instructions in parallel. Shriver and Smith [97] give a very thorough presentation
of an Intel-compatible IA32 processor manufactured by AMD.

Homework Problems

4.43 ◆
In Section 3.4.2, the IA32 pushl instruction was described as decrementing the
stack pointer and then storing the register at the stack pointer location. So, if
we had an instruction of the form pushl REG, for some register REG, it would be
equivalent to the code sequence:

subl $4,%esp Decrement stack pointer

movl REG,(%esp) Store REG on stack

A. In light of analysis done in Problem 4.6, does this code sequence correctly
describe the behavior of the instruction pushl %esp? Explain.

B. How could you rewrite the code sequence so that it correctly describes both
the cases where REG is %esp as well as any other register?

4.44 ◆
In Section 3.4.2, the IA32popl instruction was described as copying the result from
the top of the stack to the destination register and then incrementing the stack
pointer. So, if we had an instruction of the form popl REG, it would be equivalent
to the code sequence:

movl (%esp),REG Read REG from stack

addl $4,%esp Increment stack pointer

A. In light of analysis done in Problem 4.7, does this code sequence correctly
describe the behavior of the instruction popl %esp? Explain.

452 Chapter 4 Processor Architecture

B. How could you rewrite the code sequence so that it correctly describes both
the cases where REG is %esp as well as any other register?

4.45 ◆◆◆
Your assignment will be to write a Y86 program to perform bubblesort. For ref-
erence, the following C function implements bubblesort using array referencing:

/* Bubble sort: Array version */

void bubble_a(int *data, int count) {

int i, last;

for (last = count-1; last > 0; last--) {

for (i = 0; i < last; i++)

if (data[i+1] < data[i]) {

/* Swap adjacent elements */

int t = data[i+1];

data[i+1] = data[i];

data[i] = t;

}

}

}

A. Write and test a C version that references the array elements with pointers,
rather than using array indexing.

B. Write and test a Y86 program consisting of the function and test code. You
may find it useful to pattern your implementation after IA32 code generated
by compiling your C code. Although pointer comparisons are normally done
using unsigned arithmetic, you can use signed arithmetic for this exercise.

4.46 ◆◆
Modify the code you wrote for Problem 4.46 to implement the test and swap in
the inner loop of the bubblesort function using conditional moves.

4.47 ◆
In our example Y86 programs, such as the Sum function shown in Figure 4.6, we
encounter many cases (e.g., lines 12 and 13 and lines 14 and 15) in which we want
to add a constant value to a register. This requires first using an irmovl instruction
to set a register to the constant, and then an addl instruction to add this value to
the destination register. Suppose we want to add a new instruction iaddlwith the
following format:

0

C

Byte

iaddl V, rB

1 2 3 4 5

0 F rB V

This instruction adds the constant value V to register rB. Describe the computa-
tions performed to implement this instruction. Use the computations for irmovl
and OPl (Figure 4.18) as a guide.

Homework Problems 453

4.48 ◆
As described in Section 3.7.2, the IA32 instruction leave can be used to prepare
the stack for returning. It is equivalent to the following Y86 code sequence:

1 rrmovl %ebp, %esp Set stack pointer to beginning of frame

2 popl %ebp Restore saved %ebp and set stack ptr to end of caller’s frame

Suppose we add this instruction to the Y86 instruction set, using the following
encoding:

0

D

Byte

leave

1 2 3 4 5

0

Describe the computations performed to implement this instruction. Use the
computations for popl (Figure 4.20) as a guide.

4.49 ◆◆
The file seq-full.hcl contains the HCL description for SEQ, along with the dec-
laration of a constant IIADDL having hexadecimal value C, the instruction code for
iaddl. Modify the HCL descriptions of the control logic blocks to implement the
iaddl instruction, as described in Homework Problem 4.47. See the lab material
for directions on how to generate a simulator for your solution and how to test it.

4.50 ◆◆
The file seq-full.hcl also contains the declaration of a constant ILEAVE having
hexadecimal value D, the instruction code for leave, as well as the declaration
of a constant REBP having value 7, the register ID for %ebp. Modify the HCL
descriptions of the control logic blocks to implement the leave instruction, as
described in Homework Problem 4.48. See the lab material for directions on how
to generate a simulator for your solution and how to test it.

4.51 ◆◆◆
Suppose we wanted to create a lower-cost pipelined processor based on the struc-
ture we devised for PIPE– (Figure 4.41), without any bypassing. This design would
handle all data dependencies by stalling until the instruction generating a needed
value has passed through the write-back stage.

The file pipe-stall.hcl contains a modified version of the HCL code for
PIPE in which the bypassing logic has been disabled. That is, the signals e_valA
and e_valB are simply declared as follows:

DO NOT MODIFY THE FOLLOWING CODE.

No forwarding. valA is either valP or value from register file

int d_valA = [

D_icode in { ICALL, IJXX } : D_valP; # Use incremented PC

1 : d_rvalA; # Use value read from register file

];

No forwarding. valB is value from register file

int d_valB = d_rvalB;

454 Chapter 4 Processor Architecture

Modify the pipeline control logic at the end of this file so that it correctly handles
all possible control and data hazards. As part of your design effort, you should
analyze the different combinations of control cases, as we did in the design of the
pipeline control logic for PIPE. You will find that many different combinations
can occur, since many more conditions require the pipeline to stall. Make sure
your control logic handles each combination correctly. See the lab material for
directions on how to generate a simulator for your solution and how to test it.

4.52 ◆◆
The file pipe-full.hcl contains a copy of the PIPE HCL description, along with a
declaration of the constant value IIADDL. Modify this file to implement the iaddl
instruction, as described in Homework Problem 4.47. See the lab material for
directions on how to generate a simulator for your solution and how to test it.

4.53 ◆◆◆
The file pipe-full.hcl also contains declarations of constants ILEAVE and REBP.
Modify this file to implement the leave instruction, as described in Homework
Problem 4.48. See the lab material for directions on how to generate a simulator
for your solution and how to test it.

4.54 ◆◆◆
The file pipe-nt.hcl contains a copy of the HCL code for PIPE, plus a declaration
of the constant J_YES with value 0, the function code for an unconditional jump
instruction. Modify the branch prediction logic so that it predicts conditional
jumps as being not-taken while continuing to predict unconditional jumps and
call as being taken. You will need to devise a way to get valC, the jump target
address, to pipeline register M to recover from mispredicted branches. See the lab
material for directions on how to generate a simulator for your solution and how
to test it.

4.55 ◆◆◆
The file pipe-btfnt.hcl contains a copy of the HCL code for PIPE, plus a decla-
ration of the constant J_YES with value 0, the function code for an unconditional
jump instruction. Modify the branch prediction logic so that it predicts conditional
jumps as being taken when valC < valP (backward branch) and as being not-taken
when valC ≥ valP (forward branch). (Since Y86 does not support unsigned arith-
metic, you should implement this test using a signed comparison.) Continue to
predict unconditional jumps and call as being taken. You will need to devise a
way to get both valC and valP to pipeline register M to recover from mispredicted
branches. See the lab material for directions on how to generate a simulator for
your solution and how to test it.

4.56 ◆◆◆
In our design of PIPE, we generate a stall whenever one instruction performs a
load, reading a value from memory into a register, and the next instruction has
this register as a source operand. When the source gets used in the execute stage,
this stalling is the only way to avoid a hazard.

Homework Problems 455

For cases where the second instruction stores the source operand to memory,
such as with an rmmovl or pushl instruction, this stalling is not necessary. Consider
the following code examples:

1 mrmovl 0(%ecx),%edx # Load 1

2 pushl %edx # Store 1

3 nop

4 popl %edx # Load 2

5 rmmovl %eax,0(%edx) # Store 2

In lines 1 and 2, the mrmovl instruction reads a value from memory into
%edx, and the pushl instruction then pushes this value onto the stack. Our design
for PIPE would stall the pushl instruction to avoid a load/use hazard. Observe,
however, that the value of %edx is not required by the pushl instruction until it
reaches the memory stage. We can add an additional bypass path, as diagrammed
in Figure 4.69, to forward the memory output (signal m_valM) to the valA field

e_Cnd

E_icode

W_stat

m_stat

M_dstM

E_srcA

m_valM

E_valA

W icodestat

stat

stat

valE valM dstE dstM

M icode Cnd valE valA dstE dstM

E icode ifun valC valA valB dstM srcA srcB

ALU
A

Set
CC

ALU
B

ALU
fun.ALUCC

cond

data out

data in

read

dmem_error

write

Addr

Fwd A

Mem.
read

Mem.
write

stat

dstE

dstE

Data
memory

Figure 4.69 Execute and memory stages capable of load forwarding. By adding a
bypass path from the memory output to the source of valA in pipeline register M, we can
use forwarding rather than stalling for one form of load/use hazard. This is the subject
of Homework Problem 4.56.

456 Chapter 4 Processor Architecture

in pipeline register M. On the next clock cycle, this forwarded value can then be
written to memory. This technique is known as load forwarding.

Note that the second example (lines 4 and 5) in the code sequence above
cannot make use of load forwarding. The value loaded by the popl instruction is
used as part of the address computation by the next instruction, and this value is
required in the execute stage rather than the memory stage.

A. Write a logic formula describing the detection condition for a load/use haz-
ard, similar to the one given in Figure 4.64, except that it will not cause a
stall in cases where load forwarding can be used.

B. The file pipe-lf.hcl contains a modified version of the control logic for
PIPE. It contains the definition of a signal e_valA to implement the block
labeled “Fwd A” in Figure 4.69. It also has the conditions for a load/use haz-
ard in the pipeline control logic set to zero, and so the pipeline control logic
will not detect any forms of load/use hazards. Modify this HCL description
to implement load forwarding. See the lab material for directions on how to
generate a simulator for your solution and how to test it.

4.57 ◆◆◆
Our pipelined design is a bit unrealistic in that we have two write ports for the
register file, but only the popl instruction requires two simultaneous writes to the
register file. The other instructions could therefore use a single write port, sharing
this for writing valE and valM. The following figure shows a modified version of the
write-back logic, in which we merge the write-back register IDs (W_dstE and W_
dstM) into a single signal w_dstE and the write-back values (W_valE and W_valM)
into a single signal w_valE:

Stat

stat

W icode valE valM dstE dstM

valE

dstE

w_valE

w_dstE

W_icode

stat

The logic for performing the merges is written in HCL as follows:

Set E port register ID

int w_dstE = [

writing from valM

W_dstM != RNONE : W_dstM;

1: W_dstE;

];

Set E port value

int w_valE = [

W_dstM != RNONE : W_valM;

1: W_valE;

];

Solutions to Practice Problems 457

The control for these multiplexors is determined by dstE—when it indicates
there is some register, then it selects the value for port E, and otherwise it selects
the value for port M.

In the simulation model, we can then disable register port M, as shown by the
following HCL code:

Disable register port M

Set M port register ID

int w_dstM = RNONE;

Set M port value

int w_valM = 0;

The challenge then becomes to devise a way to handle popl. One method is
to use the control logic to dynamically process the instruction popl rA so that it
has the same effect as the two-instruction sequence

iaddl $4, %esp

mrmovl -4(%esp), rA

(See Homework Problem 4.47 for a description of the iaddl instruction.) Note the
ordering of the two instructions to make sure popl %esp works properly. You can
do this by having the logic in the decode stage treat popl the same as it would the
iaddl listed above, except that it predicts the next PC to be equal to the current
PC. On the next cycle, the popl instruction is refetched, but the instruction code
is converted to a special value IPOP2. This is treated as a special instruction that
has the same behavior as the mrmovl instruction listed above.

The file pipe-1w.hcl contains the modified write-port logic described above.
It contains a declaration of the constant IPOP2 having hexadecimal value E. It
also contains the definition of a signal f_icode that generates the icode field for
pipeline register D. This definition can be modified to insert the instruction code
IPOP2 the second time the popl instruction is fetched. The HCL file also contains
a declaration of the signal f_pc, the value of the program counter generated in the
fetch stage by the block labeled “Select PC” (Figure 4.55).

Modify the control logic in this file to process popl instructions in the manner
we have described. See the lab material for directions on how to generate a
simulator for your solution and how to test it.

4.58 ◆◆
Compare the performance of the two versions of bubblesort (Problems 4.45 and
4.46). Explain why one version performs better than the other.

Solutions to Practice Problems

Solution to Problem 4.1 (page 341)
Encoding instructions by hand is rather tedious, but it will solidify your under-
standing of the idea that assembly code gets turned into byte sequences by the
assembler. In the following output from our Y86 assembler, each line shows an
address and a byte sequence that starts at that address:

458 Chapter 4 Processor Architecture

1 0x100: | .pos 0x100 # Start code at address 0x100

2 0x100: 30f30f000000 | irmovl $15,%ebx # Load 15 into %ebx

3 0x106: 2031 | rrmovl %ebx,%ecx # Copy 15 to %ecx

4 0x108: | loop: # loop:

5 0x108: 4013fdffffff | rmmovl %ecx,-3(%ebx) # Save %ecx at address 15-3 = 12

6 0x10e: 6031 | addl %ebx,%ecx # Increment %ecx by 15

7 0x110: 7008010000 | jmp loop # Goto loop

Several features of this encoding are worth noting:

. Decimal 15 (line 2) has hex representation 0x0000000f. Writing the bytes in
reverse order gives 0f 00 00 00.

. Decimal −3 (line 5) has hex representation 0xfffffffd. Writing the bytes in
reverse order gives fd ff ff ff.

. The code starts at address 0x100. The first instruction requires 6 bytes, while
the second requires 2. Thus, the loop target will be 0x00000108. Writing these
bytes in reverse order gives 08 01 00 00.

Solution to Problem 4.2 (page 341)
Decoding a byte sequence by hand helps you understand the task faced by a
processor. It must read byte sequences and determine what instructions are to
be executed. In the following, we show the assembly code used to generate each
of the byte sequences. To the left of the assembly code, you can see the address
and byte sequence for each instruction.

A. Some operations with immediate data and address displacements:

0x100: 30f3fcffffff | irmovl $-4,%ebx

0x106: 406300080000 | rmmovl %esi,0x800(%ebx)

0x10c: 00 | halt

B. Code including a function call:

0x200: a06f | pushl %esi

0x202: 8008020000 | call proc

0x207: 00 | halt

0x208: | proc:

0x208: 30f30a000000 | irmovl $10,%ebx

0x20e: 90 | ret

C. Code containing illegal instruction specifier byte 0xf0:

0x300: 505407000000 | mrmovl 7(%esp),%ebp

0x306: 10 | nop

0x307: f0 | .byte 0xf0 # invalid instruction code

0x308: b01f | popl %ecx

Solutions to Practice Problems 459

D. Code containing a jump operation:

0x400: | loop:

0x400: 6113 | subl %ecx, %ebx

0x402: 7300040000 | je loop

0x407: 00 | halt

E. Code containing an invalid second byte in a pushl instruction:

0x500: 6362 | xorl %esi,%edx

0x502: a0 | .byte 0xa0 # pushl instruction code

0x503: f0 | .byte 0xf0 # Invalid register specifier byte

Solution to Problem 4.3 (page 350)
As suggested in the problem, we adapted the code generated by gcc for an IA32
machine:

int Sum(int *Start, int Count)

rSum: pushl %ebp

rrmovl %esp,%ebp

pushl %ebx # Save value of %ebx

mrmovl 8(%ebp),%ebx # Get Start

mrmovl 12(%ebp),%eax # Get Count

andl %eax,%eax # Test value of Count

jle L38 # If <= 0, goto zreturn

irmovl $-1,%edx

addl %edx,%eax # Count--

pushl %eax # Push Count

irmovl $4,%edx

rrmovl %ebx,%eax

addl %edx,%eax

pushl %eax # Push Start+1

call rSum # Sum(Start+1, Count-1)

mrmovl (%ebx),%edx

addl %edx,%eax # Add *Start

jmp L39 # goto done

L38: xorl %eax,%eax # zreturn:

L39: mrmovl -4(%ebp),%ebx # done: Restore %ebx

rrmovl %ebp,%esp # Deallocate stack frame

popl %ebp # Restore %ebp

ret

Solution to Problem 4.4 (page 350)
This problem gives you a chance to try your hand at writing assembly code.

int AbsSum(int *Start, int Count)

1 AbsSum:

2 pushl %ebp

460 Chapter 4 Processor Architecture

3 rrmovl %esp,%ebp

4 mrmovl 8(%ebp),%ecx ecx = Start

5 mrmovl 12(%ebp),%edx edx = Count

6 irmovl $0, %eax sum = 0

7 andl %edx,%edx

8 je End

9 Loop:

10 mrmovl (%ecx),%esi get x = *Start

11 irmovl $0,%edi 0

12 subl %esi,%edi -x

13 jle Pos Skip if -x <= 0

14 rrmovl %edi,%esi x = -x

15 Pos:

16 addl %esi,%eax add x to sum

17 irmovl $4,%ebx

18 addl %ebx,%ecx Start++

19 irmovl $-1,%ebx

20 addl %ebx,%edx Count--

21 jne Loop Stop when 0

22 End:

23 popl %ebp

24 ret

Solution to Problem 4.5 (page 350)
This problem gives you a chance to try your hand at writing assembly code with
conditional moves. We show only the code for the loop. The rest is the same as for
Problem 4.4:

9 Loop:

10 mrmovl (%ecx),%esi get x = *Start

11 irmovl $0,%edi 0

12 subl %esi,%edi -x

13 cmovg %edi,%esi if -x > 0 then x = -x

14 addl %esi,%eax add x to sum

15 irmovl $4,%ebx

16 addl %ebx,%ecx Start++

17 irmovl $-1,%ebx

18 addl %ebx,%edx Count--

19 jne Loop Stop when 0

Solution to Problem 4.6 (page 350)
Although it is hard to imagine any practical use for this particular instruction, it is
important when designing a system to avoid any ambiguities in the specification.
We want to determine a reasonable convention for the instruction’s behavior and
make sure each of our implementations adheres to this convention.

The subl instruction in this test compares the starting value of %esp to the
value pushed onto the stack. The fact that the result of this subtraction is zero
implies that the old value of %esp gets pushed.

Solutions to Practice Problems 461

Solution to Problem 4.7 (page 351)
It is even more difficult to imagine why anyone would want to pop to the stack
pointer. Still, we should decide on a convention and stick with it. This code
sequence pushes 0xabcd onto the stack, pops to %esp, and returns the popped
value. Since the result equals 0xabcd, we can deduce that popl %esp sets the stack
pointer to the value read from memory. It is therefore equivalent to the instruction
mrmovl (%esp),%esp.

Solution to Problem 4.8 (page 354)
The Exclusive-Or function requires that the 2 bits have opposite values:

bool xor = (!a && b) || (a && !b);

In general, the signals eq and xor will be complements of each other. That is, one
will equal 1 whenever the other is 0.

Solution to Problem 4.9 (page 356)
The outputs of the Exclusive-Or circuits will be the complements of the bit equal-
ity values. Using DeMorgan’s laws (Web Aside data:bool), we can implement
And using Or and Not, yielding the following circuit:

Xor

Xor

Xor

Xor

b31

a31

b30

a30

b1

a1

b0

a0

! eq31

! eq1

! eq0

! eq30

Eq

. . .

. . .

Solution to Problem 4.10 (page 359)
This design is a simple variant of the one to find the minimum of the three inputs:

int Med3 = [

A <= B && B <= C : B;

C <= B && B <= A : B;

B <= A && A <= C : A;

C <= A && A <= B : A;

1 : C;

];

462 Chapter 4 Processor Architecture

Solution to Problem 4.11 (page 367)
These exercises help make the stage computations more concrete. We can see
from the object code that this instruction is located at address 0x00e. It consists of
6 bytes, with the first two being 0x30 and 0x84. The last 4 bytes are a byte-reversed
version of 0x00000080 (decimal 128).

Generic Specific
Stage irmovl V, rB irmovl $128, %esp

Fetch icode : ifun ← M1[PC] icode : ifun ← M1[0x00e] = 3 : 0
rA : rB ← M1[PC + 1] rA : rB ← M1[0x00f] = 8 : 4
valC ← M4[PC + 2] valC ← M4[0x010] = 128
valP ← PC + 6 valP ← 0x00e+ 6 = 0x014

Decode

Execute valE ← 0 + valC valE ← 0 + 128= 128

Memory

Write back R[rB] ← valE R[%esp] ← valE = 128

PC update PC ← valP PC ← valP = 0x014

This instruction sets register %esp to 128 and increments the PC by 6.

Solution to Problem 4.12 (page 371)
We can see that the instruction is located at address 0x01c and consists of 2 bytes
with values 0xb0 and 0x08. Register %esp was set to 124 by the pushl instruction
(line 6), which also stored 9 at this memory location.

Generic Specific
Stage popl rA popl %eax

Fetch icode : ifun ← M1[PC] icode : ifun ← M1[0x01c] = b : 0
rA : rB ← M1[PC + 1] rA : rB ← M1[0x01d] = 0 : 8

valP ← PC + 2 valP ← 0x01c+ 2 = 0x01e
Decode valA ← R[%esp] valA ← R[%esp] = 124

valB ← R[%esp] valB ← R[%esp] = 124
Execute valE ← valB + 4 valE ← 124+ 4 = 128

Solutions to Practice Problems 463

Memory valM ← M4[valA] valM ← M4[124] = 9
Write back R[%esp] ← valE R[%esp] ← 128

R[rA] ← valM R[%eax] ← 9
PC update PC ← valP PC ← 0x01e

The instruction sets %eax to 9, sets %esp to 128, and increments the PC by 2.

Solution to Problem 4.13 (page 372)
Tracing the steps listed in Figure 4.20 with rA equal to %esp, we can see that in
the memory stage, the instruction will store valA, the original value of the stack
pointer, to memory, just as we found for IA32.

Solution to Problem 4.14 (page 372)
Tracing the steps listed in Figure 4.20 with rA equal to %esp, we can see that both
of the write-back operations will update %esp. Since the one writing valM would
occur last, the net effect of the instruction will be to write the value read from
memory to %esp, just as we saw for IA32.

Solution to Problem 4.15 (page 373)
Implementing conditional moves requires only minor changes from register-to-
register moves. We simply condition the write-back step on the outcome of the
conditional test:

Stage cmovXX rA, rB

Fetch icode : ifun ← M1[PC]
rA : rB ← M1[PC + 1]
valP ← PC + 2

Decode valA ← R[rA]

Execute valE ← 0 + valA
Cnd ← Cond(CC, ifun)

Memory

Write back if (Cnd)
R[rB] ← valE

PC update PC ← valP

Solution to Problem 4.16 (page 374)
We can see that this instruction is located at address 0x023 and is 5 bytes long.
The first byte has value 0x80, while the last four are a byte-reversed version
of 0x00000029, the call target. The stack pointer was set to 128 by the popl
instruction (line 7).

464 Chapter 4 Processor Architecture

Generic Specific
Stage call Dest call 0x029

Fetch icode : ifun ← M1[PC] icode : ifun ← M1[0x023] = 8 : 0

valC ← M4[PC + 1] valC ← M4[0x024] = 0x029
valP ← PC + 5 valP ← 0x023+ 5 = 0x028

Decode
valB ← R[%esp] valB ← R[%esp] = 128

Execute valE ← valB + −4 valE ← 128+ −4 = 124

Memory M4[valE] ← valP M4[124] ← 0x028
Write back R[%esp] ← valE R[%esp] ← 124

PC update PC ← valC PC ← 0x029

The effect of this instruction is to set %esp to 124, to store 0x028 (the return
address) at this memory address, and to set the PC to 0x029 (the call target).

Solution to Problem 4.17 (page 384)
All of the HCL code in this and other practice problems is straightforward, but
trying to generate it yourself will help you think about the different instructions
and how they are processed. For this problem, we can simply look at the set of
Y86 instructions (Figure 4.2) and determine which have a constant field.

bool need_valC =

icode in { IIRMOVL, IRMMOVL, IMRMOVL, IJXX, ICALL };

Solution to Problem 4.18 (page 386)
This code is similar to the code for srcA.

int srcB = [

icode in { IOPL, IRMMOVL, IMRMOVL } : rB;

icode in { IPUSHL, IPOPL, ICALL, IRET } : RESP;

1 : RNONE; # Don’t need register

];

Solution to Problem 4.19 (page 387)
This code is similar to the code for dstE.

int dstM = [

icode in { IMRMOVL, IPOPL } : rA;

1 : RNONE; # Don’t write any register

];

Solutions to Practice Problems 465

Solution to Problem 4.20 (page 387)
As we found in Practice Problem 4.14, we want the write via the M port to take
priority over the write via the E port in order to store the value read from memory
into %esp.

Solution to Problem 4.21 (page 388)
This code is similar to the code for aluA.

int aluB = [

icode in { IRMMOVL, IMRMOVL, IOPL, ICALL,

IPUSHL, IRET, IPOPL } : valB;

icode in { IRRMOVL, IIRMOVL } : 0;

Other instructions don’t need ALU

];

Solution to Problem 4.22 (page 389)
Implementing conditional moves is surprisingly simple: we disable writing to the
register file by setting the destination register to RNONE when the condition does
not hold.

int dstE = [

icode in { IRRMOVL } && Cnd : rB;

icode in { IIRMOVL, IOPL} : rB;

icode in { IPUSHL, IPOPL, ICALL, IRET } : RESP;

1 : RNONE; # Don’t write any register

];

Solution to Problem 4.23 (page 389)
This code is similar to the code for mem_addr.

int mem_data = [

Value from register

icode in { IRMMOVL, IPUSHL } : valA;

Return PC

icode == ICALL : valP;

Default: Don’t write anything

];

Solution to Problem 4.24 (page 390)
This code is similar to the code for mem_read.

bool mem_write = icode in { IRMMOVL, IPUSHL, ICALL };

Solution to Problem 4.25 (page 390)
Computing the Stat field requires collecting status information from several stages:

466 Chapter 4 Processor Architecture

Determine instruction status

int Stat = [

imem_error || dmem_error : SADR;

!instr_valid: SINS;

icode == IHALT : SHLT;

1 : SAOK;

];

Solution to Problem 4.26 (page 396)
This problem is an interesting exercise in trying to find the optimal balance among
a set of partitions. It provides a number of opportunities to compute throughputs
and latencies in pipelines.

A. For a two-stage pipeline, the best partition would be to have blocks A, B,
and C in the first stage and D, E, and F in the second. The first stage has
a delay 170 ps, giving a total cycle time of 170 + 20 = 190 picoseconds. We
therefore have a throughput of 5.26 GOPS and a latency of 380 ps.

B. For a three-stage pipeline, we should have blocks A and B in the first stage,
blocks C and D in the second, and blocks E and F in the third. The first
two stages have a delay of 110 ps, giving a total cycle time of 130 ps and a
throughput of 7.69 GOPS. The latency is 390 ps.

C. For a four-stage pipeline, we should have block A in the first stage, blocks B
and C in the second, block D in the third, and blocks E and F in the fourth.
The second stage requires 90 ps, giving a total cycle time of 110 ps and a
throughput of 9.09 GOPS. The latency is 440 ps.

D. The optimal design would be a five-stage pipeline, with each block in its
own stage, except that the fifth stage has blocks E and F. The cycle time is
80 + 20 = 100 picoseconds, for a throughput of around 10.00 GOPS and a
latency of 500 ps. Adding more stages would not help, since we cannot run
the pipeline any faster than one cycle every 100 ps.

Solution to Problem 4.27 (page 398)
Each stage would have combinational logic requiring 300/k ps, and a pipeline
register requiring 20 ps.

A. The total latency would be 300 + 20k ps, while the throughput (in GIPS)
would be

1000
300
k

+ 20
= 1000k

300 + 20K

B. As we let k go to infinity, the throughput becomes 1000/20 = 50 GIPS. Of
course, this would give us an infinite latency, as well.

This exercise quantifies the diminishing returns of deep pipelining. As we try to
subdivide the logic into many stages, the latency of the pipeline registers becomes
a limiting factor.

Solutions to Practice Problems 467

Solution to Problem 4.28 (page 425)
This code is very similar to the corresponding code for SEQ, except that we cannot
yet determine whether the data memory will generate an error signal for this
instruction.

Determine status code for fetched instruction

int f_stat = [

imem_error: SADR;

!instr_valid : SINS;

f_icode == IHALT : SHLT;

1 : SAOK;

];

Solution to Problem 4.29 (page 426)
This code simply involves prefixing the signal names in the code for SEQ with
“d_” and “D_”.

int d_dstE = [

D_icode in { IRRMOVL, IIRMOVL, IOPL} : D_rB;

D_icode in { IPUSHL, IPOPL, ICALL, IRET } : RESP;

1 : RNONE; # Don’t write any register

];

Solution to Problem 4.30 (page 429)
The rrmovl instruction (line 5) would stall for one cycle due to a load-use hazard
caused by the popl instruction (line 4). As it enters the decode stage, the popl
instruction would be in the memory stage, giving both M_dstE and M_dstM equal
to %esp. If the two cases were reversed, then the write back from M_valE would
take priority, causing the incremented stack pointer to be passed as the argument
to the rrmovl instruction. This would not be consistent with the convention for
handling popl %esp determined in Practice Problem 4.7.

Solution to Problem 4.31 (page 429)
This problem lets you experience one of the important tasks in processor design—
devising test programs for a new processor. In general, we should have test pro-
grams that will exercise all of the different hazard possibilities and will generate
incorrect results if some dependency is not handled properly.

For this example, we can use a slightly modified version of the program shown
in Practice Problem 4.30:

1 irmovl $5, %edx

2 irmovl $0x100,%esp

3 rmmovl %edx,0(%esp)

4 popl %esp

5 nop

6 nop

7 rrmovl %esp,%eax

468 Chapter 4 Processor Architecture

The two nop instructions will cause the popl instruction to be in the write-back
stage when the rrmovl instruction is in the decode stage. If the two forwarding
sources in the write-back stage are given the wrong priority, then register %eax
will be set to the incremented program counter rather than the value read from
memory.

Solution to Problem 4.32 (page 429)
This logic only needs to check the five forwarding sources:

int d_valB = [

d_srcB == e_dstE : e_valE; # Forward valE from execute

d_srcB == M_dstM : m_valM; # Forward valM from memory

d_srcB == M_dstE : M_valE; # Forward valE from memory

d_srcB == W_dstM : W_valM; # Forward valM from write back

d_srcB == W_dstE : W_valE; # Forward valE from write back

1 : d_rvalB; # Use value read from register file

];

Solution to Problem 4.33 (page 430)
This change would not handle the case where a conditional move fails to satisfy
the condition, and therefore sets the dstE value to RNONE. The resulting value could
get forwarded to the next instruction, even though the conditional transfer does
not occur.

1 irmovl $0x123,%eax

2 irmovl $0x321,%edx

3 xorl %ecx,%ecx # CC = 100

4 cmovne %eax,%edx # Not transferred

5 addl %edx,%edx # Should be 0x642

6 halt

This code initializes register %edx to 0x321. The conditional data transfer does not
take place, and so the final addl instruction should double the value in %edx to
0x642. With the altered design, however, the conditional move source value 0x321
gets forwarded into ALU input valA, while input valB correctly gets operand value
0x123. These inputs get added to produce result 0x444.

Solution to Problem 4.34 (page 431)
This code completes the computation of the status code for this instruction.

Update the status

int m_stat = [

dmem_error : SADR;

1 : M_stat;

];

Solution to Problem 4.35 (page 439)
The following test program is designed to set up control combination A (Fig-
ure 4.67) and detect whether something goes wrong:

Solutions to Practice Problems 469

1 # Code to generate a combination of not-taken branch and ret

2 irmovl Stack, %esp

3 irmovl rtnp,%eax

4 pushl %eax # Set up return pointer

5 xorl %eax,%eax # Set Z condition code

6 jne target # Not taken (First part of combination)

7 irmovl $1,%eax # Should execute this

8 halt

9 target: ret # Second part of combination

10 irmovl $2,%ebx # Should not execute this

11 halt

12 rtnp: irmovl $3,%edx # Should not execute this

13 halt

14 .pos 0x40

15 Stack:

This program is designed so that if something goes wrong (for example, if the
ret instruction is actually executed), then the program will execute one of the
extra irmovl instructions and then halt. Thus, an error in the pipeline would cause
some register to be updated incorrectly. This code illustrates the care required to
implement a test program. It must set up a potential error condition and then
detect whether or not an error occurs.

Solution to Problem 4.36 (page 440)
The following test program is designed to set up control combination B (Fig-
ure 4.67). The simulator will detect a case where the bubble and stall control signals
for a pipeline register are both set to zero, and so our test program need only set
up the combination for it to be detected. The biggest challenge is to make the
program do something sensible when handled correctly.

1 # Test instruction that modifies %esp followed by ret

2 irmovl mem,%ebx

3 mrmovl 0(%ebx),%esp # Sets %esp to point to return point

4 ret # Returns to return point

5 halt #

6 rtnpt: irmovl $5,%esi # Return point

7 halt

8 .pos 0x40

9 mem: .long stack # Holds desired stack pointer

10 .pos 0x50

11 stack: .long rtnpt # Top of stack: Holds return point

This program uses two initialized word in memory. The first word (mem) holds the
address of the second (stack—the desired stack pointer). The second word holds
the address of the desired return point for the ret instruction. The program loads
the stack pointer into %esp and executes the ret instruction.

470 Chapter 4 Processor Architecture

Solution to Problem 4.37 (page 441)
From Figure 4.66, we can see that pipeline register D must be stalled for a load/use
hazard.

bool D_stall =

Conditions for a load/use hazard

E_icode in { IMRMOVL, IPOPL } &&

E_dstM in { d_srcA, d_srcB };

Solution to Problem 4.38 (page 442)
From Figure 4.66, we can see that pipeline register E must be set to bubble for a
load/use hazard or for a mispredicted branch:

bool E_bubble =

Mispredicted branch

(E_icode == IJXX && !e_Cnd) ||

Conditions for a load/use hazard

E_icode in { IMRMOVL, IPOPL } &&

E_dstM in { d_srcA, d_srcB};

Solution to Problem 4.39 (page 442)
This control requires examining the code of the executing instruction and checking
for exceptions further down the pipeline.

Should the condition codes be updated?

bool set_cc = E_icode == IOPL &&

State changes only during normal operation

!m_stat in { SADR, SINS, SHLT } && !W_stat in { SADR, SINS, SHLT };

Solution to Problem 4.40 (page 442)
Injecting a bubble into the memory stage on the next cycle involves checking for
an exception in either the memory or the write-back stage during the current cycle.

Start injecting bubbles as soon as exception passes through memory stage

bool M_bubble = m_stat in { SADR, SINS, SHLT } || W_stat in { SADR, SINS, SHLT };

For stalling the write-back stage, we check only the status of the instruction
in this stage. If we also stalled when an excepting instruction was in the memory
stage, then this instruction would not be able to enter the write-back stage.

bool W_stall = W_stat in { SADR, SINS, SHLT };

Solution to Problem 4.41 (page 446)
We would then have a misprediction frequency of 0.35, giving mp = 0.20 × 0.35 ×
2 = 0.14, giving an overall CPI of 1.25. This seems like a fairly marginal gain, but
it would be worthwhile if the cost of implementing the new branch prediction
strategy were not too high.

Solutions to Practice Problems 471

Solution to Problem 4.42 (page 446)
This simplified analysis, where we focus on the inner loop, is a useful way to
estimate program performance. As long as the array is sufficiently large, the time
spent in other parts of the code will be negligible.

A. The inner loop of the code using the conditional jump has 11 instructions, all
of which are executed when the array element is zero or negative, and 10 of
which are executed when the array element is positive. The average is 10.5.
The inner loop of the code using the conditional move has 10 instructions,
all of which are executed every time.

B. The loop-closing jump will be predicted correctly, except when the loop
terminates. For a very long array, this one misprediction will have negligible
effect on the performance. The only other source of bubbles for the jump-
based code is the conditional jump depending on whether or not the array
element is positive. This will cause two bubbles, but it only occurs 50% of
the time, so the average is 1.0. There are no bubbles in the conditional move
code.

C. Our conditional jump code requires an average of 10.5 + 1.0 = 11.5 cycles
per array element (11 cycles in the best case and 12 cycles in the worst),
while our conditional move code requires 10.0 cycles in all cases.

Our pipeline has a branch misprediction penalty of only two cycles—far better
than those for the deep pipelines of higher-performance processors. As a result,
using conditional moves does not affect program performance very much.

This page intentionally left blank

C H A P T E R 5
Optimizing Program
Performance

5.1 Capabilities and Limitations of Optimizing Compilers 476

5.2 Expressing Program Performance 480

5.3 Program Example 482

5.4 Eliminating Loop Inefficiencies 486

5.5 Reducing Procedure Calls 490

5.6 Eliminating Unneeded Memory References 491

5.7 Understanding Modern Processors 496

5.8 Loop Unrolling 509

5.9 Enhancing Parallelism 513

5.10 Summary of Results for Optimizing Combining Code 524

5.11 Some Limiting Factors 525

5.12 Understanding Memory Performance 531

5.13 Life in the Real World: Performance Improvement Techniques 539

5.14 Identifying and Eliminating Performance Bottlenecks 540

5.15 Summary 547

Bibliographic Notes 548

Homework Problems 549

Solutions to Practice Problems 552

473

474 Chapter 5 Optimizing Program Performance

The biggest speedup you’ll ever get with a program will be

when you first get it working.

—John K. Ousterhout

The primary objective in writing a program must be to make it work correctly
under all possible conditions. A program that runs fast but gives incorrect results
serves no useful purpose. Programmers must write clear and concise code, not only
so that they can make sense of it, but also so that others can read and understand
the code during code reviews and when modifications are required later.

On the other hand, there are many occasions when making a program run
fast is also an important consideration. If a program must process video frames or
network packets in real time, then a slow-running program will not provide the
needed functionality. When a computation task is so demanding that it requires
days or weeks to execute, then making it run just 20% faster can have significant
impact. In this chapter, we will explore how to make programs run faster via
several different types of program optimization.

Writing an efficient program requires several types of activities. First, we
must select an appropriate set of algorithms and data structures. Second, we
must write source code that the compiler can effectively optimize to turn into
efficient executable code. For this second part, it is important to understand the
capabilities and limitations of optimizing compilers. Seemingly minor changes in
how a program is written can make large differences in how well a compiler can
optimize it. Some programming languages are more easily optimized than others.
Some features of C, such as the ability to perform pointer arithmetic and casting,
make it challenging for a compiler to optimize. Programmers can often write their
programs in ways that make it easier for compilers to generate efficient code. A
third technique for dealing with especially demanding computations is to divide
a task into portions that can be computed in parallel, on some combination of
multiple cores and multiple processors. We will defer this aspect of performance
enhancement to Chapter 12. Even when exploiting parallelism, it is important that
each parallel thread execute with maximum performance, and so the material of
this chapter remains relevant in any case.

In approaching program development and optimization, we must consider
how the code will be used and what critical factors affect it. In general, program-
mers must make a trade-off between how easy a program is to implement and
maintain, and how fast it runs. At an algorithmic level, a simple insertion sort can
be programmed in a matter of minutes, whereas a highly efficient sort routine
may take a day or more to implement and optimize. At the coding level, many
low-level optimizations tend to reduce code readability and modularity, making
the programs more susceptible to bugs and more difficult to modify or extend.
For code that will be executed repeatedly in a performance-critical environment,
extensive optimization may be appropriate. One challenge is to maintain some
degree of elegance and readability in the code despite extensive transformations.

We describe a number of techniques for improving code performance. Ideally,
a compiler would be able to take whatever code we write and generate the most

Chapter 5 Optimizing Program Performance 475

efficient possible machine-level program having the specified behavior. Modern
compilers employ sophisticated forms of analysis and optimization, and they keep
getting better. Even the best compilers, however, can be thwarted by optimization
blockers—aspects of the program’s behavior that depend strongly on the execu-
tion environment. Programmers must assist the compiler by writing code that can
be optimized readily.

The first step in optimizing a program is to eliminate unnecessary work, mak-
ing the code perform its intended task as efficiently as possible. This includes
eliminating unnecessary function calls, conditional tests, and memory references.
These optimizations do not depend on any specific properties of the target ma-
chine.

To maximize the performance of a program, both the programmer and the
compiler require a model of the target machine, specifying how instructions are
processed and the timing characteristics of the different operations. For example,
the compiler must know timing information to be able to decide whether it should
use a multiply instruction or some combination of shifts and adds. Modern com-
puters use sophisticated techniques to process a machine-level program, executing
many instructions in parallel and possibly in a different order than they appear in
the program. Programmers must understand how these processors work to be
able to tune their programs for maximum speed. We present a high-level model
of such a machine based on recent designs of Intel and AMD processors. We also
devise a graphical data-flow notation to visualize the execution of instructions by
the processor, with which we can predict program performance.

With this understanding of processor operation, we can take a second
step in program optimization, exploiting the capability of processors to provide
instruction-level parallelism, executing multiple instructions simultaneously. We
cover several program transformations that reduce the data dependencies be-
tween different parts of a computation, increasing the degree of parallelism with
which they can be executed.

We conclude the chapter by discussing issues related to optimizing large pro-
grams. We describe the use of code profilers—tools that measure the performance
of different parts of a program. This analysis can help find inefficiencies in the code
and identify the parts of the program on which we should focus our optimization
efforts. Finally, we present an important observation, known as Amdahl’s law,
which quantifies the overall effect of optimizing some portion of a system.

In this presentation, we make code optimization look like a simple linear
process of applying a series of transformations to the code in a particular order.
In fact, the task is not nearly so straightforward. A fair amount of trial-and-
error experimentation is required. This is especially true as we approach the later
optimization stages, where seemingly small changes can cause major changes in
performance, while some very promising techniques prove ineffective. As we
will see in the examples that follow, it can be difficult to explain exactly why a
particular code sequence has a particular execution time. Performance can depend
on many detailed features of the processor design for which we have relatively
little documentation or understanding. This is another reason to try a number of
different variations and combinations of techniques.

476 Chapter 5 Optimizing Program Performance

Studying the assembly-code representation of a program is one of the most
effective means for gaining an understanding of the compiler and how the gen-
erated code will run. A good strategy is to start by looking carefully at the code
for the inner loops, identifying performance-reducing attributes such as excessive
memory references and poor use of registers. Starting with the assembly code, we
can also predict what operations will be performed in parallel and how well they
will use the processor resources. As we will see, we can often determine the time
(or at least a lower bound on the time) required to execute a loop by identifying
critical paths, chains of data dependencies that form during repeated executions
of a loop. We can then go back and modify the source code to try to steer the
compiler toward more efficient implementations.

Most major compilers, including gcc, are continually being updated and im-
proved, especially in terms of their optimization abilities. One useful strategy is to
do only as much rewriting of a program as is required to get it to the point where
the compiler can then generate efficient code. By this means, we avoid compro-
mising the readability, modularity, and portability of the code as much as if we had
to work with a compiler of only minimal capabilities. Again, it helps to iteratively
modify the code and analyze its performance both through measurements and by
examining the generated assembly code.

To novice programmers, it might seem strange to keep modifying the source
code in an attempt to coax the compiler into generating efficient code, but this
is indeed how many high-performance programs are written. Compared to the
alternative of writing code in assembly language, this indirect approach has the
advantage that the resulting code will still run on other machines, although per-
haps not with peak performance.

5.1 Capabilities and Limitations of Optimizing Compilers

Modern compilers employ sophisticated algorithms to determine what values are
computed in a program and how they are used. They can then exploit opportuni-
ties to simplify expressions, to use a single computation in several different places,
and to reduce the number of times a given computation must be performed. Most
compilers, including gcc, provide users with some control over which optimiza-
tions they apply. As discussed in Chapter 3, the simplest control is to specify the
optimization level. For example, invoking gcc with the command-line flag ‘-O1’
will cause it to apply a basic set of optimizations. As discussed in Web Aside
asm:opt, invoking gcc with flag ‘-O2’ or ‘-O3’ will cause it to apply more extensive
optimizations. These can further improve program performance, but they may ex-
pand the program size and they may make the program more difficult to debug
using standard debugging tools. For our presentation, we will mostly consider code
compiled with optimization level 1, even though optimization level 2 has become
the accepted standard for most gcc users. We purposely limit the level of opti-
mization to demonstrate how different ways of writing a function in C can affect
the efficiency of the code generated by a compiler. We will find that we can write
C code that, when compiled just with optimization level 1, vastly outperforms a
more naive version compiled with the highest possible optimization levels.

Section 5.1 Capabilities and Limitations of Optimizing Compilers 477

Compilers must be careful to apply only safe optimizations to a program,
meaning that the resulting program will have the exact same behavior as would
an unoptimized version for all possible cases the program may encounter, up to
the limits of the guarantees provided by the C language standards. Constraining
the compiler to perform only safe optimizations eliminates possible sources of
undesired run-time behavior, but it also means that the programmer must make
more of an effort to write programs in a way that the compiler can then transform
into efficient machine-level code. To appreciate the challenges of deciding which
program transformations are safe or not, consider the following two procedures:

1 void twiddle1(int *xp, int *yp)

2 {

3 *xp += *yp;

4 *xp += *yp;

5 }

6

7 void twiddle2(int *xp, int *yp)

8 {

9 *xp += 2* *yp;

10 }

At first glance, both procedures seem to have identical behavior. They both
add twice the value stored at the location designated by pointer yp to that desig-
nated by pointer xp. On the other hand, function twiddle2 is more efficient. It
requires only three memory references (read *xp, read *yp, write *xp), whereas
twiddle1 requires six (two reads of *xp, two reads of *yp, and two writes of *xp).
Hence, if a compiler is given procedure twiddle1 to compile, one might think
it could generate more efficient code based on the computations performed by
twiddle2.

Consider, however, the case in which xp and yp are equal. Then function
twiddle1 will perform the following computations:

3 *xp += *xp; /* Double value at xp */

4 *xp += *xp; /* Double value at xp */

The result will be that the value at xp will be increased by a factor of 4. On the
other hand, function twiddle2 will perform the following computation:

9 *xp += 2* *xp; /* Triple value at xp */

The result will be that the value atxpwill be increased by a factor of 3. The compiler
knows nothing about how twiddle1 will be called, and so it must assume that
arguments xp and yp can be equal. It therefore cannot generate code in the style
of twiddle2 as an optimized version of twiddle1.

The case where two pointers may designate the same memory location is
known as memory aliasing. In performing only safe optimizations, the compiler

478 Chapter 5 Optimizing Program Performance

must assume that different pointers may be aliased. As another example, for a
program with pointer variables p and q, consider the following code sequence:

x = 1000; y = 3000;

q = y; / 3000 */

p = x; / 1000 */

t1 = *q; /* 1000 or 3000 */

The value computed for t1 depends on whether or not pointers p and q are
aliased—if not, it will equal 3000, but if so it will equal 1000. This leads to one
of the major optimization blockers, aspects of programs that can severely limit
the opportunities for a compiler to generate optimized code. If a compiler cannot
determine whether or not two pointers may be aliased, it must assume that either
case is possible, limiting the set of possible optimizations.

Practice Problem 5.1
The following problem illustrates the way memory aliasing can cause unexpected
program behavior. Consider the following procedure to swap two values:

1 /* Swap value x at xp with value y at yp */

2 void swap(int *xp, int *yp)

3 {

4 *xp = *xp + *yp; /* x+y */

5 *yp = *xp - *yp; /* x+y-y = x */

6 *xp = *xp - *yp; /* x+y-x = y */

7 }

If this procedure is called with xp equal to yp, what effect will it have?

A second optimization blocker is due to function calls. As an example, con-
sider the following two procedures:

1 int f();

2

3 int func1() {

4 return f() + f() + f() + f();

5 }

6

7 int func2() {

8 return 4*f();

9 }

It might seem at first that both compute the same result, but with func2 calling f
only once, whereas func1 calls it four times. It is tempting to generate code in the
style of func2 when given func1 as the source.

Section 5.1 Capabilities and Limitations of Optimizing Compilers 479

Consider, however, the following code for f:

1 int counter = 0;

2

3 int f() {

4 return counter++;

5 }

This function has a side effect—it modifies some part of the global program state.
Changing the number of times it gets called changes the program behavior. In
particular, a call to func1 would return 0 + 1 + 2 + 3 = 6, whereas a call to func2
would return 4 . 0 = 0, assuming both started with global variable counter set to 0.

Most compilers do not try to determine whether a function is free of side ef-
fects and hence is a candidate for optimizations such as those attempted in func2.
Instead, the compiler assumes the worst case and leaves function calls intact.

Aside Optimizing function calls by inline substitution

As described in Web Aside asm:opt, code involving function calls can be optimized by a process known
as inline substitution (or simply “inlining”), where the function call is replaced by the code for the body
of the function. For example, we can expand the code for func1 by substituting four instantiations of
function f:

1 /* Result of inlining f in func1 */

2 int func1in() {

3 int t = counter++; /* +0 */

4 t += counter++; /* +1 */

5 t += counter++; /* +2 */

6 t += counter++; /* +3 */

7 return t;

8 }

This transformation both reduces the overhead of the function calls and allows further optimization of
the expanded code. For example, the compiler can consolidate the updates of global variable counter
in func1in to generate an optimized version of the function:

1 /* Optimization of inlined code */

2 int func1opt() {

3 int t = 4 * counter + 6;

4 counter = t + 4;

5 return t;

6 }

This code faithfully reproduces the behavior of func1 for this particular definition of function f.
Recent versions of gcc attempt this form of optimization, either when directed to with the

command-line option ‘-finline’ or for optimization levels 2 or higher. Since we are considering
optimization level 1 in our presentation, we will assume that the compiler does not perform inline
substitution.

480 Chapter 5 Optimizing Program Performance

Among compilers, gcc is considered adequate, but not exceptional, in terms
of its optimization capabilities. It performs basic optimizations, but it does not per-
form the radical transformations on programs that more “aggressive” compilers
do. As a consequence, programmers using gcc must put more effort into writing
programs in a way that simplifies the compiler’s task of generating efficient code.

5.2 Expressing Program Performance

We introduce the metric cycles per element, abbreviated “CPE,” as a way to
express program performance in a way that can guide us in improving the code.
CPE measurements help us understand the loop performance of an iterative
program at a detailed level. It is appropriate for programs that perform a repetitive
computation, such as processing the pixels in an image or computing the elements
in a matrix product.

The sequencing of activities by a processor is controlled by a clock providing
a regular signal of some frequency, usually expressed in gigahertz (GHz), billions
of cycles per second. For example, when product literature characterizes a system
as a “4 GHz” processor, it means that the processor clock runs at 4.0 × 109 cycles
per second. The time required for each clock cycle is given by the reciprocal of
the clock frequency. These typically are expressed in nanoseconds (1 nanosecond
is 10−9 seconds), or picoseconds (1 picosecond is 10−12 seconds). For example,
the period of a 4 GHz clock can be expressed as either 0.25 nanoseconds or 250
picoseconds. From a programmer’s perspective, it is more instructive to express
measurements in clock cycles rather than nanoseconds or picoseconds. That way,
the measurements express how many instructions are being executed rather than
how fast the clock runs.

Many procedures contain a loop that iterates over a set of elements. For
example, functions psum1 and psum2 in Figure 5.1 both compute the prefix sum
of a vector of length n. For a vector �a = 〈a0, a1, . . . , an−1〉, the prefix sum �p =
〈p0, p1, . . . , pn−1〉 is defined as

p0 = a0

pi = pi−1 + ai, 1 ≤ i < n
(5.1)

Function psum1 computes one element of the result vector per iteration. The
second uses a technique known as loop unrolling to compute two elements per
iteration. We will explore the benefits of loop unrolling later in this chapter. See
Problems 5.11, 5.12, and 5.21 for more about analyzing and optimizing the prefix-
sum computation.

The time required by such a procedure can be characterized as a constant plus
a factor proportional to the number of elements processed. For example, Figure 5.2
shows a plot of the number of clock cycles required by the two functions for a
range of values of n. Using a least squares fit, we find that the run times (in clock
cycles) for psum1 and psum2 can be approximated by the equations 496 + 10.0n

and 500 + 6.5n, respectively. These equations indicate an overhead of 496 to 500

1 /* Compute prefix sum of vector a */

2 void psum1(float a[], float p[], long int n)

3 {

4 long int i;

5 p[0] = a[0];

6 for (i = 1; i < n; i++)

7 p[i] = p[i-1] + a[i];

8 }

9

10 void psum2(float a[], float p[], long int n)

11 {

12 long int i;

13 p[0] = a[0];

14 for (i = 1; i < n-1; i+=2) {

15 float mid_val = p[i-1] + a[i];

16 p[i] = mid_val;

17 p[i+1] = mid_val + a[i+1];

18 }

19 /* For odd n, finish remaining element */

20 if (i < n)

21 p[i] = p[i-1] + a[i];

22 }

Figure 5.1 Prefix-sum functions. These provide examples for how we express program
performance.

3000

2500

2000

1500

1000

500

0
0 50

psum1

Slope = 10.0

psum2

Slope = 6.5

100 150 200

Elements

C
yc

le
s

Figure 5.2 Performance of prefix-sum functions. The slope of the lines indicates the
number of clock cycles per element (CPE).

482 Chapter 5 Optimizing Program Performance

cycles due to the timing code and to initiate the procedure, set up the loop, and
complete the procedure, plus a linear factor of 6.5 or 10.0 cycles per element. For
large values of n (say, greater than 200), the run times will be dominated by the
linear factors. We refer to the coefficients in these terms as the effective number of
cycles per element, abbreviated “CPE.” We prefer measuring the number of cycles
per element rather than the number of cycles per iteration, because techniques such
as loop unrolling allow us to use fewer iterations to complete the computation,
but our ultimate concern is how fast the procedure will run for a given vector
length. We focus our efforts on minimizing the CPE for our computations. By this
measure, psum2, with a CPE of 6.50, is superior to psum1, with a CPE of 10.0.

Aside What is a least squares fit?

For a set of data points (x1, y1), . . . (xn, yn), we often try to draw a line that best approximates the X-Y
trend represented by this data. With a least squares fit, we look for a line of the form y = mx + b that
minimizes the following error measure:

E(m, b) =
∑
i=1,n

(mxi + b − yi)
2

An algorithm for computing m and b can be derived by finding the derivatives of E(m, b) with respect
to m and b and setting them to 0.

Practice Problem 5.2
Later in this chapter, we will start with a single function and generate many differ-
ent variants that preserve the function’s behavior, but with different performance
characteristics. For three of these variants, we found that the run times (in clock
cycles) can be approximated by the following functions:

Version 1: 60 + 35n

Version 2: 136 + 4n

Version 3: 157 + 1.25n

For what values of n would each version be the fastest of the three? Remember
that n will always be an integer.

5.3 Program Example

To demonstrate how an abstract program can be systematically transformed into
more efficient code, we will use a running example based on the vector data
structure shown in Figure 5.3. A vector is represented with two blocks of memory:
the header and the data array. The header is a structure declared as follows:

Section 5.3 Program Example 483

0 1 2len len�1len

data . . .

Figure 5.3 Vector abstract data type. A vector is represented by header information
plus array of designated length.

code/opt/vec.h

1 /* Create abstract data type for vector */

2 typedef struct {

3 long int len;

4 data_t *data;

5 } vec_rec, *vec_ptr;

code/opt/vec.h

The declaration uses data type data_t to designate the data type of the un-
derlying elements. In our evaluation, we measure the performance of our code for
integer (C int), single-precision floating-point (C float), and double-precision
floating-point (C double) data. We do this by compiling and running the program
separately for different type declarations, such as the following for data type int:

typedef int data_t;

We allocate the data array block to store the vector elements as an array of
len objects of type data_t.

Figure 5.4 shows some basic procedures for generating vectors, accessing vec-
tor elements, and determining the length of a vector. An important feature to note
is that get_vec_element, the vector access routine, performs bounds checking for
every vector reference. This code is similar to the array representations used in
many other languages, including Java. Bounds checking reduces the chances of
program error, but it can also slow down program execution.

As an optimization example, consider the code shown in Figure 5.5, which
combines all of the elements in a vector into a single value according to some
operation. By using different definitions of compile-time constants IDENT and
OP, the code can be recompiled to perform different operations on the data. In
particular, using the declarations

#define IDENT 0

#define OP +

it sums the elements of the vector. Using the declarations

#define IDENT 1

#define OP *

it computes the product of the vector elements.
In our presentation, we will proceed through a series of transformations of

the code, writing different versions of the combining function. To gauge progress,

484 Chapter 5 Optimizing Program Performance

code/opt/vec.c

1 /* Create vector of specified length */

2 vec_ptr new_vec(long int len)

3 {

4 /* Allocate header structure */

5 vec_ptr result = (vec_ptr) malloc(sizeof(vec_rec));

6 if (!result)

7 return NULL; /* Couldn’t allocate storage */

8 result->len = len;

9 /* Allocate array */

10 if (len > 0) {

11 data_t *data = (data_t *)calloc(len, sizeof(data_t));

12 if (!data) {

13 free((void *) result);

14 return NULL; /* Couldn’t allocate storage */

15 }

16 result->data = data;

17 }

18 else

19 result->data = NULL;

20 return result;

21 }

22

23 /*

24 * Retrieve vector element and store at dest.

25 * Return 0 (out of bounds) or 1 (successful)

26 */

27 int get_vec_element(vec_ptr v, long int index, data_t *dest)

28 {

29 if (index < 0 || index >= v->len)

30 return 0;

31 *dest = v->data[index];

32 return 1;

33 }

34

35 /* Return length of vector */

36 long int vec_length(vec_ptr v)

37 {

38 return v->len;

39 }

code/opt/vec.c

Figure 5.4 Implementation of vector abstract data type. In the actual program, data
type data_t is declared to be int, float, or double.

Section 5.3 Program Example 485

1 /* Implementation with maximum use of data abstraction */

2 void combine1(vec_ptr v, data_t *dest)

3 {

4 long int i;

5

6 *dest = IDENT;

7 for (i = 0; i < vec_length(v); i++) {

8 data_t val;

9 get_vec_element(v, i, &val);

10 *dest = *dest OP val;

11 }

12 }

Figure 5.5 Initial implementation of combining operation. Using different declara-
tions of identity element IDENT and combining operation OP, we can measure the routine
for different operations.

we will measure the CPE performance of the functions on a machine with an
Intel Core i7 processor, which we will refer to as our reference machine. Some
characteristics of this processor were given in Section 3.1. These measurements
characterize performance in terms of how the programs run on just one particular
machine, and so there is no guarantee of comparable performance on other
combinations of machine and compiler. However, we have compared the results
with those for a number of different compiler/processor combinations and found
them quite comparable.

As we proceed through a set of transformations, we will find that many lead
to only minimal performance gains, while others have more dramatic effects.
Determining which combinations of transformations to apply is indeed part of
the “black art” of writing fast code. Some combinations that do not provide
measurable benefits are indeed ineffective, while others are important as ways to
enable further optimizations by the compiler. In our experience, the best approach
involves a combination of experimentation and analysis: repeatedly attempting
different approaches, performing measurements, and examining the assembly-
code representations to identify underlying performance bottlenecks.

As a starting point, the following are CPE measurements for combine1 run-
ning on our reference machine, trying all combinations of data type and combining
operation. For single-precision and double-precision floating-point data, our ex-
periments on this machine gave identical performance for addition, but differing
performance for multiplication. We therefore report five CPE values: integer ad-
dition and multiplication, floating-point addition, single-precision multiplication
(labeled “F *”), and double-precision multiplication (labeled “D *”).

Integer Floating point

Function Page Method + * + F * D *

combine1 485 Abstract unoptimized 29.02 29.21 27.40 27.90 27.36
combine1 485 Abstract -O1 12.00 12.00 12.00 12.01 13.00

486 Chapter 5 Optimizing Program Performance

We can see that our measurements are somewhat imprecise. The more likely
CPE number for integer sum and product is 29.00, rather than 29.02 or 29.21.
Rather than “fudging” our numbers to make them look good, we will present the
measurements we actually obtained. There are many factors that complicate the
task of reliably measuring the precise number of clock cycles required by some
code sequence. It helps when examining these numbers to mentally round the
results up or down by a few hundredths of a clock cycle.

The unoptimized code provides a direct translation of the C code into machine
code, often with obvious inefficiencies. By simply giving the command-line option
‘-O1’, we enable a basic set of optimizations. As can be seen, this significantly
improves the program performance—more than a factor of two—with no effort
on behalf of the programmer. In general, it is good to get into the habit of enabling
at least this level of optimization. For the remainder of our measurements, we use
optimization levels 1 and higher in generating and measuring our programs.

5.4 Eliminating Loop Inefficiencies

Observe that procedure combine1, as shown in Figure 5.5, calls function vec_
length as the test condition of the for loop. Recall from our discussion of how
to translate code containing loops into machine-level programs (Section 3.6.5)
that the test condition must be evaluated on every iteration of the loop. On the
other hand, the length of the vector does not change as the loop proceeds. We
could therefore compute the vector length only once and use this value in our test
condition.

Figure 5.6 shows a modified version called combine2, which calls vec_length
at the beginning and assigns the result to a local variable length. This transfor-
mation has noticeable effect on the overall performance for some data types and

1 /* Move call to vec_length out of loop */

2 void combine2(vec_ptr v, data_t *dest)

3 {

4 long int i;

5 long int length = vec_length(v);

6

7 *dest = IDENT;

8 for (i = 0; i < length; i++) {

9 data_t val;

10 get_vec_element(v, i, &val);

11 *dest = *dest OP val;

12 }

13 }

Figure 5.6 Improving the efficiency of the loop test. By moving the call to vec_
length out of the loop test, we eliminate the need to execute it on every iteration.

Section 5.4 Eliminating Loop Inefficiencies 487

operations, and minimal or even none for others. In any case, this transformation is
required to eliminate inefficiencies that would become bottlenecks as we attempt
further optimizations.

Integer Floating point

Function Page Method + * + F * D *

combine1 485 Abstract -O1 12.00 12.00 12.00 12.01 13.00
combine2 486 Move vec_length 8.03 8.09 10.09 11.09 12.08

This optimization is an instance of a general class of optimizations known as
code motion. They involve identifying a computation that is performed multiple
times (e.g., within a loop), but such that the result of the computation will not
change. We can therefore move the computation to an earlier section of the code
that does not get evaluated as often. In this case, we moved the call to vec_length
from within the loop to just before the loop.

Optimizing compilers attempt to perform code motion. Unfortunately, as dis-
cussed previously, they are typically very cautious about making transformations
that change where or how many times a procedure is called. They cannot reliably
detect whether or not a function will have side effects, and so they assume that
it might. For example, if vec_length had some side effect, then combine1 and
combine2 could have different behaviors. To improve the code, the programmer
must often help the compiler by explicitly performing code motion.

As an extreme example of the loop inefficiency seen in combine1, consider the
procedure lower1 shown in Figure 5.7. This procedure is styled after routines sub-
mitted by several students as part of a network programming project. Its purpose
is to convert all of the uppercase letters in a string to lowercase. The procedure
steps through the string, converting each uppercase character to lowercase. The
case conversion involves shifting characters in the range ‘A’ to ‘Z’ to the range ‘a’
to ‘z.’

The library function strlen is called as part of the loop test of lower1. Al-
though strlen is typically implemented with special x86 string-processing instruc-
tions, its overall execution is similar to the simple version that is also shown in
Figure 5.7. Since strings in C are null-terminated character sequences, strlen can
only determine the length of a string by stepping through the sequence until it
hits a null character. For a string of length n, strlen takes time proportional to n.
Since strlen is called in each of the n iterations of lower1, the overall run time
of lower1 is quadratic in the string length, proportional to n2.

This analysis is confirmed by actual measurements of the functions for differ-
ent length strings, as shown in Figure 5.8 (and using the library version of strlen).
The graph of the run time for lower1 rises steeply as the string length increases
(Figure 5.8(a)). Figure 5.8(b) shows the run times for seven different lengths (not
the same as shown in the graph), each of which is a power of 2. Observe that for
lower1 each doubling of the string length causes a quadrupling of the run time.
This is a clear indicator of a quadratic run time. For a string of length 1,048,576,
lower1 requires over 13 minutes of CPU time.

488 Chapter 5 Optimizing Program Performance

1 /* Convert string to lowercase: slow */

2 void lower1(char *s)

3 {

4 int i;

5

6 for (i = 0; i < strlen(s); i++)

7 if (s[i] >= ’A’ && s[i] <= ’Z’)

8 s[i] -= (’A’ - ’a’);

9 }

10

11 /* Convert string to lowercase: faster */

12 void lower2(char *s)

13 {

14 int i;

15 int len = strlen(s);

16

17 for (i = 0; i < len; i++)

18 if (s[i] >= ’A’ && s[i] <= ’Z’)

19 s[i] -= (’A’ - ’a’);

20 }

21

22 /* Sample implementation of library function strlen */

23 /* Compute length of string */

24 size_t strlen(const char *s)

25 {

26 int length = 0;

27 while (*s != ’\0’) {

28 s++;

29 length++;

30 }

31 return length;

32 }

Figure 5.7 Lowercase conversion routines. The two procedures have radically different
performance.

Function lower2 shown in Figure 5.7 is identical to that of lower1, except
that we have moved the call to strlen out of the loop. The performance im-
proves dramatically. For a string length of 1,048,576, the function requires just 1.5
milliseconds—over 500,000 times faster than lower1. Each doubling of the string
length causes a doubling of the run time—a clear indicator of linear run time. For
longer strings, the run-time improvement will be even greater.

In an ideal world, a compiler would recognize that each call to strlen in
the loop test will return the same result, and thus the call could be moved out of
the loop. This would require a very sophisticated analysis, since strlen checks

Section 5.4 Eliminating Loop Inefficiencies 489

200

180

160

140

120

100

80

60

40

20

0
0 100,000 200,000 300,000 400,000 500,000

String length

C
P

U
 s

ec
o

n
d

s

lower1

lower2

(a)

String length

Function 16,384 32,768 65,536 131,072 262,144 524,288 1,048,576

lower1 0.19 0.77 3.08 12.34 49.39 198.42 791.22
lower2 0.0000 0.0000 0.0001 0.0002 0.0004 0.0008 0.0015

(b)

Figure 5.8 Comparative performance of lowercase conversion routines. The original
code lower1 has a quadratic run time due to an inefficient loop structure. The modified
code lower2 has a linear run time.

the elements of the string and these values are changing as lower1 proceeds. The
compiler would need to detect that even though the characters within the string are
changing, none are being set from nonzero to zero, or vice versa. Such an analysis
is well beyond the ability of even the most sophisticated compilers, even if they
employ inlining, and so programmers must do such transformations themselves.

This example illustrates a common problem in writing programs, in which a
seemingly trivial piece of code has a hidden asymptotic inefficiency. One would
not expect a lowercase conversion routine to be a limiting factor in a program’s
performance. Typically, programs are tested and analyzed on small data sets, for
which the performance of lower1 is adequate. When the program is ultimately
deployed, however, it is entirely possible that the procedure could be applied to
strings of over one million characters. All of a sudden this benign piece of code
has become a major performance bottleneck. By contrast, the performance of
lower2 will be adequate for strings of arbitrary length. Stories abound of major
programming projects in which problems of this sort occur. Part of the job of a
competent programmer is to avoid ever introducing such asymptotic inefficiency.

490 Chapter 5 Optimizing Program Performance

Practice Problem 5.3
Consider the following functions:

int min(int x, int y) { return x < y ? x : y; }

int max(int x, int y) { return x < y ? y : x; }

void incr(int *xp, int v) { *xp += v; }

int square(int x) { return x*x; }

The following three code fragments call these functions:

A. for (i = min(x, y); i < max(x, y); incr(&i, 1))

t += square(i);

B. for (i = max(x, y) - 1; i >= min(x, y); incr(&i, -1))

t += square(i);

C. int low = min(x, y);

int high = max(x, y);

for (i = low; i < high; incr(&i, 1))

t += square(i);

Assume x equals 10 and y equals 100. Fill in the following table indicating the
number of times each of the four functions is called in code fragments A–C:

Code min max incr square

A.
B.
C.

5.5 Reducing Procedure Calls

As we have seen, procedure calls can incur overhead and also block most forms of
program optimization. We can see in the code for combine2 (Figure 5.6) that get_
vec_element is called on every loop iteration to retrieve the next vector element.
This function checks the vector index i against the loop bounds with every vector
reference, a clear source of inefficiency. Bounds checking might be a useful feature
when dealing with arbitrary array accesses, but a simple analysis of the code for
combine2 shows that all references will be valid.

Suppose instead that we add a function get_vec_start to our abstract data
type. This function returns the starting address of the data array, as shown in
Figure 5.9. We could then write the procedure shown as combine3 in this figure,
having no function calls in the inner loop. Rather than making a function call to
retrieve each vector element, it accesses the array directly. A purist might say that
this transformation seriously impairs the program modularity. In principle, the
user of the vector abstract data type should not even need to know that the vector

Section 5.6 Eliminating Unneeded Memory References 491

code/opt/vec.c

1 data_t *get_vec_start(vec_ptr v)

2 {

3 return v->data;

4 }

code/opt/vec.c

1 /* Direct access to vector data */

2 void combine3(vec_ptr v, data_t *dest)

3 {

4 long int i;

5 long int length = vec_length(v);

6 data_t *data = get_vec_start(v);

7

8 *dest = IDENT;

9 for (i = 0; i < length; i++) {

10 *dest = *dest OP data[i];

11 }

12 }

Figure 5.9 Eliminating function calls within the loop. The resulting code runs much
faster, at some cost in program modularity.

contents are stored as an array, rather than as some other data structure such as a
linked list. A more pragmatic programmer would argue that this transformation
is a necessary step toward achieving high-performance results.

Integer Floating point

Function Page Method + * + F * D *

combine2 486 Move vec_length 8.03 8.09 10.09 11.09 12.08
combine3 491 Direct data access 6.01 8.01 10.01 11.01 12.02

The resulting improvement is surprisingly modest, only improving the per-
formance for integer sum. Again, however, this inefficiency would become a bot-
tleneck as we attempt further optimizations. We will return to this function later
(Section 5.11.2) and see why the repeated bounds checking by combine2 does not
make its performance much worse. For applications in which performance is a sig-
nificant issue, one must often compromise modularity and abstraction for speed.
It is wise to include documentation on the transformations applied, as well as the
assumptions that led to them, in case the code needs to be modified later.

5.6 Eliminating Unneeded Memory References

The code for combine3 accumulates the value being computed by the combining
operation at the location designated by the pointer dest. This attribute can be
seen by examining the assembly code generated for the compiled loop. We show

492 Chapter 5 Optimizing Program Performance

here the x86-64 code generated for data type float and with multiplication as the
combining operation:

combine3: data_t = float, OP = *

i in %rdx, data in %rax, dest in %rbp

1 .L498: loop:

2 movss (%rbp), %xmm0 Read product from dest

3 mulss (%rax,%rdx,4), %xmm0 Multiply product by data[i]

4 movss %xmm0, (%rbp) Store product at dest

5 addq $1, %rdx Increment i

6 cmpq %rdx, %r12 Compare i:limit

7 jg .L498 If >, goto loop

Aside Understanding x86-64 floating-point code

We cover floating-point code for x86-64, the 64-bit version of the Intel instruction set in Web Aside
asm:sse, but the program examples we show in this chapter can readily be understood by anyone
familiar with IA32 code. Here, we briefly review the relevant aspects of x86-64 and its floating-point
instructions.

The x86-64 instruction set extends the 32-bit registers of IA32, such as %eax, %edi, and %esp, to
64-bit versions, with ‘r’ replacing ‘e’, e.g., %rax, %rdi, and %rsp. Eight more registers are available,
named %r8–%r15, greatly improving the ability to hold temporary values in registers. Suffix ‘q’ is used
on integer instructions (e.g., addq, cmpq) to indicate 64-bit operations.

Floating-point data are held in a set of XMM registers, named %xmm0–%xmm15. Each of these
registers is 128 bits long, able to hold four single-precision (float) or two double-precision (double)
floating-point numbers. For our initial presentation, we will only make use of instructions that operate
on single values held in SSE registers.

The movss instruction copies one single-precision number. Like the various mov instructions of
IA32, both the source and the destination can be memory locations or registers, but it uses XMM
registers, rather than general-purpose registers. The mulss instruction multiplies single-precision num-
bers, updating its second operand with the product. Again, the source and destination operands can be
memory locations or XMM registers.

We see in this loop code that the address corresponding to pointer dest is held
in register %rbp (unlike in IA32, where %ebp has special use as a frame pointer,
its 64-bit counterpart %rbp can be used to hold arbitrary data). On iteration i, the
program reads the value at this location, multiplies it by data[i], and stores the
result back at dest. This reading and writing is wasteful, since the value read from
dest at the beginning of each iteration should simply be the value written at the
end of the previous iteration.

We can eliminate this needless reading and writing of memory by rewriting the
code in the style of combine4 in Figure 5.10. We introduce a temporary variable
acc that is used in the loop to accumulate the computed value. The result is stored
at dest only after the loop has been completed. As the assembly code that follows
shows, the compiler can now use register %xmm0 to hold the accumulated value.

Section 5.6 Eliminating Unneeded Memory References 493

1 /* Accumulate result in local variable */

2 void combine4(vec_ptr v, data_t *dest)

3 {

4 long int i;

5 long int length = vec_length(v);

6 data_t *data = get_vec_start(v);

7 data_t acc = IDENT;

8

9 for (i = 0; i < length; i++) {

10 acc = acc OP data[i];

11 }

12 *dest = acc;

13 }

Figure 5.10 Accumulating result in temporary. Holding the accumulated value in local
variable acc (short for “accumulator”) eliminates the need to retrieve it from memory
and write back the updated value on every loop iteration.

Compared to the loop in combine3, we have reduced the memory operations per
iteration from two reads and one write to just a single read.

combine4: data_t = float, OP = *

i in %rdx, data in %rax, limit in %rbp, acc in %xmm0

1 .L488: loop:

2 mulss (%rax,%rdx,4), %xmm0 Multiply acc by data[i]

3 addq $1, %rdx Increment i

4 cmpq %rdx, %rbp Compare limit:i

5 jg .L488 If >, goto loop

We see a significant improvement in program performance, as shown in the
following table:

Integer Floating point

Function Page Method + * + F * D *

combine3 491 Direct data access 6.01 8.01 10.01 11.01 12.02
combine4 493 Accumulate in temporary 2.00 3.00 3.00 4.00 5.00

All of our times improve by at least a factor of 2.4×, with the integer addition case
dropping to just two clock cycles per element.

Aside Expressing relative performance

The best way to express a performance improvement is as a ratio of the form Told/Tnew, where Told is
the time required for the original version and Tnew is the time required by the modified version. This
will be a number greater than 1.0 if any real improvement occurred. We use the suffix ‘×’ to indicate
such a ratio, where the factor “2.4×” is expressed verbally as “2.4 times.”

494 Chapter 5 Optimizing Program Performance

The more traditional way of expressing relative change as a percentage works well when the change
is small, but its definition is ambiguous. Should it be 100 . (Told − Tnew)/Tnew or possibly 100 . (Told −
Tnew)/Told, or something else? In addition, it is less instructive for large changes. Saying that “perfor-
mance improved by 140%” is more difficult to comprehend than simply saying that the performance
improved by a factor of 2.4.

Again, one might think that a compiler should be able to automatically trans-
form the combine3 code shown in Figure 5.9 to accumulate the value in a register,
as it does with the code for combine4 shown in Figure 5.10. In fact, however, the
two functions can have different behaviors due to memory aliasing. Consider, for
example, the case of integer data with multiplication as the operation and 1 as the
identity element. Let v= [2, 3, 5] be a vector of three elements and consider the
following two function calls:

combine3(v, get_vec_start(v) + 2);

combine4(v, get_vec_start(v) + 2);

That is, we create an alias between the last element of the vector and the destina-
tion for storing the result. The two functions would then execute as follows:

Function Initial Before loop i = 0 i = 1 i = 2 Final

combine3 [2, 3, 5] [2, 3, 1] [2, 3, 2] [2, 3, 6] [2, 3, 36] [2, 3, 36]
combine4 [2, 3, 5] [2, 3, 5] [2, 3, 5] [2, 3, 5] [2, 3, 5] [2, 3, 30]

As shown previously, combine3 accumulates its result at the destination,
which in this case is the final vector element. This value is therefore set first to
1, then to 2 . 1 = 2, and then to 3 . 2 = 6. On the final iteration, this value is then
multiplied by itself to yield a final value of 36. For the case of combine4, the vector
remains unchanged until the end, when the final element is set to the computed
result 1 . 2 . 3 . 5 = 30.

Of course, our example showing the distinction between combine3 and
combine4 is highly contrived. One could argue that the behavior of combine4
more closely matches the intention of the function description. Unfortunately, a
compiler cannot make a judgment about the conditions under which a function
might be used and what the programmer’s intentions might be. Instead, when
given combine3 to compile, the conservative approach is to keep reading and
writing memory, even though this is less efficient.

Practice Problem 5.4
When we use gcc to compile combine3 with command-line option ‘-O2’, we get
code with substantially better CPE performance than with -O1:

Section 5.6 Eliminating Unneeded Memory References 495

Integer Floating point

Function Page Method + * + F * D *

combine3 491 Compiled -O1 6.01 8.01 10.01 11.01 12.02
combine3 491 Compiled -O2 3.00 3.00 3.00 4.02 5.03
combine4 493 Accumulate in temporary 2.00 3.00 3.00 4.00 5.00

We achieve performance comparable to that for combine4, except for the case
of integer sum, but even it improves significantly. On examining the assembly code
generated by the compiler, we find an interesting variant for the inner loop:

combine3: data_t = float, OP = *, compiled -O2

i in %rdx, data in %rax, limit in %rbp, dest at %rx12

Product in %xmm0

1 .L560: loop:

2 mulss (%rax,%rdx,4), %xmm0 Multiply product by data[i]

3 addq $1, %rdx Increment i

4 cmpq %rdx, %rbp Compare limit:i

5 movss %xmm0, (%r12) Store product at dest

6 jg .L560 If >, goto loop

We can compare this to the version created with optimization level 1:

combine3: data_t = float, OP = *, compiled -O1

i in %rdx, data in %rax, dest in %rbp

1 .L498: loop:

2 movss (%rbp), %xmm0 Read product from dest

3 mulss (%rax,%rdx,4), %xmm0 Multiply product by data[i]

4 movss %xmm0, (%rbp) Store product at dest

5 addq $1, %rdx Increment i

6 cmpq %rdx, %r12 Compare i:limit

7 jg .L498 If >, goto loop

We see that, besides some reordering of instructions, the only difference is
that the more optimized version does not contain the movss implementing the
read from the location designated by dest (line 2).

A. How does the role of register %xmm0 differ in these two loops?

B. Will the more optimized version faithfully implement the C code of com-
bine3, including when there is memory aliasing between dest and the vector
data?

C. Explain either why this optimization preserves the desired behavior, or give
an example where it would produce different results than the less optimized
code.

496 Chapter 5 Optimizing Program Performance

With this final transformation, we reached a point where we require just 2–5
clock cycles for each element to be computed. This is a considerable improvement
over the original 11–13 cycles when we first enabled optimization. We would now
like to see just what factors are constraining the performance of our code and how
we can improve things even further.

5.7 Understanding Modern Processors

Up to this point, we have applied optimizations that did not rely on any features
of the target machine. They simply reduced the overhead of procedure calls and
eliminated some of the critical “optimization blockers” that cause difficulties
for optimizing compilers. As we seek to push the performance further, we must
consider optimizations that exploit the microarchitecture of the processor, that is,
the underlying system design by which a processor executes instructions. Getting
every last bit of performance requires a detailed analysis of the program as well as
code generation tuned for the target processor. Nonetheless, we can apply some
basic optimizations that will yield an overall performance improvement on a large
class of processors. The detailed performance results we report here may not hold
for other machines, but the general principles of operation and optimization apply
to a wide variety of machines.

To understand ways to improve performance, we require a basic understand-
ing of the microarchitectures of modern processors. Due to the large number of
transistors that can be integrated onto a single chip, modern microprocessors em-
ploy complex hardware that attempts to maximize program performance. One
result is that their actual operation is far different from the view that is perceived
by looking at machine-level programs. At the code level, it appears as if instruc-
tions are executed one at a time, where each instruction involves fetching values
from registers or memory, performing an operation, and storing results back to
a register or memory location. In the actual processor, a number of instructions
are evaluated simultaneously, a phenomenon referred to as instruction-level paral-
lelism. In some designs, there can be 100 or more instructions “in flight.” Elaborate
mechanisms are employed to make sure the behavior of this parallel execution
exactly captures the sequential semantic model required by the machine-level
program. This is one of the remarkable feats of modern microprocessors: they
employ complex and exotic microarchitectures, in which multiple instructions can
be executed in parallel, while presenting an operational view of simple sequential
instruction execution.

Although the detailed design of a modern microprocessor is well beyond
the scope of this book, having a general idea of the principles by which they
operate suffices to understand how they achieve instruction-level parallelism. We
will find that two different lower bounds characterize the maximum performance
of a program. The latency bound is encountered when a series of operations
must be performed in strict sequence, because the result of one operation is
required before the next one can begin. This bound can limit program performance
when the data dependencies in the code limit the ability of the processor to

Section 5.7 Understanding Modern Processors 497

Figure 5.11
Block diagram of a
modern processor. The
instruction control unit
is responsible for reading
instructions from memory
and generating a sequence
of primitive operations.
The execution unit then
performs the operations
and indicates whether the
branches were correctly
predicted.

Instruction control

Address

Instructions

Retirement
unit

Fetch
control

Instruction
decode

Operations

Instruction
cache

Prediction
OK?

Register
updates

Operation results Addr. Addr.

Data Data

Data
cache

Execution

Functional
units

StoreLoadFP add
+integer

FP mul/div
+integer

Branch
+integer

Register
file

exploit instruction-level parallelism. The throughput bound characterizes the raw
computing capacity of the processor’s functional units. This bound becomes the
ultimate limit on program performance.

5.7.1 Overall Operation

Figure 5.11 shows a very simplified view of a modern microprocessor. Our hy-
pothetical processor design is based loosely on the structure of the Intel Core i7
processor design, which is often referred to by its project code name “Nehalem”
[99]. The Nehalem microarchitecture typifies the high-end processors produced by
a number of manufacturers since the late 1990s. It is described in the industry as
being superscalar, which means it can perform multiple operations on every clock
cycle, and out-of-order, meaning that the order in which instructions execute need
not correspond to their ordering in the machine-level program. The overall design
has two main parts: the instruction control unit (ICU), which is responsible for
reading a sequence of instructions from memory and generating from these a set
of primitive operations to perform on program data, and the execution unit (EU),
which then executes these operations. Compared to the simple in-order pipeline
we studied in Chapter 4, out-of-order processors require far greater and more

498 Chapter 5 Optimizing Program Performance

complex hardware, but they are better at achieving higher degrees of instruction-
level parallelism.

The ICU reads the instructions from an instruction cache—a special high-
speed memory containing the most recently accessed instructions. In general,
the ICU fetches well ahead of the currently executing instructions, so that it has
enough time to decode these and send operations down to the EU. One problem,
however, is that when a program hits a branch,1 there are two possible directions
the program might go. The branch can be taken, with control passing to the branch
target. Alternatively, the branch can be not taken, with control passing to the next
instruction in the instruction sequence. Modern processors employ a technique
known as branch prediction, in which they guess whether or not a branch will be
taken and also predict the target address for the branch. Using a technique known
as speculative execution, the processor begins fetching and decoding instructions
at where it predicts the branch will go, and even begins executing these operations
before it has been determined whether or not the branch prediction was correct.
If it later determines that the branch was predicted incorrectly, it resets the state
to that at the branch point and begins fetching and executing instructions in the
other direction. The block labeled “Fetch control” incorporates branch prediction
to perform the task of determining which instructions to fetch.

The instruction decoding logic takes the actual program instructions and con-
verts them into a set of primitive operations (sometimes referred to as micro-
operations). Each of these operations performs some simple computational task
such as adding two numbers, reading data from memory, or writing data to mem-
ory. For machines with complex instructions, such as x86 processors, an instruction
can be decoded into a variable number of operations. The details of how instruc-
tions are decoded into sequences of more primitive operations varies between
machines, and this information is considered highly proprietary. Fortunately, we
can optimize our programs without knowing the low-level details of a particular
machine implementation.

In a typical x86 implementation, an instruction that only operates on registers,
such as

addl %eax,%edx

is converted into a single operation. On the other hand, an instruction involving
one or more memory references, such as

addl %eax,4(%edx)

yields multiple operations, separating the memory references from the arithmetic
operations. This particular instruction would be decoded as three operations: one
to load a value from memory into the processor, one to add the loaded value to the

1. We use the term “branch” specifically to refer to conditional jump instructions. Other instructions
that can transfer control to multiple destinations, such as procedure return and indirect jumps, provide
similar challenges for the processor.

Section 5.7 Understanding Modern Processors 499

value in register %eax, and one to store the result back to memory. This decoding
splits instructions to allow a division of labor among a set of dedicated hardware
units. These units can then execute the different parts of multiple instructions in
parallel.

The EU receives operations from the instruction fetch unit. Typically, it can
receive a number of them on each clock cycle. These operations are dispatched to
a set of functional units that perform the actual operations. These functional units
are specialized to handle specific types of operations. Our figure illustrates a typical
set of functional units, based on those of the Intel Core i7. We can see that three
functional units are dedicated to computation, while the remaining two are for
reading (load) and writing (store) memory. Each computational unit can perform
multiple different operations: all can perform at least basic integer operations,
such as addition and bit-wise logical operations. Floating-point operations and
integer multiplication require more complex hardware, and so these can only be
handled by specific functional units.

Reading and writing memory is implemented by the load and store units. The
load unit handles operations that read data from the memory into the processor.
This unit has an adder to perform address computations. Similarly, the store unit
handles operations that write data from the processor to the memory. It also has
an adder to perform address computations. As shown in the figure, the load and
store units access memory via a data cache, a high-speed memory containing the
most recently accessed data values.

With speculative execution, the operations are evaluated, but the final results
are not stored in the program registers or data memory until the processor can
be certain that these instructions should actually have been executed. Branch
operations are sent to the EU, not to determine where the branch should go, but
rather to determine whether or not they were predicted correctly. If the prediction
was incorrect, the EU will discard the results that have been computed beyond the
branch point. It will also signal the branch unit that the prediction was incorrect
and indicate the correct branch destination. In this case, the branch unit begins
fetching at the new location. As we saw in Section 3.6.6, such a misprediction incurs
a significant cost in performance. It takes a while before the new instructions can
be fetched, decoded, and sent to the execution units.

Within the ICU, the retirement unit keeps track of the ongoing processing and
makes sure that it obeys the sequential semantics of the machine-level program.
Our figure shows a register file containing the integer, floating-point, and more
recently SSE registers as part of the retirement unit, because this unit controls
the updating of these registers. As an instruction is decoded, information about
it is placed into a first-in, first-out queue. This information remains in the queue
until one of two outcomes occurs. First, once the operations for the instruction
have completed and any branch points leading to this instruction are confirmed as
having been correctly predicted, the instruction can be retired, with any updates to
the program registers being made. If some branch point leading to this instruction
was mispredicted, on the other hand, the instruction will be flushed, discarding
any results that may have been computed. By this means, mispredictions will not
alter the program state.

500 Chapter 5 Optimizing Program Performance

As we have described, any updates to the program registers occur only as
instructions are being retired, and this takes place only after the processor can be
certain that any branches leading to this instruction have been correctly predicted.
To expedite the communication of results from one instruction to another, much
of this information is exchanged among the execution units, shown in the figure as
“Operation results.” As the arrows in the figure show, the execution units can send
results directly to each other. This is a more elaborate form of the data forwarding
techniques we incorporated into our simple processor design in Section 4.5.7.

The most common mechanism for controlling the communication of operands
among the execution units is called register renaming. When an instruction that up-
dates register r is decoded, a tag t is generated giving a unique identifier to the re-
sult of the operation. An entry (r, t) is added to a table maintaining the association
between program register r and tag t for an operation that will update this register.
When a subsequent instruction using register r as an operand is decoded, the oper-
ation sent to the execution unit will contain t as the source for the operand value.
When some execution unit completes the first operation, it generates a result (v, t)

indicating that the operation with tag t produced value v. Any operation waiting
for t as a source will then use v as the source value, a form of data forwarding. By
this mechanism, values can be forwarded directly from one operation to another,
rather than being written to and read from the register file, enabling the second
operation to begin as soon as the first has completed. The renaming table only
contains entries for registers having pending write operations. When a decoded
instruction requires a register r , and there is no tag associated with this register,
the operand is retrieved directly from the register file. With register renaming, an
entire sequence of operations can be performed speculatively, even though the
registers are updated only after the processor is certain of the branch outcomes.

Aside The history of out-of-order processing

Out-of-order processing was first implemented in the Control Data Corporation 6600 processor in
1964. Instructions were processed by ten different functional units, each of which could be operated
independently. In its day, this machine, with a clock rate of 10 Mhz, was considered the premium
machine for scientific computing.

IBM first implemented out-of-order processing with the IBM 360/91 processor in 1966, but just to
execute the floating-point instructions. For around 25 years, out-of-order processing was considered
an exotic technology, found only in machines striving for the highest possible performance, until
IBM reintroduced it in the RS/6000 line of workstations in 1990. This design became the basis for
the IBM/Motorola PowerPC line, with the model 601, introduced in 1993, becoming the first single-
chip microprocessor to use out-of-order processing. Intel introduced out-of-order processing with its
PentiumPro model in 1995, with an underlying microarchitecture similar to that of the Core i7.

5.7.2 Functional Unit Performance

Figure 5.12 documents the performance of some of the arithmetic operations for
an Intel Core i7, determined by both measurements and by reference to Intel liter-

Section 5.7 Understanding Modern Processors 501

Integer Single-precision Double-precision

Operation Latency Issue Latency Issue Latency Issue

Addition 1 0.33 3 1 3 1
Multiplication 3 1 4 1 5 1
Division 11–21 5–13 10–15 6–11 10–23 6–19

Figure 5.12 Latency and issue time characteristics of Intel Core i7 arithmetic
operations. Latency indicates the total number of clock cycles required to perform
the actual operations, while issue time indicates the minimum number of cycles between
two operations. The times for division depend on the data values.

ature [26]. These timings are typical for other processors as well. Each operation
is characterized by its latency, meaning the total time required to perform the op-
eration, and the issue time, meaning the minimum number of clock cycles between
two successive operations of the same type.

We see that the latencies increase as the word sizes increase (e.g., from single
to double precision), for more complex data types (e.g., from integer to floating
point), and for more complex operations (e.g., from addition to multiplication).

We see also that most forms of addition and multiplication operations have
issue times of 1, meaning that on each clock cycle, the processor can start a new
one of these operations. This short issue time is achieved through the use of
pipelining. A pipelined function unit is implemented as a series of stages, each
of which performs part of the operation. For example, a typical floating-point
adder contains three stages (and hence the three-cycle latency): one to process
the exponent values, one to add the fractions, and one to round the result. The
arithmetic operations can proceed through the stages in close succession rather
than waiting for one operation to complete before the next begins. This capability
can be exploited only if there are successive, logically independent operations to
be performed. Functional units with issue times of 1 cycle are said to be fully
pipelined: they can start a new operation every clock cycle. The issue time of
0.33 given for integer addition is due to the fact that the hardware has three fully
pipelined functional units capable of performing integer addition. The processor
has the potential to perform three additions every clock cycle. We see also that
the divider (used for integer and floating-point division, as well as floating-point
square root) is not fully pipelined—its issue time is just a few cycles less than
its latency. What this means is that the divider must complete all but the last few
steps of a division before it can begin a new one. We also see the latencies and issue
times for division are given as ranges, because some combinations of dividend and
divisor require more steps than others. The long latency and issue times of division
make it a comparatively costly operation.

A more common way of expressing issue time is to specify the maximum
throughput of the unit, defined as the reciprocal of the issue time. A fully pipelined
functional unit has a maximum throughput of one operation per clock cycle, while
units with higher issue times have lower maximum throughput.

502 Chapter 5 Optimizing Program Performance

Circuit designers can create functional units with wide ranges of performance
characteristics. Creating a unit with short latency or with pipelining requires
more hardware, especially for more complex functions such as multiplication and
floating-point operations. Since there is only a limited amount of space for these
units on the microprocessor chip, CPU designers must carefully balance the num-
ber of functional units and their individual performance to achieve optimal overall
performance. They evaluate many different benchmark programs and dedicate
the most resources to the most critical operations. As Figure 5.12 indicates, inte-
ger multiplication and floating-point multiplication and addition were considered
important operations in design of the Core i7, even though a significant amount
of hardware is required to achieve the low latencies and high degree of pipelin-
ing shown. On the other hand, division is relatively infrequent and difficult to
implement with either short latency or full pipelining.

Both the latencies and the issue times (or equivalently, the maximum through-
put) of these arithmetic operations can affect the performance of our combining
functions. We can express these effects in terms of two fundamental bounds on
the CPE values:

Integer Floating point

Bound + * + F * D *

Latency 1.00 3.00 3.00 4.00 5.00
Throughput 1.00 1.00 1.00 1.00 1.00

The latency bound gives a minimum value for the CPE for any function
that must perform the combining operation in a strict sequence. The throughput
bound gives a minimum bound for the CPE based on the maximum rate at which
the functional units can produce results. For example, since there is only one
multiplier, and it has an issue time of 1 clock cycle, the processor cannot possibly
sustain a rate of more than one multiplication per clock cycle. We noted earlier that
the processor has three functional units capable of performing integer addition,
and so we listed the issue time for this operation as 0.33. Unfortunately, the need
to read elements from memory creates an additional throughput bound for the
CPE of 1.00 for the combining functions. We will demonstrate the effect of both
of the latency and throughput bounds with different versions of the combining
functions.

5.7.3 An Abstract Model of Processor Operation

As a tool for analyzing the performance of a machine-level program executing on a
modern processor, we will use a data-flow representation of programs, a graphical
notation showing how the data dependencies between the different operations
constrain the order in which they are executed. These constraints then lead to
critical paths in the graph, putting a lower bound on the number of clock cycles
required to execute a set of machine instructions.

Section 5.7 Understanding Modern Processors 503

Before proceeding with the technical details, it is instructive to examine the
CPE measurements obtained for function combine4, our fastest code up to this
point:

Integer Floating point

Function Page Method + * + F * D *

combine4 493 Accumulate in temporary 2.00 3.00 3.00 4.00 5.00

Latency bound 1.00 3.00 3.00 4.00 5.00
Throughput bound 1.00 1.00 1.00 1.00 1.00

We can see that these measurements match the latency bound for the processor,
except for the case of integer addition. This is not a coincidence—it indicates
that the performance of these functions is dictated by the latency of the sum
or product computation being performed. Computing the product or sum of n

elements requires around L . n + K clock cycles, where L is the latency of the
combining operation and K represents the overhead of calling the function and
initiating and terminating the loop. The CPE is therefore equal to the latency
bound L.

From Machine-Level Code to Data-Flow Graphs

Our data-flow representation of programs is informal. We only want to use it as
a way to visualize how the data dependencies in a program dictate its perfor-
mance. We present the data-flow notation by working with combine4 (Figure 5.10,
page 493) as an example. We focus just on the computation performed by the loop,
since this is the dominating factor in performance for large vectors. We consider
the case of floating-point data with multiplication as the combining operation,
although other combinations of data type and operation have nearly identical
structure. The compiled code for this loop consists of four instructions, with reg-
isters %rdx holding loop index i, %rax holding array address data, %rcx holding
loop bound limit, and %xmm0 holding accumulator value acc.

combine4: data_t = float, OP = *

i in %rdx, data in %rax, limit in %rbp, acc in %xmm0

1 .L488: loop:

2 mulss (%rax,%rdx,4), %xmm0 Multiply acc by data[i]

3 addq $1, %rdx Increment i

4 cmpq %rdx, %rbp Compare limit:i

5 jg .L488 If >, goto loop

As Figure 5.13 indicates, with our hypothetical processor design, the four in-
structions are expanded by the instruction decoder into a series of five operations,
with the initial multiplication instruction being expanded into a load operation
to read the source operand from memory, and a mul operation to perform the
multiplication.

504 Chapter 5 Optimizing Program Performance

Figure 5.13
Graphical representation
of inner-loop code for
combine4. Instructions
are dynamically translated
into one or two operations,
each of which receives
values from other opera-
tions or from registers and
produces values for other
operations and for regis-
ters. We show the target of
the final instruction as the
label loop. It jumps to the
first instruction shown.

%rax %rbp %rdx %xmm0

mulss (%rax,%rdx,4), %xmm0

addq $1,%rdx

cmpq %rdx,%rbp

jg loop

%rax %rbp %rdx %xmm0

load

mul

add

cmp

jg

As a step toward generating a data-flow graph representation of the program,
the boxes and lines along the left-hand side of Figure 5.13 show how the registers
are used and updated by the different operations, with the boxes along the top
representing the register values at the beginning of the loop, and those along the
bottom representing the values at the end. For example, register %rax is only used
as a source value by the load operation in performing its address calculation, and so
the register has the same value at the end of the loop as at the beginning. Similarly,
register %rcx is only used by the cmp operation. Register %rdx, on the other hand,
is both used and updated within the loop. Its initial value is used by the load and
add operations; its new value is generated by the add operation, which is then
used by the cmp operation. Register %xmm0 is also updated within the loop by the
mul operation, which first uses the initial value as a source value.

Some of the operations in Figure 5.13 produce values that do not correspond
to registers. We show these as arcs between operations on the right-hand side.
The load operation reads a value from memory and passes it directly to the
mul operation. Since these two operations arise from decoding a single mulss
instruction, there is no register associated with the intermediate value passing
between them. The cmp operation updates the condition codes, and these are
then tested by the jg operation.

For a code segment forming a loop, we can classify the registers that are
accessed into four categories:

Read-only: These are used as source values, either as data or to compute
memory addresses, but they are not modified within the loop. The read-
only registers for the loop combine4 are %rax and %rcx.

Write-only: These are used as the destinations of data-movement operations.
There are no such registers in this loop.

Local: These are updated and used within the loop, but there is no dependency
from one iteration to another. The condition code registers are examples

Section 5.7 Understanding Modern Processors 505

Figure 5.14
Abstracting combine4
operations as data-flow
graph. (a) We rearrange
the operators of Figure 5.13
to more clearly show the
data dependencies, and
then (b) show only those
operations that use values
from one iteration to
produce new values for
the next.

%rax %rbp %rdx%xmm0

%rdx%xmm0

data[i]

load

(a) (b)

mul add

cmp

jg

%rdx%xmm0

%rdx%xmm0

load

mul add

for this loop: they are updated by the cmp operation and used by the jl
operation, but this dependency is contained within individual iterations.

Loop: These are both used as source values and as destinations for the loop,
with the value generated in one iteration being used in another. We can
see that %rdx and %xmm0 are loop registers for combine4, corresponding
to program values i and acc.

As we will see, the chains of operations between loop registers determine the
performance-limiting data dependencies.

Figure 5.14 shows further refinements of the graphical representation of Fig-
ure 5.13, with a goal of showing only those operations and data dependencies that
affect the program execution time. We see in Figure 5.14(a) that we rearranged
the operators to show more clearly the flow of data from the source registers at
the top (both read-only and loop registers), and to the destination registers at the
bottom (both write-only and loop registers).

In Figure 5.14(a), we also color operators white if they are not part of some
chain of dependencies between loop registers. For this example, the compare
(cmp) and branch (jl) operations do not directly affect the flow of data in the
program. We assume that the Instruction Control Unit predicts that branch will be
taken, and hence the program will continue looping. The purpose of the compare
and branch operations is to test the branch condition and notify the ICU if it is
not. We assume this checking can be done quickly enough that it does not slow
down the processor.

In Figure 5.14(b), we have eliminated the operators that were colored white
on the left, and we have retained only the loop registers. What we have left is an
abstract template showing the data dependencies that form among loop registers
due to one iteration of the loop. We can see in this diagram that there are two
data dependencies from one iteration to the next. Along one side, we see the
dependencies between successive values of program value acc, stored in register
%xmm0. The loop computes a new value for acc by multiplying the old value by

506 Chapter 5 Optimizing Program Performance

Figure 5.15
Data-flow representation
of computation by n
iterations by the inner
loop of combine4. The
sequence of multiplication
operations forms a critical
path that limits program
performance.

data[0] load

Critical path

mul add

data[1] load

mul add

data[n-2] load

mul add

data[n-1] load

mul add

a data element, generated by the load operation. Along the other side, we see
the dependencies between successive values of loop index i. On each iteration,
the old value is used to compute the address for the load operation, and it is also
incremented by the add operation to compute the new value.

Figure 5.15 shows the data-flow representation of n iterations by the inner
loop of function combine4. We can see that this graph was obtained by simply
replicating the template shown on the right-hand side of Figure 5.14 n times. We
can see that the program has two chains of data dependencies, corresponding to
the updating of program values acc and i with operations mul and add, respec-
tively. Given that single-precision multiplication has a latency of 4 cycles, while
integer addition has latency 1, we can see that the chain on the left will form a
critical path, requiring 4n cycles to execute. The chain on the left would require
only n cycles to execute, and so it does not limit the program performance.

Figure 5.15 demonstrates why we achieved a CPE equal to the latency bound
of 4 cycles for combine4, when performing single-precision floating-point multi-
plication. When executing the function, the floating-point multiplier becomes the
limiting resource. The other operations required during the loop—manipulating

Section 5.7 Understanding Modern Processors 507

and testing loop index i, computing the address of the next data elements, and
reading data from memory—proceed in parallel with the multiplier. As each suc-
cessive value of acc is computed, it is fed back around to compute the next value,
but this will not be completed until four cycles later.

The flow for other combinations of data type and operation are identical to
those shown in Figure 5.15, but with a different data operation forming the chain of
data dependencies shown on the left. For all of the cases where the operation has
a latency L greater than 1, we see that the measured CPE is simply L, indicating
that this chain forms the performance-limiting critical path.

Other Performance Factors

For the case of integer addition, on the other hand, our measurements of combine4
show a CPE of 2.00, slower than the CPE of 1.00 we would predict based on the
chains of dependencies formed along either the left- or the right-hand side of the
graph of Figure 5.15. This illustrates the principle that the critical paths in a data-
flow representation provide only a lower bound on how many cycles a program
will require. Other factors can also limit performance, including the total number
of functional units available and the number of data values that can be passed
among the functional units on any given step. For the case of integer addition as
the combining operation, the data operation is sufficiently fast that the rest of the
operations cannot supply data fast enough. Determining exactly why the program
requires 2.00 cycles per element would require a much more detailed knowledge
of the hardware design than is publicly available.

To summarize our performance analysis of combine4: our abstract data-flow
representation of program operation showed that combine4 has a critical path of
length L . n caused by the successive updating of program value acc, and this path
limits the CPE to at least L. This is indeed the CPE we measure for all cases except
integer addition, which has a measured CPE of 2.00 rather than the CPE of 1.00
we would expect from the critical path length.

It may seem that the latency bound forms a fundamental limit on how fast
our combining operations can be performed. Our next task will be to restructure
the operations to enhance instruction-level parallelism. We want to transform the
program in such a way that our only limitation becomes the throughput bound,
yielding CPEs close to 1.00.

Practice Problem 5.5
Suppose we wish to write a function to evaluate a polynomial, where a polynomial
of degree n is defined to have a set of coefficients a0, a1, a2, . . . , an. For a value x,
we evaluate the polynomial by computing

a0 + a1x + a2x
2 + . . . + anx

n (5.2)

This evaluation can be implemented by the following function, having as argu-
ments an array of coefficients a, a value x, and the polynomial degree, degree

508 Chapter 5 Optimizing Program Performance

(the value n in Equation 5.2). In this function, we compute both the successive
terms of the equation and the successive powers of x within a single loop:

1 double poly(double a[], double x, int degree)

2 {

3 long int i;

4 double result = a[0];

5 double xpwr = x; /* Equals x^i at start of loop */

6 for (i = 1; i <= degree; i++) {

7 result += a[i] * xpwr;

8 xpwr = x * xpwr;

9 }

10 return result;

11

12 }

A. For degree n, how many additions and how many multiplications does this
code perform?

B. On our reference machine, with arithmetic operations having the latencies
shown in Figure 5.12, we measure the CPE for this function to be 5.00. Ex-
plain how this CPE arises based on the data dependencies formed between
iterations due to the operations implementing lines 7–8 of the function.

Practice Problem 5.6
Let us continue exploring ways to evaluate polynomials, as described in Prob-
lem 5.5. We can reduce the number of multiplications in evaluating a polyno-
mial by applying Horner’s method, named after British mathematician William
G. Horner (1786–1837). The idea is to repeatedly factor out the powers of x to get
the following evaluation:

a0 + x(a1 + x(a2 + . . . + x(an−1 + xan) . . .)) (5.3)

Using Horner’s method, we can implement polynomial evaluation using the fol-
lowing code:

1 /* Apply Horner’s method */

2 double polyh(double a[], double x, int degree)

3 {

4 long int i;

5 double result = a[degree];

6 for (i = degree-1; i >= 0; i--)

7 result = a[i] + x*result;

8 return result;

9 }

Section 5.8 Loop Unrolling 509

A. For degree n, how many additions and how many multiplications does this
code perform?

B. On our reference machine, with the arithmetic operations having the laten-
cies shown in Figure 5.12, we measure the CPE for this function to be 8.00.
Explain how this CPE arises based on the data dependencies formed be-
tween iterations due to the operations implementing line 7 of the function.

C. Explain how the function shown in Problem 5.5 can run faster, even though
it requires more operations.

5.8 Loop Unrolling

Loop unrolling is a program transformation that reduces the number of iterations
for a loop by increasing the number of elements computed on each iteration. We
saw an example of this with the function psum2 (Figure 5.1), where each iteration
computes two elements of the prefix sum, thereby halving the total number of
iterations required. Loop unrolling can improve performance in two ways. First,
it reduces the number of operations that do not contribute directly to the program
result, such as loop indexing and conditional branching. Second, it exposes ways
in which we can further transform the code to reduce the number of operations
in the critical paths of the overall computation. In this section, we will examine
simple loop unrolling, without any further transformations.

Figure 5.16 shows a version of our combining code using two-way loop un-
rolling. The first loop steps through the array two elements at a time. That is, the
loop index i is incremented by 2 on each iteration, and the combining operation
is applied to array elements i and i + 1 in a single iteration.

In general, the vector length will not be a multiple of 2. We want our code
to work correctly for arbitrary vector lengths. We account for this requirement in
two ways. First, we make sure the first loop does not overrun the array bounds.
For a vector of length n, we set the loop limit to be n − 1. We are then assured that
the loop will only be executed when the loop index i satisfies i < n − 1, and hence
the maximum array index i + 1 will satisfy i + 1 < (n − 1) + 1 = n.

We can generalize this idea to unroll a loop by any factor k. To do so, we
set the upper limit to be n − k + 1, and within the loop apply the combining
operation to elements i through i + k − 1. Loop index i is incremented by k in each
iteration. The maximum array index i + k − 1 will then be less than n. We include
the second loop to step through the final few elements of the vector one at a time.
The body of this loop will be executed between 0 and k − 1 times. For k = 2, we
could use a simple conditional statement to optionally add a final iteration, as we
did with the function psum2 (Figure 5.1). For k > 2, the finishing cases are better
expressed with a loop, and so we adopt this programming convention for k = 2
as well.

510 Chapter 5 Optimizing Program Performance

1 /* Unroll loop by 2 */

2 void combine5(vec_ptr v, data_t *dest)

3 {

4 long int i;

5 long int length = vec_length(v);

6 long int limit = length-1;

7 data_t *data = get_vec_start(v);

8 data_t acc = IDENT;

9

10 /* Combine 2 elements at a time */

11 for (i = 0; i < limit; i+=2) {

12 acc = (acc OP data[i]) OP data[i+1];

13 }

14

15 /* Finish any remaining elements */

16 for (; i < length; i++) {

17 acc = acc OP data[i];

18 }

19 *dest = acc;

20 }

Figure 5.16 Unrolling loop by factor k = 2. Loop unrolling can reduce the effect of
loop overhead.

Practice Problem 5.7
Modify the code for combine5 to unroll the loop by a factor k = 5.

When we measure the performance of unrolled code for unrolling factors
k = 2 (combine5) and k = 3, we get the following results:

Integer Floating point

Function Page Method + * + F * D *

combine4 493 No unrolling 2.00 3.00 3.00 4.00 5.00
combine5 510 Unroll by ×2 2.00 1.50 3.00 4.00 5.00

Unroll by ×3 1.00 1.00 3.00 4.00 5.00

Latency bound 1.00 3.00 3.00 4.00 5.00
Throughput bound 1.00 1.00 1.00 1.00 1.00

We see that CPEs for both integer addition and multiplication improve, while
those for the floating-point operations do not. Figure 5.17 shows CPE measure-
ments when unrolling the loop by up to a factor of 6. We see that the trends we

Section 5.8 Loop Unrolling 511

Figure 5.17
CPE performance for
different degrees of loop
unrolling. Only integer
addition and multiplication
improve by loop unrolling.

6.00

5.00

4.00

3.00

2.00

1.00

0.00
1 2 3 4

Unrolling factor K
C

P
E

5 6

double *

float *

float +

int *

int +

observed for unrolling by 2 and 3 continue—it does not help the floating-point
operations, while both integer addition and multiplication drop down to CPEs of
1.00. Several phenomena contribute to these measured values of CPE. For the case
of integer addition, we see that unrolling by a factor of 2 makes no difference, but
unrolling by a factor of 3 drops the CPE to 1.00, achieving both the latency and the
throughput bounds for this operation. This result can be attributed to the benefits
of reducing loop overhead operations. By reducing the number of overhead op-
erations relative to the number of additions required to compute the vector sum,
we can reach the point where the one-cycle latency of integer addition becomes
the performance-limiting factor.

The improving CPE for integer multiplication is surprising. We see that for un-
rolling factor k between 1 and 3, the CPE is 3.00/k. It turns out that the compiler is
making an optimization based on a reassociation transformation, altering the order
in which values are combined. We will cover this transformation in Section 5.9.2.
The fact that gcc applies this transformation to integer multiplication but not to
floating-point addition or multiplication is due to the associativity properties of
the different operations and data types, as will also be discussed later.

To understand why the three floating-point cases do not improve by loop
unrolling, consider the graphical representation for the inner loop, shown in
Figure 5.18 for the case of single-precision multiplication. We see here that the
mulss instructions each get translated into two operations: one to load an array
element from memory, and one to multiply this value by the accumulated value.
We see here that register %xmm0 gets read and written twice in each execution of
the loop. We can rearrange, simplify, and abstract this graph, following the process
shown in Figure 5.19 to obtain the template shown in Figure 5.19(b). We then
replicate this template n/2 times to show the computation for a vector of length
n, obtaining the data-flow representation shown in Figure 5.20. We see here that
there is still a critical path of n mul operations in this graph—there are half as many
iterations, but each iteration has two multiplication operations in sequence. Since
the critical path was the limiting factor for the performance of the code without
loop unrolling, it remains so with simple loop unrolling.

512 Chapter 5 Optimizing Program Performance

Figure 5.18
Graphical representation
of inner-loop code for
combine5. Each iteration
has two mulss instructions,
each of which is translated
into a load and a mul
operation.

%rax %rbp %rdx %xmm0

mulss (%rax,%rdx,4), %xmm0

mulss 4(%rax,%rdx,4), %xmm0

addq $2,%rdx

cmpq %rdx,%rbp

jg loop

%rax %rbp %rdx %xmm0

load

mul

load

mul

add

cmp

jg

Figure 5.19
Abstracting combine5
operations as data-flow
graph. We rearrange, sim-
plify, and abstract the
representation of Fig-
ure 5.18 to show the data
dependencies between
successive iterations (a).
We see that each iteration
must perform two multipli-
cations in sequence (b).

%rax %rbp %rdx%xmm0

%rdx%xmm0

data[i]

data[i+1]

load

load

mul

mul add

cmp

(a) (b)

jg

%rdx%xmm0

%rdx%xmm0

load

mul add

load

mul

Aside Getting the compiler to unroll loops

Loop unrolling can easily be performed by a compiler. Many compilers do it routinely whenever the
optimization level is set sufficiently high. gcc will perform loop unrolling when invoked with command-
line option ‘-funroll-loops’.

Section 5.9 Enhancing Parallelism 513

Figure 5.20
Data-flow representation
of combine5 operating
on a vector of length
n. Even though the loop
has been unrolled by a
factor of 2, there are still n

mul operations along the
critical path.

data[0] load

Critical path

mul

data[1] load

mul add

data[2] load

mul

data[3] load

mul add

data[n-2] load

mul

data[n-1] load

mul add

5.9 Enhancing Parallelism

At this point, our functions have hit the bounds imposed by the latencies of the
arithmetic units. As we have noted, however, the functional units performing
addition and multiplication are all fully pipelined, meaning that they can start new
operations every clock cycle. Our code cannot take advantage of this capability,
even with loop unrolling, since we are accumulating the value as a single variable
acc. We cannot compute a new value for acc until the preceding computation has

514 Chapter 5 Optimizing Program Performance

completed. Even though the functional unit can start a new operation every clock
cycle, it will only start one every L cycles, where L is the latency of the combining
operation. We will now investigate ways to break this sequential dependency and
get performance better than the latency bound.

5.9.1 Multiple Accumulators

For a combining operation that is associative and commutative, such as integer
addition or multiplication, we can improve performance by splitting the set of
combining operations into two or more parts and combining the results at the
end. For example, let Pn denote the product of elements a0, a1, . . . , an−1:

Pn =
n−1∏
i=0

ai

Assuming n is even, we can also write this as Pn = PEn × POn, where PEn is the
product of the elements with even indices, and POn is the product of the elements
with odd indices:

PEn =
n/2−1∏
i=0

a2i

POn =
n/2−1∏
i=0

a2i+1

Figure 5.21 shows code that uses this method. It uses both two-way loop unrolling,
to combine more elements per iteration, and two-way parallelism, accumulating
elements with even index in variable acc0 and elements with odd index in variable
acc1. As before, we include a second loop to accumulate any remaining array
elements for the case where the vector length is not a multiple of 2. We then apply
the combining operation to acc0 and acc1 to compute the final result.

Comparing loop unrolling alone to loop unrolling with two-way parallelism,
we obtain the following performance:

Integer Floating point

Function Page Method + * + F * D *

combine4 493 Accumulate in temporary 2.00 3.00 3.00 4.00 5.00
combine5 510 Unroll by ×2 2.00 1.50 3.00 4.00 5.00
combine6 515 Unroll ×2, parallelism ×2 1.50 1.50 1.50 2.00 2.50

Latency bound 1.00 3.00 3.00 4.00 5.00
Throughput bound 1.00 1.00 1.00 1.00 1.00

Figure 5.22 demonstrates the effect of applying this transformation to achieve k-
way loop unrolling and k-way parallelism for values up to k = 6. We can see that

Section 5.9 Enhancing Parallelism 515

1 /* Unroll loop by 2, 2-way parallelism */

2 void combine6(vec_ptr v, data_t *dest)

3 {

4 long int i;

5 long int length = vec_length(v);

6 long int limit = length-1;

7 data_t *data = get_vec_start(v);

8 data_t acc0 = IDENT;

9 data_t acc1 = IDENT;

10

11 /* Combine 2 elements at a time */

12 for (i = 0; i < limit; i+=2) {

13 acc0 = acc0 OP data[i];

14 acc1 = acc1 OP data[i+1];

15 }

16

17 /* Finish any remaining elements */

18 for (; i < length; i++) {

19 acc0 = acc0 OP data[i];

20 }

21 *dest = acc0 OP acc1;

22 }

Figure 5.21 Unrolling loop by 2 and using two-way parallelism. This approach makes
use of the pipelining capability of the functional units.

the CPEs for all of our combining cases improve with increasing values of k. For
integer multiplication, and for the floating-point operations, we see a CPE value of
L/k, where L is the latency of the operation, up to the throughput bound of 1.00.
We also see integer addition reaching its throughput bound of 1.00 with k = 3. Of
course, we also reached this bound for integer addition with standard unrolling.

Figure 5.22
CPE performance for k-
way loop unrolling with
k-way parallelism. All of
the CPEs improve with this
transformation, up to the
limiting value of 1.00.

6.00

5.00

4.00

3.00

2.00

1.00

0.00
1 2 3 4

Unrolling factor K

C
P

E

5 6

double *

float *

float +

int *

int +

516 Chapter 5 Optimizing Program Performance

%rax %rbp %rdx %xmm0

mulss (%rax,%rdx,4), %xmm0

mulss 4(%rax,%rdx,4), %xmm1

addq $2,%rdx

cmpq %rdx,%rbp

jg loop

%rax %rbp %rdx %xmm0

%xmm1

%xmm1

load

mul

load

mul

add

cmp

jg

Figure 5.23 Graphical representation of inner-loop code for combine6. Each
iteration has two mulss instructions, each of which is translated into a load and a
mul operation.

%rax %rbp %rdx%xmm0 %xmm1

%xmm1 %rdx%xmm0

data[i]

data[i+1]

load
load

(a) (b)

add

cmp

jg

%rdx%xmm0

%rdx%xmm0

load

mul

%xmm1

%xmm1

load

mul
add

mul
mul

Figure 5.24 Abstracting combine6 operations as data-flow graph. We rearrange, simplify, and abstract
the representation of Figure 5.23 to show the data dependencies between successive iterations (a). We see
that there is no dependency between the two mul operations (b).

To understand the performance of combine6, we start with the code and oper-
ation sequence shown in Figure 5.23. We can derive a template showing the data
dependencies between iterations through the process shown in Figure 5.24. As
with combine5, the inner loop contains two mulss operations, but these instruc-
tions translate into mul operations that read and write separate registers, with
no data dependency between them (Figure 5.24(b)). We then replicate this tem-
plate n/2 times (Figure 5.25), modeling the execution of the function on a vector

Section 5.9 Enhancing Parallelism 517

Figure 5.25
Data-flow representation
of combine6 operating
on a vector of length n.
We now have two critical
paths, each containing n/2
operations.

data[0]

data[1]

load

mul load

mul
add

data[2]

data[3]

load

mul load

mul
add

data[n-2]

data[n-1]

load

mul load

mul
add

Critical paths

of length n. We see that we now have two critical paths, one corresponding to
computing the product of even-numbered elements (program value acc0) and
one for the odd-numbered elements (program value acc1). Each of these criti-
cal paths contain only n/2 operations, thus leading to a CPE of 4.00/2. A similar
analysis explains our observed CPE of L/2 for operations with latency L for the
different combinations of data type and combining operation. Operationally, we
are exploiting the pipelining capabilities of the functional unit to increase their
utilization by a factor of 2. When we apply this transformation for larger values of
k, we find that we cannot reduce the CPE below 1.00. Once we reach this point,
several of the functional units are operating at maximum capacity.

We have seen in Chapter 2 that two’s-complement arithmetic is commuta-
tive and associative, even when overflow occurs. Hence, for an integer data type,
the result computed by combine6 will be identical to that computed by combine5

518 Chapter 5 Optimizing Program Performance

under all possible conditions. Thus, an optimizing compiler could potentially con-
vert the code shown in combine4 first to a two-way unrolled variant of combine5
by loop unrolling, and then to that of combine6 by introducing parallelism. Many
compilers do loop unrolling automatically, but relatively few then introduce this
form of parallelism.

On the other hand, floating-point multiplication and addition are not as-
sociative. Thus, combine5 and combine6 could produce different results due to
rounding or overflow. Imagine, for example, a product computation in which all
of the elements with even indices were numbers with very large absolute value,
while those with odd indices were very close to 0.0. In such a case, product PEn

might overflow, or POn might underflow, even though computing product Pn pro-
ceeds normally. In most real-life applications, however, such patterns are unlikely.
Since most physical phenomena are continuous, numerical data tend to be reason-
ably smooth and well-behaved. Even when there are discontinuities, they do not
generally cause periodic patterns that lead to a condition such as that sketched ear-
lier. It is unlikely that multiplying the elements in strict order gives fundamentally
better accuracy than does multiplying two groups independently and then mul-
tiplying those products together. For most applications, achieving a performance
gain of 2× outweighs the risk of generating different results for strange data pat-
terns. Nevertheless, a program developer should check with potential users to see
if there are particular conditions that may cause the revised algorithm to be un-
acceptable.

5.9.2 Reassociation Transformation

We now explore another way to break the sequential dependencies and thereby
improve performance beyond the latency bound. We saw that the simple loop un-
rolling of combine5 did not change the set of operations performed in combining
the vector elements to form their sum or product. By a very small change in the
code, however, we can fundamentally change the way the combining is performed,
and also greatly increase the program performance.

Figure 5.26 shows a function combine7 that differs from the unrolled code of
combine5 (Figure 5.16) only in the way the elements are combined in the inner
loop. In combine5, the combining is performed by the statement

12 acc = (acc OP data[i]) OP data[i+1];

while in combine7 it is performed by the statement

12 acc = acc OP (data[i] OP data[i+1]);

differing only in how two parentheses are placed. We call this a reassociation trans-
formation, because the parentheses shift the order in which the vector elements
are combined with the accumulated value acc.

To an untrained eye, the two statements may seem essentially the same, but
when we measure the CPE, we get surprising results:

Section 5.9 Enhancing Parallelism 519

Integer Floating point

Function Page Method + * + F * D *

combine4 493 Accumulate in temporary 2.00 3.00 3.00 4.00 5.00
combine5 510 Unroll by ×2 2.00 1.50 3.00 4.00 5.00
combine6 515 Unroll by ×2, parallelism ×2 1.50 1.50 1.50 2.00 2.50
combine7 519 Unroll ×2 and reassociate 2.00 1.51 1.50 2.00 2.97

Latency bound 1.00 3.00 3.00 4.00 5.00
Throughput bound 1.00 1.00 1.00 1.00 1.00

The integer multiplication case nearly matches the performance of the ver-
sion with simple unrolling (combine5), while the floating-point cases match the
performance of the version with parallel accumulators (combine6), doubling the
performance relative to simple unrolling. (The CPE of 2.97 shown for double-
precision multiplication is most likely the result of a measurement error, with
the true value being 2.50. In our experiments, we found the measured CPEs for
combine7 to be more variable than for the other functions.)

Figure 5.27 demonstrates the effect of applying the reassociation transforma-
tion to achieve k-way loop unrolling with reassociation. We can see that the CPEs
for all of our combining cases improve with increasing values of k. For integer

1 /* Change associativity of combining operation */

2 void combine7(vec_ptr v, data_t *dest)

3 {

4 long int i;

5 long int length = vec_length(v);

6 long int limit = length-1;

7 data_t *data = get_vec_start(v);

8 data_t acc = IDENT;

9

10 /* Combine 2 elements at a time */

11 for (i = 0; i < limit; i+=2) {

12 acc = acc OP (data[i] OP data[i+1]);

13 }

14

15 /* Finish any remaining elements */

16 for (; i < length; i++) {

17 acc = acc OP data[i];

18 }

19 *dest = acc;

20 }

Figure 5.26 Unrolling loop by 2 and then reassociating the combining operation.
This approach also increases the number of operations that can be performed in parallel.

520 Chapter 5 Optimizing Program Performance

Figure 5.27
CPE performance for k-
way loop unrolling with
reassociation. All of the
CPEs improve with this
transformation, up to the
limiting value of 1.00.

6.00

5.00

4.00

3.00

2.00

1.00

0.00
1 2 3 4

Unrolling factor K
C

P
E

5 6

double *

float *

float +

int *

int +

multiplication and for the floating-point operations, we see a CPE value of nearly
L/k, where L is the latency of the operation, up to the throughput bound of 1.00.
We also see integer addition reaching CPE of 1.00 for k = 3, achieving both the
throughput and the latency bounds.

Figure 5.28 illustrates how the code for the inner loop of combine7 (for the
case of single-precision product) gets decoded into operations and the resulting
data dependencies. We see that the load operations resulting from the movss and
the first mulss instructions load vector elements i and i + 1 from memory, and
the first mul operation multiplies them together. The second mul operation then
multiples this result by the accumulated value acc. Figure 5.29 shows how we
rearrange, refine, and abstract the operations of Figure 5.28 to get a template rep-
resenting the data dependencies for one iteration (Figure 5.29(b)). As with the
templates for combine5 and combine7, we have two load and two mul operations,

%rax %rbp %rdx %xmm0

mulss 4(%rax,%rdx,4), %xmm0

mulss %xmm0, %xmm1

movss (%rax,%rdx,4), %xmm0

addq $2,%rdx

cmpq %rdx,%rbp

jg loop

%rax %rbp %rdx %xmm0

%xmm1

%xmm1

load

load

mul

mul

add

cmp

jg

Figure 5.28 Graphical representation of inner-loop code for combine7. Each
iteration gets decoded into similar operations as for combine5 or combine6, but with
different data dependencies.

Section 5.9 Enhancing Parallelism 521

%rax %rbp %rdx%xmm1

%xmm1 %rdx

data[i]

data[i+1]

load

load

mul

mul

add

cmp

(a) (b)

jg

%rdx%xmm1

%xmm1 %rdx

load

load

mul

mul add

Figure 5.29 Abstracting combine7 operations as data-flow graph. We rearrange,
simplify, and abstract the representation of Figure 5.28 to show the data dependencies
between successive iterations (a). The first mul operation multiplies the two vector
elements, while the second one multiplies the result by loop variable acc (b).

but only one of the mul operations forms a data-dependency chain between loop
registers. When we then replicate this template n/2 times to show the computa-
tions performed in multiplying n vector elements (Figure 5.30), we see that we
only have n/2 operations along the critical path. The first multiplication within
each iteration can be performed without waiting for the accumulated value from
the previous iteration. Thus, we reduce the minimum possible CPE by a factor
of 2. As we increase k, we continue to have only one operation per iteration along
the critical path.

In performing the reassociation transformation, we once again change the
order in which the vector elements will be combined together. For integer addition
and multiplication, the fact that these operations are associative implies that
this reordering will have no effect on the result. For the floating-point cases, we
must once again assess whether this reassociation is likely to significantly affect
the outcome. We would argue that the difference would be immaterial for most
applications.

We can now explain the surprising improvement we saw with simple loop
unrolling (combine5) for the case of integer multiplication. In compiling this
code, gcc performed the reassociation that we have shown in combine7, and
hence it achieved the same performance. It also performed the transformation for
code with higher degrees of unrolling. gcc recognizes that it can safely perform
this transformation for integer operations, but it also recognizes that it cannot
transform the floating-point cases due to the lack of associativity. It would be
gratifying to find that gcc performed this transformation recognizing that the
resulting code would run faster, but unfortunately this seems not to be the case.
In our experiments, we found that very minor changes to the C code caused gcc

522 Chapter 5 Optimizing Program Performance

Figure 5.30
Data-flow representation
of combine7 operating
on a vector of length n.
We have a single critical
path, but it contains only
n/2 operations.

data[0]

data[1]

load

load

mul

mul add

data[2]

data[3]

load

load

mul

mul add

data[n-2]

data[n-1]

load

load

mul

mul add

Critical path

to associate the operations differently, sometimes causing the generated code to
speed up, and sometimes to slow down, relative to what would be achieved by
a straightforward compilation. Optimizing compilers must choose which factors
they try to optimize, and it appears that gcc does not use maximizing instruction-
level parallelism as one of its optimization criteria when selecting how to associate
integer operations.

In summary, a reassociation transformation can reduce the number of opera-
tions along the critical path in a computation, resulting in better performance by
better utilizing the pipelining capabilities of the functional units. Most compilers
will not attempt any reassociations of floating-point operations, since these oper-
ations are not guaranteed to be associative. Current versions of gcc do perform
reassociations of integer operations, but not always with good effects. In general,
we have found that unrolling a loop and accumulating multiple values in parallel
is a more reliable way to achieve improved program performance.

Section 5.9 Enhancing Parallelism 523

Practice Problem 5.8
Consider the following function for computing the product of an array of n inte-
gers. We have unrolled the loop by a factor of 3.

double aprod(double a[], int n)

{

int i;

double x, y, z;

double r = 1;

for (i = 0; i < n-2; i+= 3) {

x = a[i]; y = a[i+1]; z = a[i+2];

r = r * x * y * z; /* Product computation */

}

for (; i < n; i++)

r *= a[i];

return r;

}

For the line labeled Product computation, we can use parentheses to create five
different associations of the computation, as follows:

r = ((r * x) * y) * z; /* A1 */

r = (r * (x * y)) * z; /* A2 */

r = r * ((x * y) * z); /* A3 */

r = r * (x * (y * z)); /* A4 */

r = (r * x) * (y * z); /* A5 */

Assume we run these functions on a machine where double-precision multi-
plication has a latency of 5 clock cycles. Determine the lower bound on the CPE set
by the data dependencies of the multiplication. (Hint: It helps to draw a pictorial
representation of how r is computed on every iteration.)

Web Aside OPT:SIMD Achieving greater parallelism with SIMD instructions

As described in Section 3.1, Intel introduced the SSE instructions in 1999, where SSE is the acronym
for “Streaming SIMD Extensions,” and, in turn, SIMD (pronounced “sim-dee”) is the acronym for
“Single-Instruction, Multiple-Data.” The idea behind the SIMD execution model is that each 16-byte
XMM register can hold multiple values. In our examples, we consider the cases where they can hold
either four integer or single-precision values, or two double-precision values. SSE instructions can
then perform vector operations on these registers, such as adding or multiplying four or two sets of
values in parallel. For example, if XMM register %xmm0 contains four single-precision floating-point
numbers, which we denote a0, . . . , a3, and %rcx contains the memory address of a sequence of four
single-precision floating-point numbers, which we denote b0, . . . , b3, then the instruction

mulps (%rcs), %xmm0

524 Chapter 5 Optimizing Program Performance

will read the four values from memory and perform four multiplications in parallel, computing ai ←
ai

. bi, for 0 ≤ i ≤ 3. We see that a single instruction is able to generate a computation over multiple
data values, hence the term “SIMD.”

gcc supports extensions to the C language that let programmers express a program in terms
of vector operations that can be compiled into the SIMD instructions of SSE. This coding style is
preferable to writing code directly in assembly language, since gcc can also generate code for the SIMD
instructions found on other processors.

Using a combination of gcc instructions, loop unrolling, and multiple accumulators, we are able to
achieve the following performance for our combining functions:

Integer Floating point

Method + * + F * D *

SSE + 8-way unrolling 0.25 0.55 0.25 0.24 0.58
Throughput bound 0.25 0.50 0.25 0.25 0.50

As this chart shows, using SSE instructions lowers the throughput bound, and we have nearly
achieved these bounds for all five cases. The throughput bound of 0.25 for integer addition and single-
precision addition and multiplication is due to the fact that the SSE instruction can perform four of
these in parallel, and it has an issue time of 1. The double-precision instructions can only perform two
in parallel, giving a throughput bound of 0.50. The integer multiplication operation has a throughput
bound of 0.50 for a different reason—although it can perform four in parallel, it has an issue time
of 2. In fact, this instruction is only available for SSE versions 4 and higher (requiring command-line
flag ‘-msse4’).

5.10 Summary of Results for Optimizing Combining Code

Our efforts at maximizing the performance of a routine that adds or multiplies the
elements of a vector have clearly paid off. The following summarizes the results
we obtain with scalar code, not making use of the SIMD parallelism provided by
SSE vector instructions:

Integer Floating point

Function Page Method + * + F * D *

combine1 485 Abstract -O1 12.00 12.00 12.00 12.01 13.00
combine6 515 Unroll by ×2, parallelism ×2 1.50 1.50 1.50 2.00 2.50

Unroll by ×5, parallelism ×5 1.01 1.00 1.00 1.00 1.00

Latency bound 1.00 3.00 3.00 4.00 5.00
Throughput bound 1.00 1.00 1.00 1.00 1.00

By using multiple optimizations, we have been able to achieve a CPE close to
1.00 for all combinations of data type and operation using ordinary C code, a per-
formance improvement of over 10X compared to the original version combine1.

Section 5.11 Some Limiting Factors 525

As covered in Web Aside opt:simd, we can improve performance even further
by making use of gcc’s support for SIMD vector instructions:

Integer Floating point

Function Method + * + F * D *

SIMD code SIMD + 8-way unrolling 0.25 0.55 0.25 0.24 0.58

Throughput bound 0.25 0.50 0.25 0.25 0.50

The processor can sustain up to four combining operations per cycle for
integer and single-precision data, and two per cycle for double-precision data. This
represents a performance of over 6 gigaflops (billions of floating-point operations
per second) on a processor now commonly found in laptop and desktop machines.

Compare this performance to that of the Cray 1S, a breakthrough supercom-
puter introduced in 1976. This machine cost around $8 million and consumed 115
kilowatts of electricity to get its peak performance of 0.25 gigaflops, over 20 times
slower than we measured here.

Several factors limit our performance for this computation to a CPE of 1.00
when using scalar instructions, and a CPE of either 0.25 (32-bit data) or 0.50
(64-bit data) when using SIMD instructions. First, the processor can only read
16 bytes from the data cache on each cycle, and then only by reading into an XMM
register. Second, the multiplier and adder units can only start a new operation
every clock cycle (in the case of SIMD instructions, each of these “operations”
actually computes two or four sums or products). Thus, we have succeeded in
producing the fastest possible versions of our combining function for this machine.

5.11 Some Limiting Factors

We have seen that the critical path in a data-flow graph representation of a
program indicates a fundamental lower bound on the time required to execute a
program. That is, if there is some chain of data dependencies in a program where
the sum of all of the latencies along that chain equals T , then the program will
require at least T cycles to execute.

We have also seen that the throughput bounds of the functional units also
impose a lower bound on the execution time for a program. That is, assume
that a program requires a total of N computations of some operation, that the
microprocessor has only m functional units capable of performing that operation,
and that these units have an issue time of i. Then the program will require at least
N . i/m cycles to execute.

In this section, we will consider some other factors that limit the performance
of programs on actual machines.

5.11.1 Register Spilling

The benefits of loop parallelism are limited by the ability to express the compu-
tation in assembly code. In particular, the IA32 instruction set only has a small

526 Chapter 5 Optimizing Program Performance

number of registers to hold the values being accumulated. If we have a degree
of parallelism p that exceeds the number of available registers, then the compiler
will resort to spilling, storing some of the temporary values on the stack. Once this
happens, the performance can drop significantly. As an illustration, compare the
performance of our parallel accumulator code for integer sum on x86-64 vs. IA32:

Degree of unrolling

Machine 1 2 3 4 5 6

IA32 2.12 1.76 1.45 1.39 1.90 1.99
x86-64 2.00 1.50 1.00 1.00 1.01 1.00

We see that for IA32, the lowest CPE is achieved when just k = 4 values are
accumulated in parallel, and it gets worse for higher values of k. We also see that
we cannot get down to the CPE of 1.00 achieved for x86-64.

Examining the IA32 code for the case of k = 5 shows the effect of the small
number of registers with IA32:

IA32 code. Unroll X5, accumulate X5, data_t = int, OP = +

i in %edx, data in %eax, limit at %ebp-20

1 .L291: loop:

2 imull (%eax,%edx,4), %ecx x0 = x0 * data[i]

3 movl -16(%ebp), %ebx Get x1

4 imull 4(%eax,%edx,4), %ebx x1 = x1 * data[i+1]

5 movl %ebx, -16(%ebp) Store x1

6 imull 8(%eax,%edx,4), %edi x2 = x2 * data[i+2]

7 imull 12(%eax,%edx,4), %esi x3 = x3 * data[i+3]

8 movl -28(%ebp), %ebx Get x4

9 imull 16(%eax,%edx,4), %ebx x4 = x4 * daa[i+4]

10 movl %ebx, -28(%ebp) Store x4

11 addl $5, %edx i+= 5

12 cmpl %edx, -20(%ebp) Compare limit:i

13 jg .L291 If >, goto loop

We see here that accumulator values acc1 and acc4 have been “spilled” onto
the stack, at offsets −16 and −28 relative to %ebp. In addition, the termination
value limit is kept on the stack at offset −20. The loads and stores associated
with reading these values from memory and then storing them back negates any
value obtained by accumulating multiple values in parallel.

We can now see the merit of adding eight additional registers in the extension
of IA32 to x86-64. The x86-64 code is able to accumulate up to 12 values in parallel
without spilling any registers.

5.11.2 Branch Prediction and Misprediction Penalties

We demonstrated via experiments in Section 3.6.6 that a conditional branch can
incur a significant misprediction penalty when the branch prediction logic does

Section 5.11 Some Limiting Factors 527

not correctly anticipate whether or not a branch will be taken. Now that we have
learned something about how processors operate, we can understand where this
penalty arises.

Modern processors work well ahead of the currently executing instructions,
reading new instructions from memory and decoding them to determine what
operations to perform on what operands. This instruction pipelining works well as
long as the instructions follow in a simple sequence. When a branch is encountered,
the processor must guess which way the branch will go. For the case of a conditional
jump, this means predicting whether or not the branch will be taken. For an
instruction such as an indirect jump (as we saw in the code to jump to an address
specified by a jump table entry) or a procedure return, this means predicting the
target address. In this discussion, we focus on conditional branches.

In a processor that employs speculative execution, the processor begins exe-
cuting the instructions at the predicted branch target. It does this in a way that
avoids modifying any actual register or memory locations until the actual out-
come has been determined. If the prediction is correct, the processor can then
“commit” the results of the speculatively executed instructions by storing them
in registers or memory. If the prediction is incorrect, the processor must discard
all of the speculatively executed results and restart the instruction fetch process
at the correct location. The misprediction penalty is incurred in doing this, be-
cause the instruction pipeline must be refilled before useful results are gener-
ated.

We saw in Section 3.6.6 that recent versions of x86 processors have conditional
move instructions and that gcc can generate code that uses these instructions
when compiling conditional statements and expressions, rather than the more
traditional realizations based on conditional transfers of control. The basic idea for
translating into conditional moves is to compute the values along both branches
of a conditional expression or statement, and then use conditional moves to select
the desired value. We saw in Section 4.5.10 that conditional move instructions can
be implemented as part of the pipelined processing of ordinary instructions. There
is no need to guess whether or not the condition will hold, and hence no penalty
for guessing incorrectly.

How then can a C programmer make sure that branch misprediction penalties
do not hamper a program’s efficiency? Given the 44 clock-cycle misprediction
penalty we saw for the Intel Core i7, the stakes are very high. There is no simple
answer to this question, but the following general principles apply.

Do Not Be Overly Concerned about Predictable Branches

We have seen that the effect of a mispredicted branch can be very high, but that
does not mean that all program branches will slow a program down. In fact, the
branch prediction logic found in modern processors is very good at discerning
regular patterns and long-term trends for the different branch instructions. For
example, the loop-closing branches in our combining routines would typically be
predicted as being taken, and hence would only incur a misprediction penalty on
the last time around.

528 Chapter 5 Optimizing Program Performance

As another example, consider the small performance gain we observed
when shifting from combine2 to combine3, when we took the function get_vec_
element out of the inner loop of the function, as is reproduced below:

Integer Floating point

Function Page Method + * + F * D *

combine2 486 Move vec_length 8.03 8.09 10.09 11.09 12.08
combine3 491 Direct data access 6.01 8.01 10.01 11.01 12.02

The CPE hardly changed, even though this function uses two conditionals to
check whether the vector index is within bounds. These checks always determine
that the index is within bounds, and hence they are highly predictable.

As a way to measure the performance impact of bounds checking, consider
the following combining code, where we have modified the inner loop of combine4
by replacing the access to the data element with the result of performing an
inline substitution of the code for get_vec_element. We will call this new version
combine4b. This code performs bounds checking and also references the vector
elements through the vector data structure.

1 /* Include bounds check in loop */

2 void combine4b(vec_ptr v, data_t *dest)

3 {

4 long int i;

5 long int length = vec_length(v);

6 data_t acc = IDENT;

7

8 for (i = 0; i < length; i++) {

9 if (i >= 0 && i < v->len) {

10 acc = acc OP v->data[i];

11 }

12 }

13 *dest = acc;

14 }

We can then directly compare the CPE for the functions with and without
bounds checking:

Integer Floating point

Function Page Method + * + F * D *

combine4 493 No bounds checking 1.00 3.00 3.00 4.00 5.00
combine4b 493 Bounds checking 4.00 4.00 4.00 4.00 5.00

Although the performance of the version with bounds checking is not quite as
good, it increases the CPE by at most 2 clock cycles. This is a fairly small difference,
considering that the bounds checking code performs two conditional branches

Section 5.11 Some Limiting Factors 529

and it also requires a load operation to implement the expression v->len. The
processor is able to predict the outcomes of these branches, and so none of this
evaluation has much effect on the fetching and processing of the instructions that
form the critical path in the program execution.

Write Code Suitable for Implementation with Conditional Moves

Branch prediction is only reliable for regular patterns. Many tests in a program
are completely unpredictable, dependent on arbitrary features of the data, such as
whether a number is negative or positive. For these, the branch prediction logic will
do very poorly, possibly giving a prediction rate of 50%—no better than random
guessing. (In principle, branch predictors can have prediction rates less than
50%, but such cases are very rare.) For inherently unpredictable cases, program
performance can be greatly enhanced if the compiler is able to generate code
using conditional data transfers rather than conditional control transfers. This
cannot be controlled directly by the C programmer, but some ways of expressing
conditional behavior can be more directly translated into conditional moves than
others.

We have found that gcc is able to generate conditional moves for code written
in a more “functional” style, where we use conditional operations to compute
values and then update the program state with these values, as opposed to a
more “imperative” style, where we use conditionals to selectively update program
state.

There are no strict rules for these two styles, and so we illustrate with an
example. Suppose we are given two arrays of integers a and b, and at each position
i, we want to set a[i] to the minimum of a[i] and b[i], and b[i] to the maximum.

An imperative style of implementing this function is to check at each position
i and swap the two elements if they are out of order:

1 /* Rearrange two vectors so that for each i, b[i] >= a[i] */

2 void minmax1(int a[], int b[], int n) {

3 int i;

4 for (i = 0; i < n; i++) {

5 if (a[i] > b[i]) {

6 int t = a[i];

7 a[i] = b[i];

8 b[i] = t;

9 }

10 }

11 }

Our measurements for this function on random data show a CPE of around
14.50 for random data, and 3.00–4.00 for predictable data, a clear sign of a high
misprediction penalty.

530 Chapter 5 Optimizing Program Performance

A functional style of implementing this function is to compute the minimum
and maximum values at each position i and then assign these values to a[i] and
b[i], respectively:

1 /* Rearrange two vectors so that for each i, b[i] >= a[i] */

2 void minmax2(int a[], int b[], int n) {

3 int i;

4 for (i = 0; i < n; i++) {

5 int min = a[i] < b[i] ? a[i] : b[i];

6 int max = a[i] < b[i] ? b[i] : a[i];

7 a[i] = min;

8 b[i] = max;

9 }

10 }

Our measurements for this function show a CPE of around 5.0 regardless of
whether the data are arbitrary or predictable. (We also examined the generated
assembly code to make sure that it indeed used conditional moves.)

As discussed in Section 3.6.6, not all conditional behavior can be implemented
with conditional data transfers, and so there are inevitably cases where program-
mers cannot avoid writing code that will lead to conditional branches for which
the processor will do poorly with its branch prediction. But, as we have shown, a
little cleverness on the part of the programmer can sometimes make code more
amenable to translation into conditional data transfers. This requires some amount
of experimentation, writing different versions of the function and then examining
the generated assembly code and measuring performance.

Practice Problem 5.9
The traditional implementation of the merge step of mergesort requires three
loops:

1 void merge(int src1[], int src2[], int dest[], int n) {

2 int i1 = 0;

3 int i2 = 0;

4 int id = 0;

5 while (i1 < n && i2 < n) {

6 if (src1[i1] < src2[i2])

7 dest[id++] = src1[i1++];

8 else

9 dest[id++] = src2[i2++];

10 }

11 while (i1 < n)

12 dest[id++] = src1[i1++];

13 while (i2 < n)

14 dest[id++] = src2[i2++];

15 }

Section 5.12 Understanding Memory Performance 531

The branches caused by comparing variables i1 and i2 to n have good pre-
diction performance—the only mispredictions occur when they first become false.
The comparison between values src1[i1] and src2[i2] (line 6), on the other
hand, is highly unpredictable for typical data. This comparison controls a condi-
tional branch, yielding a CPE (where the number of elements is 2n) of around
17.50.

Rewrite the code so that the effect of the conditional statement in the first
loop (lines 6–9) can be implemented with a conditional move.

5.12 Understanding Memory Performance

All of the code we have written thus far, and all the tests we have run, access
relatively small amounts of memory. For example, the combining routines were
measured over vectors of length less than 1000 elements, requiring no more than
8000 bytes of data. All modern processors contain one or more cache memories
to provide fast access to such small amounts of memory. In this section, we will
further investigate the performance of programs that involve load (reading from
memory into registers) and store (writing from registers to memory) operations,
considering only the cases where all data are held in cache. In Chapter 6, we go
into much more detail about how caches work, their performance characteristics,
and how to write code that makes best use of caches.

As Figure 5.11 shows, modern processors have dedicated functional units to
perform load and store operations, and these units have internal buffers to hold
sets of outstanding requests for memory operations. For example, the Intel Core i7
load unit’s buffer can hold up to 48 read requests, while the store unit’s buffer can
hold up to 32 write requests [99]. Each of these units can typically initiate one
operation every clock cycle.

5.12.1 Load Performance

The performance of a program containing load operations depends on both the
pipelining capability and the latency of the load unit. In our experiments with com-
bining operations on a Core i7, we saw that the CPE never got below 1.00, except
when using SIMD operations. One factor limiting the CPE for our examples is
that they all require reading one value from memory for each element computed.
Since the load unit can only initiate one load operation every clock cycle, the CPE
cannot be less than 1.00. For applications where we must load k values for every
element computed, we can never achieve a CPE lower than k (see, for example,
Problem 5.17).

In our examples so far, we have not seen any performance effects due to the
latency of load operations. The addresses for our load operations depended only
on the loop index i, and so the load operations did not form part of a performance-
limiting critical path.

To determine the latency of the load operation on a machine, we can set up
a computation with a sequence of load operations, where the outcome of one

532 Chapter 5 Optimizing Program Performance

1 typedef struct ELE {

2 struct ELE *next;

3 int data;

4 } list_ele, *list_ptr;

5

6 int list_len(list_ptr ls) {

7 int len = 0;

8 while (ls) {

9 len++;

10 ls = ls->next;

11 }

12 return len;

13 }

Figure 5.31 Linked list functions. These illustrate the latency of the load operation.

determines the address for the next. As an example, consider the function list_
len in Figure 5.31, which computes the length of a linked list. In the loop of this
function, each successive value of variable ls depends on the value read by the
pointer reference ls->next. Our measurements show that function list_len has
a CPE of 4.00, which we claim is a direct indication of the latency of the load
operation. To see this, consider the assembly code for the loop. (We show the
x86-64 version of the code. The IA32 code is very similar.)

len in %eax, ls in %rdi

1 .L11: loop:

2 addl $1, %eax Increment len

3 movq (%rdi), %rdi ls = ls->next

4 testq %rdi, %rdi Test ls

5 jne .L11 If nonnull, goto loop

The movq instruction on line 3 forms the critical bottleneck in this loop. Each
successive value of register %rdi depends on the result of a load operation having
the value in %rdi as its address. Thus, the load operation for one iteration cannot
begin until the one for the previous iteration has completed. The CPE of 4.00 for
this function is determined by the latency of the load operation.

5.12.2 Store Performance

In all of our examples thus far, we analyzed only functions that reference mem-
ory mostly with load operations, reading from a memory location into a register.
Its counterpart, the store operation, writes a register value to memory. The per-
formance of this operation, particularly in relation to its interactions with load
operations, involves several subtle issues.

As with the load operation, in most cases, the store operation can operate in a
fully pipelined mode, beginning a new store on every cycle. For example, consider
the functions shown in Figure 5.32 that set the elements of an array dest of length

Section 5.12 Understanding Memory Performance 533

1 /* Set elements of array to 0 */

2 void clear_array(int *dest, int n) {

3 int i;

4 for (i = 0; i < n; i++)

5 dest[i] = 0;

6 }

1 /* Set elements of array to 0, Unrolled X4 */

2 void clear_array_4(int *dest, int n) {

3 int i;

4 int limit = n-3;

5 for (i = 0; i < limit; i+= 4) {

6 dest[i] = 0;

7 dest[i+1] = 0;

8 dest[i+2] = 0;

9 dest[i+3] = 0;

10 }

11 for (; i < limit; i++)

12 dest[i] = 0;

13 }

Figure 5.32 Functions to set array elements to 0. These illustrate the pipelining of the
store operation.

n to zero. Our measurements for the first version show a CPE of 2.00. By unrolling
the loop four times, as shown in the code for clear_array_4, we achieve a CPE
of 1.00. Thus, we have achieved the optimum of one new store operation per cycle.

Unlike the other operations we have considered so far, the store operation
does not affect any register values. Thus, by their very nature a series of store
operations cannot create a data dependency. Only a load operation is affected by
the result of a store operation, since only a load can read back the memory value
that has been written by the store. The function write_read shown in Figure 5.33
illustrates the potential interactions between loads and stores. This figure also
shows two example executions of this function, when it is called for a two-element
array a, with initial contents −10 and 17, and with argument cnt equal to 3. These
executions illustrate some subtleties of the load and store operations.

In Example A of Figure 5.33, argument src is a pointer to array element
a[0], while dest is a pointer to array element a[1]. In this case, each load by the
pointer reference *src will yield the value −10. Hence, after two iterations, the
array elements will remain fixed at −10 and −9, respectively. The result of the
read from src is not affected by the write to dest. Measuring this example over
a larger number of iterations gives a CPE of 2.00.

In Example B of Figure 5.33, both arguments src and dest are pointers to
array element a[0]. In this case, each load by the pointer reference *srcwill yield
the value stored by the previous execution of the pointer reference *dest. As a
consequence, a series of ascending values will be stored in this location. In general,

534 Chapter 5 Optimizing Program Performance

1 /* Write to dest, read from src */

2 void write_read(int *src, int *dest, int n)

3 {

4 int cnt = n;

5 int val = 0;

6

7 while (cnt--) {

8 *dest = val;

9 val = (*src)+1;

10 }

11 }

Initial

Example A: write_read(&a[0],&a[1],3)

3cnt

a

val 0

�10 17

Iter. 1

2

�9

�10 0

Iter. 2

1

�9

�10 �9

Iter. 3

0

�9

�10 �9

Initial

Example B: write_read(&a[0],&a[0],3)

3cnt

a

val 0

�10 17

Iter. 1

2

1

0 17

Iter. 2

1

2

1 17

Iter. 3

0

3

2 17

Figure 5.33 Code to write and read memory locations, along with illustrative
executions. This function highlights the interactions between stores and loads when
arguments src and dest are equal.

if function write_read is called with arguments src and dest pointing to the same
memory location, and with argument cnt having some value n > 0, the net effect
is to set the location to n − 1. This example illustrates a phenomenon we will call
a write/read dependency—the outcome of a memory read depends on a recent
memory write. Our performance measurements show that Example B has a CPE
of 6.00. The write/read dependency causes a slowdown in the processing.

To see how the processor can distinguish between these two cases and why
one runs slower than the other, we must take a more detailed look at the load and
store execution units, as shown in Figure 5.34. The store unit contains a store buffer
containing the addresses and data of the store operations that have been issued
to the store unit, but have not yet been completed, where completion involves
updating the data cache. This buffer is provided so that a series of store operations
can be executed without having to wait for each one to update the cache. When

Section 5.12 Understanding Memory Performance 535

Figure 5.34
Detail of load and store
units. The store unit
maintains a buffer of
pending writes. The load
unit must check its address
with those in the store
unit to detect a write/read
dependency.

Load unit Store unit

Store buffer
Address

Address

Address
Data

Data

Data

Matching
addresses

Address Data

Data cache

a load operation occurs, it must check the entries in the store buffer for matching
addresses. If it finds a match (meaning that any of the bytes being written have the
same address as any of the bytes being read), it retrieves the corresponding data
entry as the result of the load operation.

Figure 5.35 shows the assembly code for the inner loop of write_read, and a
graphical representation of the operations generated by the instruction decoder.
The instruction movl %eax,(%ecx) is translated into two operations: The s_addr
instruction computes the address for the store operation, creates an entry in the
store buffer, and sets the address field for that entry. The s_data operation sets the
data field for the entry. As we will see, the fact that these two computations are
performed independently can be important to program performance.

In addition to the data dependencies between the operations caused by the
writing and reading of registers, the arcs on the right of the operators denote
a set of implicit dependencies for these operations. In particular, the address
computation of the s_addr operation must clearly precede the s_data operation. In
addition, the load operation generated by decoding the instruction movl (%ebx),

Figure 5.35
Graphical representation
of inner-loop code
for write_read. The
first movl instruction is
decoded into separate
operations to compute the
store address and to store
the data to memory.

%eax %ebx %ecx %edx

movl %eax,(%ecx)

movl (%ebx),%eax

addl $1,%eax

subl $1,%edx

jne loop

%eax %ebx %ecx %edx

s_addr

s_data

load

add

sub

jne

536 Chapter 5 Optimizing Program Performance

Figure 5.36
Abstracting the opera-
tions for write_read. We
first rearrange the opera-
tors of Figure 5.35 (a) and
then show only those oper-
ations that use values from
one iteration to produce
new values for the next (b).

%eax %ebx %ecx %edx

%eax %edx

s_addr
1

2

3

s_data

load

(a) (b)

add

sub

jne

%eax %edx

%eax %edx

s_data

load

add sub

%eax must check the addresses of any pending store operations, creating a data
dependency between it and the s_addr operation. The figure shows a dashed arc
between the s_data and load operations. This dependency is conditional: if the
two addresses match, the load operation must wait until the s_data has deposited
its result into the store buffer, but if the two addresses differ, the two operations
can proceed independently.

Figure 5.36 illustrates more clearly the data dependencies between the oper-
ations for the inner loop of write_read. In Figure 5.36(a), we have rearranged
the operations to allow the dependencies to be seen more clearly. We have la-
beled the three dependencies involving the load and store operations for special
attention. The arc labeled (1) represents the requirement that the store address
must be computed before the data can be stored. The arc labeled (2) represents
the need for the load operation to compare its address with that for any pend-
ing store operations. Finally, the dashed arc labeled (3) represents the conditional
data dependency that arises when the load and store addresses match.

Figure 5.36(b) illustrates what happens when we take away those operations
that do not directly affect the flow of data from one iteration to the next. The
data-flow graph shows just two chains of dependencies: the one on the left, with
data values being stored, loaded, and incremented (only for the case of matching
addresses), and the one on the right, decrementing variable cnt.

We can now understand the performance characteristics of function write_
read. Figure 5.37 illustrates the data dependencies formed by multiple iterations of
its inner loop. For the case of Example A of Figure 5.33, with differing source and
destination addresses, the load and store operations can proceed independently,
and hence the only critical path is formed by the decrementing of variable cnt.
This would lead us to predict a CPE of just 1.00, rather than the measured CPE of
2.00. We have found similar behavior for any function where data are both being
stored and loaded within a loop. Apparently the effort to compare load addresses
with those of the pending store operations forms an additional bottleneck. For

Section 5.12 Understanding Memory Performance 537

Figure 5.37
Data-flow representation
of function write_read.
When the two addresses
do not match, the only
critical path is formed by
the decrementing of cnt
(Example A). When they
do match, the chain of
data being stored, loaded,
and incremented forms the
critical path (Example B).

s_data

load

add

s_data

load

s_data

load

add sub

s_data

load

add sub

s_data

load

add sub

s_data

load

add sub

sub subadd

Critical path

Example A Example B

Critical path

the case of Example B, with matching source and destination addresses, the data
dependency between the s_data and load instructions causes a critical path to form
involving data being stored, loaded, and incremented. We found that these three
operations in sequence require a total of 6 clock cycles.

As these two examples show, the implementation of memory operations in-
volves many subtleties. With operations on registers, the processor can determine
which instructions will affect which others as they are being decoded into opera-
tions. With memory operations, on the other hand, the processor cannot predict
which will affect which others until the load and store addresses have been com-
puted. Efficient handling of memory operations is critical to the performance of
many programs. The memory subsystem makes use of many optimizations, such
as the potential parallelism when operations can proceed independently.

538 Chapter 5 Optimizing Program Performance

Practice Problem 5.10
As another example of code with potential load-store interactions, consider the
following function to copy the contents of one array to another:

1 void copy_array(int *src, int *dest, int n)

2 {

3 int i;

4 for (i = 0; i < n; i++)

5 dest[i] = src[i];

6 }

Suppose a is an array of length 1000 initialized so that each element a[i] equals i.

A. What would be the effect of the call copy_array(a+1,a,999)?

B. What would be the effect of the call copy_array(a,a+1,999)?

C. Our performance measurements indicate that the call of part A has a CPE
of 2.00, while the call of part B has a CPE of 5.00. To what factor do you
attribute this performance difference?

D. What performance would you expect for the call copy_array(a,a,999)?

Practice Problem 5.11
We saw that our measurements of the prefix-sum function psum1 (Figure 5.1) yield
a CPE of 10.00 on a machine where the basic operation to be performed, floating-
point addition, has a latency of just 3 clock cycles. Let us try to understand why
our function performs so poorly.

The following is the assembly code for the inner loop of the function:

psum1. a in %rdi, p in %rsi, i in %rax, cnt in %rdx

1 .L5: loop:

2 movss -4(%rsi,%rax,4), %xmm0 Get p[i-1]

3 addss (%rdi,%rax,4), %xmm0 Add a[i]

4 movss %xmm0, (%rsi,%rax,4) Store at p[i]

5 addq $1, %rax Increment i

6 cmpq %rax, %rdx Compare cnt:i

7 jg .L5 If >, goto loop

Perform an analysis similar to those shown for combine3 (Figure 5.14) and for
write_read (Figure 5.36) to diagram the data dependencies created by this loop,
and hence the critical path that forms as the computation proceeds.

Explain why the CPE is so high. (You may not be able to justify the exact
CPE, but you should be able to describe why it runs more slowly than one might
expect.)

Section 5.13 Life in the Real World: Performance Improvement Techniques 539

Practice Problem 5.12
Rewrite the code for psum1 (Figure 5.1) so that it does not need to repeatedly
retrieve the value of p[i] from memory. You do not need to use loop unrolling.
We measured the resulting code to have a CPE of 3.00, limited by the latency of
floating-point addition.

5.13 Life in the Real World: Performance
Improvement Techniques

Although we have only considered a limited set of applications, we can draw
important lessons on how to write efficient code. We have described a number
of basic strategies for optimizing program performance:

1. High-level design. Choose appropriate algorithms and data structures for the
problem at hand. Be especially vigilant to avoid algorithms or coding tech-
niques that yield asymptotically poor performance.

2. Basic coding principles. Avoid optimization blockers so that a compiler can
generate efficient code.

Eliminate excessive function calls. Move computations out of loops when
possible. Consider selective compromises of program modularity to gain
greater efficiency.
Eliminate unnecessary memory references. Introduce temporary variables
to hold intermediate results. Store a result in an array or global variable
only when the final value has been computed.

3. Low-level optimizations.
Unroll loops to reduce overhead and to enable further optimizations.
Find ways to increase instruction-level parallelism by techniques such as
multiple accumulators and reassociation.
Rewrite conditional operations in a functional style to enable compilation
via conditional data transfers.

A final word of advice to the reader is to be vigilant to avoid introducing
errors as you rewrite programs in the interest of efficiency. It is very easy to make
mistakes when introducing new variables, changing loop bounds, and making the
code more complex overall. One useful technique is to use checking code to test
each version of a function as it is being optimized, to ensure no bugs are introduced
during this process. Checking code applies a series of tests to the new versions of
a function and makes sure they yield the same results as the original. The set of
test cases must become more extensive with highly optimized code, since there
are more cases to consider. For example, checking code that uses loop unrolling
requires testing for many different loop bounds to make sure it handles all of the
different possible numbers of single-step iterations required at the end.

540 Chapter 5 Optimizing Program Performance

5.14 Identifying and Eliminating Performance Bottlenecks

Up to this point, we have only considered optimizing small programs, where there
is some clear place in the program that limits its performance and therefore should
be the focus of our optimization efforts. When working with large programs, even
knowing where to focus our optimization efforts can be difficult. In this section
we describe how to use code profilers, analysis tools that collect performance data
about a program as it executes. We also present a general principle of system
optimization known as Amdahl’s law.

5.14.1 Program Profiling

Program profiling involves running a version of a program in which instrumenta-
tion code has been incorporated to determine how much time the different parts
of the program require. It can be very useful for identifying the parts of a program
we should focus on in our optimization efforts. One strength of profiling is that it
can be performed while running the actual program on realistic benchmark data.

Unix systems provide the profiling program gprof. This program generates
two forms of information. First, it determines how much CPU time was spent
for each of the functions in the program. Second, it computes a count of how
many times each function gets called, categorized by which function performs the
call. Both forms of information can be quite useful. The timings give a sense of
the relative importance of the different functions in determining the overall run
time. The calling information allows us to understand the dynamic behavior of the
program.

Profiling with gprof requires three steps, as shown for a C program prog.c,
which runs with command line argument file.txt:

1. The program must be compiled and linked for profiling. With gcc (and other
C compilers) this involves simply including the run-time flag ‘-pg’ on the
command line:

unix> gcc -O1 -pg prog.c -o prog

2. The program is then executed as usual:

unix> ./prog file.txt

It runs slightly (around a factor of 2) slower than normal, but otherwise the
only difference is that it generates a file gmon.out.

3. gprof is invoked to analyze the data in gmon.out.

unix> gprof prog

The first part of the profile report lists the times spent executing the different
functions, sorted in descending order. As an example, the following listing shows
this part of the report for the three most time-consuming functions in a program:

Section 5.14 Identifying and Eliminating Performance Bottlenecks 541

% cumulative self self total

time seconds seconds calls s/call s/call name

97.58 173.05 173.05 1 173.05 173.05 sort_words

2.36 177.24 4.19 965027 0.00 0.00 find_ele_rec

0.12 177.46 0.22 12511031 0.00 0.00 Strlen

Each row represents the time spent for all calls to some function. The first
column indicates the percentage of the overall time spent on the function. The
second shows the cumulative time spent by the functions up to and including
the one on this row. The third shows the time spent on this particular function,
and the fourth shows how many times it was called (not counting recursive calls).
In our example, the function sort_words was called only once, but this single
call required 173.05 seconds, while the function find_ele_rec was called 965,027
times (not including recursive calls), requiring a total of 4.19 seconds. Function
Strlen computes the length of a string by calling the library function strlen.
Library function calls are normally not shown in the results by gprof. Their times
are usually reported as part of the function calling them. By creating the “wrapper
function” Strlen, we can reliably track the calls to strlen, showing that it was
called 12,511,031 times, but only requiring a total of 0.22 seconds.

The second part of the profile report shows the calling history of the functions.
The following is the history for a recursive function find_ele_rec:

158655725 find_ele_rec [5]

4.19 0.02 965027/965027 insert_string [4]

[5] 2.4 4.19 0.02 965027+158655725 find_ele_rec [5]

0.01 0.01 363039/363039 new_ele [10]

0.00 0.01 363039/363039 save_string [13]

158655725 find_ele_rec [5]

This history shows both the functions that called find_ele_rec, as well as
the functions that it called. The first two lines show the calls to the function:
158,655,725 calls by itself recursively, and 965,027 calls by function insert_string
(which is itself called 965,027 times). Function find_ele_rec in turn called two
other functions, save_string and new_ele, each a total of 363,039 times.

From this calling information, we can often infer useful information about
the program behavior. For example, the function find_ele_rec is a recursive
procedure that scans the linked list for a hash bucket looking for a particular string.
For this function, comparing the number of recursive calls with the number of
top-level calls provides statistical information about the lengths of the traversals
through these lists. Given that their ratio is 164.4, we can infer that the program
scanned an average of around 164 elements each time.

Some properties of gprof are worth noting:

. The timing is not very precise. It is based on a simple interval counting scheme
in which the compiled program maintains a counter for each function record-
ing the time spent executing that function. The operating system causes the
program to be interrupted at some regular time interval δ. Typical values of

542 Chapter 5 Optimizing Program Performance

δ range between 1.0 and 10.0 milliseconds. It then determines what function
the program was executing when the interrupt occurred and increments the
counter for that function by δ. Of course, it may happen that this function just
started executing and will shortly be completed, but it is assigned the full cost
of the execution since the previous interrupt. Some other function may run
between two interrupts and therefore not be charged any time at all.

Over a long duration, this scheme works reasonably well. Statistically, ev-
ery function should be charged according to the relative time spent executing
it. For programs that run for less than around 1 second, however, the numbers
should be viewed as only rough estimates.

. The calling information is quite reliable. The compiled program maintains a
counter for each combination of caller and callee. The appropriate counter is
incremented every time a procedure is called.

. By default, the timings for library functions are not shown. Instead, these
times are incorporated into the times for the calling functions.

5.14.2 Using a Profiler to Guide Optimization

As an example of using a profiler to guide program optimization, we created an ap-
plication that involves several different tasks and data structures. This application
analyzes the n-gram statistics of a text document, where an n-gram is a sequence
of n words occurring in a document. For n = 1, we collect statistics on individual
words, for n = 2 on pairs of words, and so on. For a given value of n, our program
reads a text file, creates a table of unique n-grams specifying how many times each
one occurs, then sorts the n-grams in descending order of occurrence.

As a benchmark, we ran it on a file consisting of the complete works of William
Shakespeare totaling 965,028 words, of which 23,706 are unique. We found that
for n = 1 even a poorly written analysis program can readily process the entire file
in under 1 second, and so we set n = 2 to make things more challenging. For the
case of n = 2, n-grams are referred to as bigrams (pronounced “bye-grams”). We
determined that Shakespeare’s works contain 363,039 unique bigrams. The most
common is “I am,” occurring 1,892 times. The phrase “to be” occurs 1,020 times.
Fully 266,018 of the bigrams occur only once.

Our program consists of the following parts. We created multiple versions,
starting with simple algorithms for the different parts and then replacing them
with more sophisticated ones:

1. Each word is read from the file and converted to lowercase. Our initial version
used the function lower1 (Figure 5.7), which we know to have quadratic run
time due to repeated calls to strlen.

2. A hash function is applied to the string to create a number between 0 and
s − 1, for a hash table with s buckets. Our initial function simply summed the
ASCII codes for the characters modulo s.

3. Each hash bucket is organized as a linked list. The program scans down this
list looking for a matching entry. If one is found, the frequency for this n-gram

Section 5.14 Identifying and Eliminating Performance Bottlenecks 543

Initial Quicksort Iter first Iter last

(a) All versions

(b) All but the slowest version

Big table Better hash Linear lower

200

180

160

140

120

100

80

60

40

20

0

6

5

4

3

2

1

0

C
P

U
 s

ec
on

ds

Sort
List
Lower
Strlen
Hash
Rest

Better hashQuicksort Iter first Iter last Big table Linear lower

C
P

U
 s

ec
on

ds

Sort
List
Lower
Strlen
Hash
Rest

Figure 5.38 Profile resultss for different versions of n-gram frequency counting program. Time is divided
according to the different major operations in the program.

is incremented. Otherwise, a new list element is created. Our initial version
performed this operation recursively, inserting new elements at the end of
the list.

4. Once the table has been generated, we sort all of the elements according to
the frequencies. Our initial version used insertion sort.

Figure 5.38 shows the profile results for six different versions of our n-gram-
frequency analysis program. For each version, we divide the time into the follow-
ing categories:

Sort: Sorting n-grams by frequency

List: Scanning the linked list for a matching n-gram, inserting a new element if
necessary

Lower: Converting strings to lowercase

544 Chapter 5 Optimizing Program Performance

Strlen: Computing string lengths

Hash: Computing the hash function

Rest: The sum of all other functions

As part (a) of the figure shows, our initial version required nearly 3 minutes,
with most of the time spent sorting. This is not surprising, since insertion sort has
quadratic run time, and the program sorted 363,039 values.

In our next version, we performed sorting using the library function qsort,
which is based on the quicksort algorithm, having run time O(n log n). This version
is labeled “Quicksort” in the figure. The more efficient sorting algorithm reduces
the time spent sorting to become negligible, and the overall run time to around
4.7 seconds. Part (b) of the figure shows the times for the remaining version on a
scale where we can see them more clearly.

With improved sorting, we now find that list scanning becomes the bottleneck.
Thinking that the inefficiency is due to the recursive structure of the function,
we replaced it by an iterative one, shown as “Iter first.” Surprisingly, the run
time increases to around 5.9 seconds. On closer study, we find a subtle difference
between the two list functions. The recursive version inserted new elements at the
end of the list, while the iterative one inserted them at the front. To maximize
performance, we want the most frequent n-grams to occur near the beginnings of
the lists. That way, the function will quickly locate the common cases. Assuming
that n-grams are spread uniformly throughout the document, we would expect
the first occurrence of a frequent one to come before that of a less frequent
one. By inserting new n-grams at the end, the first function tended to order n-
grams in descending order of frequency, while the second function tended to do
just the opposite. We therefore created a third list-scanning function that uses
iteration, but inserts new elements at the end of this list. With this version, shown
as “Iter last,” the time dropped to around 4.2 seconds, slightly better than with the
recursive version. These measurements demonstrate the importance of running
experiments on a program as part of an optimization effort. We initially assumed
that converting recursive code to iterative code would improve its performance
and did not consider the distinction between adding to the end or to the beginning
of a list.

Next, we consider the hash table structure. The initial version had only 1021
buckets (typically, the number of buckets is chosen to be a prime number to
enhance the ability of the hash function to distribute keys uniformly among the
buckets). For a table with 363,039 entries, this would imply an average load of
363039/1021 = 355.6. That explains why so much of the time is spent performing
list operations—the searches involve testing a significant number of candidate n-
grams. It also explains why the performance is so sensitive to the list ordering.
We then increased the number of buckets to 199,999, reducing the average load
to 1.8. Oddly enough, however, our overall run time only drops to 3.9 seconds, a
difference of only 0.3 seconds.

On further inspection, we can see that the minimal performance gain with a
larger table was due to a poor choice of hash function. Simply summing the charac-
ter codes for a string does not produce a very wide range of values. In particular,

Section 5.14 Identifying and Eliminating Performance Bottlenecks 545

the maximum code value for a letter is 122, and so a string of n characters will
generate a sum of at most 122n. The longest bigram in our document, “honorifica-
bilitudinitatibus thou,” sums to just 3371, and so most of the buckets in our hash
table will go unused. In addition, a commutative hash function, such as addition,
does not differentiate among the different possible orderings of characters with a
string. For example, the words “rat” and “tar” will generate the same sums.

We switched to a hash function that uses shift and Exclusive-Or operations.
With this version, shown as “Better hash,” the time drops to 0.4 seconds. A more
systematic approach would be to study the distribution of keys among the buckets
more carefully, making sure that it comes close to what one would expect if the
hash function had a uniform output distribution.

Finally, we have reduced the run time to the point where most of the time is
spent in strlen, and most of the calls to strlen occur as part of the lowercase con-
version. We have already seen that function lower1 has quadratic performance,
especially for long strings. The words in this document are short enough to avoid
the disastrous consequences of quadratic performance; the longest bigram is just
32 characters. Still, switching to lower2, shown as “Linear lower,” yields a signif-
icant performance, with the overall time dropping to around 0.2 seconds.

With this exercise, we have shown that code profiling can help drop the
time required for a simple application from nearly 3 minutes down to well under
1 second. The profiler helps us focus our attention on the most time-consuming
parts of the program and also provides useful information about the procedure
call structure. Some of the bottlenecks in our code, such as using a quadratic sort
routine, are easy to anticipate, while others, such as whether to append to the
beginning or end of a list, emerge only through a careful analysis.

We can see that profiling is a useful tool to have in the toolbox, but it should
not be the only one. The timing measurements are imperfect, especially for shorter
(less than 1 second) run times. More significantly, the results apply only to the
particular data tested. For example, if we had run the original function on data
consisting of a smaller number of longer strings, we would have found that the
lowercase conversion routine was the major performance bottleneck. Even worse,
if it only profiled documents with short words, we might never detect hidden
bottlenecks such as the quadratic performance of lower1. In general, profiling can
help us optimize for typical cases, assuming we run the program on representative
data, but we should also make sure the program will have respectable performance
for all possible cases. This mainly involves avoiding algorithms (such as insertion
sort) and bad programming practices (such as lower1) that yield poor asymptotic
performance.

5.14.3 Amdahl’s Law

Gene Amdahl, one of the early pioneers in computing, made a simple but insight-
ful observation about the effectiveness of improving the performance of one part
of a system. This observation has come to be known as Amdahl’s law. The main
idea is that when we speed up one part of a system, the effect on the overall sys-
tem performance depends on both how significant this part was and how much
it sped up. Consider a system in which executing some application requires time

546 Chapter 5 Optimizing Program Performance

Told. Suppose some part of the system requires a fraction α of this time, and that
we improve its performance by a factor of k. That is, the component originally re-
quired time αTold, and it now requires time (αTold)/k. The overall execution time
would thus be

Tnew = (1 − α)Told + (αTold)/k

= Told[(1 − α) + α/k]

From this, we can compute the speedup S = Told/Tnew as

S = 1
(1 − α) + α/k

(5.4)

As an example, consider the case where a part of the system that initially
consumed 60% of the time (α = 0.6) is sped up by a factor of 3 (k = 3). Then we
get a speedup of 1/[0.4 + 0.6/3] = 1.67. Thus, even though we made a substantial
improvement to a major part of the system, our net speedup was significantly
less. This is the major insight of Amdahl’s law—to significantly speed up the
entire system, we must improve the speed of a very large fraction of the overall
system.

Practice Problem 5.13
Suppose you work as a truck driver, and you have been hired to carry a load of
potatoes from Boise, Idaho, to Minneapolis, Minnesota, a total distance of 2500
kilometers. You estimate you can average 100 km/hr driving within the speed
limits, requiring a total of 25 hours for the trip.

A. You hear on the news that Montana has just abolished its speed limit, which
constitutes 1500 km of the trip. Your truck can travel at 150 km/hr. What will
be your speedup for the trip?

B. You can buy a new turbocharger for your truck at www.fasttrucks.com.
They stock a variety of models, but the faster you want to go, the more it will
cost. How fast must you travel through Montana to get an overall speedup
for your trip of 5/3?

Practice Problem 5.14
The marketing department at your company has promised your customers that
the next software release will show a 2× performance improvement. You have
been assigned the task of delivering on that promise. You have determined that
only 80% of the system can be improved. How much (i.e., what value of k) would
you need to improve this part to meet the overall performance target?

www.fasttrucks.com

Section 5.15 Summary 547

One interesting special case of Amdahl’s law is to consider the effect of setting
k to ∞. That is, we are able to take some part of the system and speed it up to the
point at which it takes a negligible amount of time. We then get

S∞ = 1
(1 − α)

(5.5)

So, for example, if we can speed up 60% of the system to the point where it re-
quires close to no time, our net speedup will still only be 1/0.4 = 2.5. We saw this
performance with our dictionary program as we replaced insertion sort by quick-
sort. The initial version spent 173.05 of its 177.57 seconds performing insertion
sort, giving α = 0.975. With quicksort, the time spent sorting becomes negligible,
giving a predicted speedup of 39.3. In fact, the actual measured speedup was a
bit less: 173.05/4.72 = 37.6, due to inaccuracies in the profiling measurements. We
were able to gain a large speedup because sorting constituted a very large fraction
of the overall execution time.

Amdahl’s law describes a general principle for improving any process. In
addition to applying to speeding up computer systems, it can guide a company
trying to reduce the cost of manufacturing razor blades, or a student trying to
improve his or her gradepoint average. Perhaps it is most meaningful in the world
of computers, where we routinely improve performance by factors of 2 or more.
Such high factors can only be achieved by optimizing large parts of a system.

5.15 Summary

Although most presentations on code optimization describe how compilers can
generate efficient code, much can be done by an application programmer to assist
the compiler in this task. No compiler can replace an inefficient algorithm or data
structure by a good one, and so these aspects of program design should remain
a primary concern for programmers. We also have seen that optimization block-
ers, such as memory aliasing and procedure calls, seriously restrict the ability of
compilers to perform extensive optimizations. Again, the programmer must take
primary responsibility for eliminating these. These should simply be considered
parts of good programming practice, since they serve to eliminate unneeded work.

Tuning performance beyond a basic level requires some understanding of the
processor’s microarchitecture, describing the underlying mechanisms by which
the processor implements its instruction set architecture. For the case of out-of-
order processors, just knowing something about the operations, latencies, and
issue times of the functional units establishes a baseline for predicting program
performance.

We have studied a series of techniques, including loop unrolling, creating
multiple accumulators, and reassociation, that can exploit the instruction-level
parallelism provided by modern processors. As we get deeper into the optimiza-
tion, it becomes important to study the generated assembly code, and to try to
understand how the computation is being performed by the machine. Much can
be gained by identifying the critical paths determined by the data dependencies

548 Chapter 5 Optimizing Program Performance

in the program, especially between the different iterations of a loop. We can also
compute a throughput bound for a computation, based on the number of oper-
ations that must be computed and the number and issue times of the units that
perform those operations.

Programs that involve conditional branches or complex interactions with
the memory system are more difficult to analyze and optimize than the simple
loop programs we first considered. The basic strategy is to try to make branches
more predictable or make them amenable to implementation using conditional
data transfers. We must also watch out for the interactions between store and
load operations. Keeping values in local variables, allowing them to be stored in
registers, can often be helpful.

When working with large programs, it becomes important to focus our op-
timization efforts on the parts that consume the most time. Code profilers and
related tools can help us systematically evaluate and improve program perfor-
mance. We described gprof, a standard Unix profiling tool. More sophisticated
profilers are available, such as the vtune program development system from In-
tel, and valgrind, commonly available on Linux systems. These tools can break
down the execution time below the procedure level, to estimate the performance
of each basic block of the program. (A basic block is a sequence of instructions that
has no transfers of control out of its middle, and so the block is always executed
in its entirety.)

Amdahl’s law provides a simple but powerful insight into the performance
gains obtained by improving just one part of the system. The gain depends both
on how much we improve this part and how large a fraction of the overall time
this part originally required.

Bibliographic Notes

Our focus has been to describe code optimization from the programmer’s per-
spective, demonstrating how to write code that will make it easier for compilers to
generate efficient code. An extended paper by Chellappa, Franchetti, and Püschel
[19] takes a similar approach, but goes into more detail with respect to the pro-
cessor’s characteristics.

Many publications describe code optimization from a compiler’s perspective,
formulating ways that compilers can generate more efficient code. Muchnick’s
book is considered the most comprehensive [76]. Wadleigh and Crawford’s book
on software optimization [114] covers some of the material we have presented,
but it also describes the process of getting high performance on parallel machines.
An early paper by Mahlke et al. [71] describes how several techniques developed
for compilers that map programs onto parallel machines can be adapted to exploit
the instruction-level parallelism of modern processors. This paper covers the code
transformations we presented, including loop unrolling, multiple accumulators
(which they refer to as accumulator variable expansion), and reassociation (which
they refer to as tree height reduction).

Our presentation of the operation of an out-of-order processor is fairly brief
and abstract. More complete descriptions of the general principles can be found in

Homework Problems 549

advanced computer architecture textbooks, such as the one by Hennessy and Pat-
terson [49, Ch. 2–3]. Shen and Lipasti’s book [96] provides an in-depth treatment
of modern processor design.

Amdahl’s law is presented in most books on computer architecture. With its
major focus on quantitative system evaluation, Hennessy and Patterson’s book
[49, Ch. 1] provides a particularly good treatment of the subject.

Homework Problems

5.15 ◆◆
Suppose we wish to write a procedure that computes the inner product of two
vectors u and v. An abstract version of the function has a CPE of 16–17 with x86-
64 and 26–29 with IA32 for integer, single-precision, and double-precision data. By
doing the same sort of transformations we did to transform the abstract program
combine1 into the more efficient combine4, we get the following code:

1 /* Accumulate in temporary */

2 void inner4(vec_ptr u, vec_ptr v, data_t *dest)

3 {

4 long int i;

5 int length = vec_length(u);

6 data_t *udata = get_vec_start(u);

7 data_t *vdata = get_vec_start(v);

8 data_t sum = (data_t) 0;

9

10 for (i = 0; i < length; i++) {

11 sum = sum + udata[i] * vdata[i];

12 }

13 *dest = sum;

14 }

Our measurements show that this function has a CPE of 3.00 for integer and
floating-point data. For data type float, the x86-64 assembly code for the inner
loop is as follows:

inner4: data_t = float

udata in %rbx, vdata in %rax, limit in %rcx,

i in %rdx, sum in %xmm1

1 .L87: loop:

2 movss (%rbx,%rdx,4), %xmm0 Get udata[i]

3 mulss (%rax,%rdx,4), %xmm0 Multiply by vdata[i]

4 addss %xmm0, %xmm1 Add to sum

5 addq $1, %rdx Increment i

6 cmpq %rcx, %rdx Compare i:limit

7 jl .L87 If <, goto loop

550 Chapter 5 Optimizing Program Performance

Assume that the functional units have the characteristics listed in Figure 5.12.

A. Diagram how this instruction sequence would be decoded into operations
and show how the data dependencies between them would create a critical
path of operations, in the style of Figures 5.13 and 5.14.

B. For data type float, what lower bound on the CPE is determined by the
critical path?

C. Assuming similar instruction sequences for the integer code as well, what
lower bound on the CPE is determined by the critical path for integer data?

D. Explain how the two floating-point versions can have CPEs of 3.00, even
though the multiplication operation requires either 4 or 5 clock cycles.

5.16 ◆
Write a version of the inner product procedure described in Problem 5.15 that
uses four-way loop unrolling.

For x86-64, our measurements of the unrolled version give a CPE of 2.00 for
integer data but still 3.00 for both single and double precision.

A. Explain why any version of any inner product procedure cannot achieve a
CPE less than 2.00.

B. Explain why the performance for floating-point data did not improve with
loop unrolling.

5.17 ◆
Write a version of the inner product procedure described in Problem 5.15 that
uses four-way loop unrolling with four parallel accumulators. Our measurements
for this function with x86-64 give a CPE of 2.00 for all types of data.

A. What factor limits the performance to a CPE of 2.00?

B. Explain why the version with integer data on IA32 achieves a CPE of 2.75,
worse than the CPE of 2.25 achieved with just four-way loop unrolling.

5.18 ◆
Write a version of the inner product procedure described in Problem 5.15 that uses
four-way loop unrolling along with reassociation to enable greater parallelism.
Our measurements for this function give a CPE of 2.00 with x86-64 and 2.25 with
IA32 for all types of data.

5.19 ◆◆
The library function memset has the following prototype:

void *memset(void *s, int c, size_t n);

This function fills n bytes of the memory area starting at s with copies of the low-
order byte of c. For example, it can be used to zero out a region of memory by
giving argument 0 for c, but other values are possible.

Homework Problems 551

The following is a straightforward implementation of memset:

1 /* Basic implementation of memset */

2 void *basic_memset(void *s, int c, size_t n)

3 {

4 size_t cnt = 0;

5 unsigned char *schar = s;

6 while (cnt < n) {

7 *schar++ = (unsigned char) c;

8 cnt++;

9 }

10 return s;

11 }

Implement a more efficient version of the function by using a word of data
type unsigned long to pack four (for IA32) or eight (for x86-64) copies of c, and
then step through the region using word-level writes. You might find it helpful to
do additional loop unrolling as well. On an Intel Core i7 machine, we were able
to reduce the CPE from 2.00 for the straightforward implementation to 0.25 for
IA32 and 0.125 for x86-64, i.e., writing either 4 or 8 bytes on every clock cycle.

Here are some additional guidelines. In this discussion, let K denote the value
of sizeof(unsigned long) for the machine on which you run your program.

. You may not call any library functions.

. Your code should work for arbitrary values of n, including when it is not a
multiple of K . You can do this in a manner similar to the way we finish the
last few iterations with loop unrolling.

. You should write your code so that it will compile and run correctly regardless
of the value of K . Make use of the operation sizeof to do this.

. On some machines, unaligned writes can be much slower than aligned ones.
(On some non-x86 machines, they can even cause segmentation faults.) Write
your code so that it starts with byte-level writes until the destination address
is a multiple of K , then do word-level writes, and then (if necessary) finish
with byte-level writes.

. Beware of the case where cnt is small enough that the upper bounds on
some of the loops become negative. With expressions involving the sizeof
operator, the testing may be performed with unsigned arithmetic. (See Sec-
tion 2.2.8 and Problem 2.72.)

5.20 ◆◆◆
We considered the task of polynomial evaluation in Problems 5.5 and 5.6, with
both a direct evaluation and an evaluation by Horner’s method. Try to write
faster versions of the function using the optimization techniques we have explored,
including loop unrolling, parallel accumulation, and reassociation. You will find
many different ways of mixing together Horner’s scheme and direct evaluation
with these optimization techniques.

552 Chapter 5 Optimizing Program Performance

Ideally, you should be able to reach a CPE close to the number of cycles
between successive floating-point additions and multiplications with your machine
(typically 1). At the very least, you should be able to achieve a CPE less than the
latency of floating-point addition for your machine.

5.21 ◆◆◆
In Problem 5.12, we were able to reduce the CPE for the prefix-sum computation
to 3.00, limited by the latency of floating-point addition on this machine. Simple
loop unrolling does not improve things.

Using a combination of loop unrolling and reassociation, write code for pre-
fix sum that achieves a CPE less than the latency of floating-point addition on
your machine. Doing this requires actually increasing the number of additions per-
formed. For example, our version with two-way unrolling requires three additions
per iteration, while our version with three-way unrolling requires five.

5.22 ◆
Suppose you are given the task of improving the performance of a program
consisting of three parts. Part A requires 20% of the overall run time, part B
requires 30%, and part C requires 50%. You determine that for $1000 you could
either speed up part B by a factor of 3.0 or part C by a factor of 1.5. Which choice
would maximize performance?

Solutions to Practice Problems

Solution to Problem 5.1 (page 478)
This problem illustrates some of the subtle effects of memory aliasing.

As the following commented code shows, the effect will be to set the value at
xp to zero:

4 *xp = *xp + *xp; /* 2x */

5 *xp = *xp - *xp; /* 2x-2x = 0 */

6 *xp = *xp - *xp; /* 0-0 = 0 */

This example illustrates that our intuition about program behavior can often be
wrong. We naturally think of the case where xp and yp are distinct but overlook
the possibility that they might be equal. Bugs often arise due to conditions the
programmer does not anticipate.

Solution to Problem 5.2 (page 482)
This problem illustrates the relationship between CPE and absolute performance.
It can be solved using elementary algebra. We find that for n ≤ 2, Version 1 is the
fastest. Version 2 is fastest for 3 ≤ n ≤ 7, and Version 3 is fastest for n ≥ 8.

Solution to Problem 5.3 (page 490)
This is a simple exercise, but it is important to recognize that the four statements
of a for loop—initial, test, update, and body—get executed different numbers of
times.

Solutions to Practice Problems 553

Code min max incr square

A. 1 91 90 90
B. 91 1 90 90
C. 1 1 90 90

Solution to Problem 5.4 (page 494)
This assembly code demonstrates a clever optimization opportunity detected by
gcc. It is worth studying this code carefully to better understand the subtleties of
code optimization.

A. In the less optimized code, register%xmm0 is simply used as a temporary value,
both set and used on each loop iteration. In the more optimized code, it
is used more in the manner of variable x in combine4, accumulating the
product of the vector elements. The difference with combine4, however,
is that location dest is updated on each iteration by the second movss
instruction.

We can see that this optimized version operates much like the following
C code:

1 /* Make sure dest updated on each iteration */

2 void combine3w(vec_ptr v, data_t *dest)

3 {

4 long int i;

5 long int length = vec_length(v);

6 data_t *data = get_vec_start(v);

7 data_t acc = IDENT;

8

9 for (i = 0; i < length; i++) {

10 acc = acc OP data[i];

11 *dest = acc;

12 }

13 }

B. The two versions of combine3 will have identical functionality, even with
memory aliasing.

C. This transformation can be made without changing the program behavior,
because, with the exception of the first iteration, the value read from dest at
the beginning of each iteration will be the same value written to this register
at the end of the previous iteration. Therefore, the combining instruction
can simply use the value already in %xmm0 at the beginning of the loop.

Solution to Problem 5.5 (page 507)
Polynomial evaluation is a core technique for solving many problems. For example,
polynomial functions are commonly used to approximate trigonometric functions
in math libraries.

554 Chapter 5 Optimizing Program Performance

A. The function performs 2n multiplications and n additions.

B. We can see that the performance limiting computation here is the repeated
computation of the expression xpwr = x * xpwr. This requires a double-
precision, floating-point multiplication (5 clock cycles), and the computation
for one iteration cannot begin until the one for the previous iteration has
completed. The updating of result only requires a floating-point addition
(3 clock cycles) between successive iterations.

Solution to Problem 5.6 (page 508)
This problem demonstrates that minimizing the number of operations in a com-
putation may not improve its performance.

A. The function performs n multiplications and n additions, half the number of
multiplications as the original function poly.

B. We can see that the performance limiting computation here is the repeated
computation of the expression result = a[i] + x*result. Starting from the
value of result from the previous iteration, we must first multiply it by x
(5 clock cycles) and then add it to a[i] (3 cycles) before we have the value
for this iteration. Thus, each iteration imposes a minimum latency of 8 cycles,
exactly our measured CPE.

C. Although each iteration in function poly requires two multiplications rather
than one, only a single multiplication occurs along the critical path per
iteration.

Solution to Problem 5.7 (page 510)
The following code directly follows the rules we have stated for unrolling a loop
by some factor k:

1 void unroll5(vec_ptr v, data_t *dest)

2 {

3 long int i;

4 long int length = vec_length(v);

5 long int limit = length-4;

6 data_t *data = get_vec_start(v);

7 data_t acc = IDENT;

8

9 /* Combine 5 elements at a time */

10 for (i = 0; i < limit; i+=5) {

11 acc = acc OP data[i] OP data[i+1];

12 acc = acc OP data[i+2] OP data[i+3];

13 acc = acc OP data[i+4];

14 }

15

16 /* Finish any remaining elements */

17 for (; i < length; i++) {

18 acc = acc OP data[i];

Solutions to Practice Problems 555

r

A1: ((r*x)*y)*z

r

x y z

* *

*

*

r

A2: (r*(x*y))*z

r

x y z

*

*

*

r

A3: r*((x*y)*z)

r

x y z

*

*

*

r

A4: r*(x*(y*z))

r

x y z

*

*

*

r

A5: (r*x)*(y*z)

r

x y z

*

*

Figure 5.39 Data dependencies among multiplication operations for cases in Problem 5.8. The operations
shown as blue boxes form the critical path for the iteration.

19 }

20 *dest = acc;

21 }

Solution to Problem 5.8 (page 523)
This problem demonstrates how small changes in a program can yield dramatic
performance differences, especially on a machine with out-of-order execution.
Figure 5.39 diagrams the three multiplication operations for a single iteration of
the function. In this figure, the operations shown as blue boxes are along the critical
path—they need to be computed in sequence to compute a new value for loop
variable r. The operations shown as light boxes can be computed in parallel with
the critical path operations. For a loop with c operations along the critical path,
each iteration will require a minimum of 5c clock cycles and will compute the
product for three elements, giving a lower bound on the CPE of 5c/3. This implies
lower bounds of 5.00 for A1, 3.33 for A2 and A5, and 1.67 for A3 and A4.

We ran these functions on an Intel Core i7, and indeed obtained CPEs of 5.00
for A1, and 1.67 for A3 and A4. For some reason, A2 and A5 achieved CPEs of
just 3.67, indicating that the functions required 11 clock cycles per iteration rather
than the predicted 10.

Solution to Problem 5.9 (page 530)
This is another demonstration that a slight change in coding style can make it much
easier for the compiler to detect opportunities to use conditional moves:

while (i1 < n && i2 < n) {

int v1 = src1[i1];

int v2 = src2[i2];

int take1 = v1 < v2;

dest[id++] = take1 ? v1 : v2;

i1 += take1;

i2 += (1-take1);

}

556 Chapter 5 Optimizing Program Performance

We measured a CPE of around 11.50 for this version of the code, a significant
improvement over the original CPE of 17.50.

Solution to Problem 5.10 (page 538)
This problem requires you to analyze the potential load-store interactions in a
program.

A. It will set each element a[i] to i + 1, for 0 ≤ i ≤ 998.

B. It will set each element a[i] to 0, for 1 ≤ i ≤ 999.

C. In the second case, the load of one iteration depends on the result of the store
from the previous iteration. Thus, there is a write/read dependency between
successive iterations. It is interesting to note that the CPE of 5.00 is 1 less
than we measured for Example B of function write_read. This is due to the
fact that write_read increments the value before storing it, requiring one
clock cycle.

D. It will give a CPE of 2.00, the same as for Example A, since there are no
dependencies between stores and subsequent loads.

Solution to Problem 5.11 (page 538)
We can see that this function has a write/read dependency between successive
iterations—the destination value p[i] on one iteration matches the source value
p[i-1] on the next.

Solution to Problem 5.12 (page 539)
Here is a revised version of the function:

1 void psum1a(float a[], float p[], long int n)

2 {

3 long int i;

4 /* last_val holds p[i-1]; val holds p[i] */

5 float last_val, val;

6 last_val = p[0] = a[0];

7 for (i = 1; i < n; i++) {

8 val = last_val + a[i];

9 p[i] = val;

10 last_val = val;

11 }

12 }

We introduce a local variable last_val. At the start of iteration i, it holds the
value of p[i-1]. We then compute val to be the value of p[i] and to be the new
value for last_val.

This version compiles to the following assembly code:

psum1a. a in %rdi, p in %rsi, i in %rax, cnt in %rdx, last_val in %xmm0

1 .L18: loop:

2 addss (%rdi,%rax,4), %xmm0 last_val = val = last_val + a[i]

Solutions to Practice Problems 557

3 movss %xmm0, (%rsi,%rax,4) Store val in p[i]

4 addq $1, %rax Increment i

5 cmpq %rax, %rdx Compare cnt:i

6 jg .L18 If >, goto loop

This code holds last_val in %xmm0, avoiding the need to read p[i-1] from
memory, and thus eliminating the write/read dependency seen in psum1.

Solution to Problem 5.13 (page 546)
This problem illustrates that Amdahl’s law applies to more than just computer
systems.

A. In terms of Equation 5.4, we have α = 0.6 and k = 1.5. More directly, travel-
ing the 1500 kilometers through Montana will require 10 hours, and the rest
of the trip also requires 10 hours. This will give a speedup of 25/(10 + 10) =
1.25.

B. In terms of Equation 5.4, we have α = 0.6, and we require S = 5/3, from
which we can solve for k. More directly, to speed up the trip by 5/3, we must
decrease the overall time to 15 hours. The parts outside of Montana will still
require 10 hours, so we must drive through Montana in 5 hours. This requires
traveling at 300 km/hr, which is pretty fast for a truck!

Solution to Problem 5.14 (page 546)
Amdahl’s law is best understood by working through some examples. This one
requires you to look at Equation 5.4 from an unusual perspective.

This problem is a simple application of the equation. You are given S = 2 and
α = .8, and you must then solve for k:

2 = 1
(1 − 0.8) + 0.8/k

0.4 + 1.6/k = 1.0

k = 2.67

This page intentionally left blank

C H A P T E R 6
The Memory Hierarchy

6.1 Storage Technologies 561

6.2 Locality 586

6.3 The Memory Hierarchy 591

6.4 Cache Memories 596

6.5 Writing Cache-friendly Code 615

6.6 Putting It Together: The Impact of Caches on
Program Performance 620

6.7 Summary 629

Bibliographic Notes 630

Homework Problems 631

Solutions to Practice Problems 642

559

560 Chapter 6 The Memory Hierarchy

To this point in our study of systems, we have relied on a simple model of a
computer system as a CPU that executes instructions and a memory system that
holds instructions and data for the CPU. In our simple model, the memory system
is a linear array of bytes, and the CPU can access each memory location in a
constant amount of time. While this is an effective model as far as it goes, it does
not reflect the way that modern systems really work.

In practice, a memory system is a hierarchy of storage devices with different
capacities, costs, and access times. CPU registers hold the most frequently used
data. Small, fast cache memories nearby the CPU act as staging areas for a subset
of the data and instructions stored in the relatively slow main memory. The main
memory stages data stored on large, slow disks, which in turn often serve as
staging areas for data stored on the disks or tapes of other machines connected by
networks.

Memory hierarchies work because well-written programs tend to access the
storage at any particular level more frequently than they access the storage at the
next lower level. So the storage at the next level can be slower, and thus larger
and cheaper per bit. The overall effect is a large pool of memory that costs as
much as the cheap storage near the bottom of the hierarchy, but that serves data
to programs at the rate of the fast storage near the top of the hierarchy.

As a programmer, you need to understand the memory hierarchy because it
has a big impact on the performance of your applications. If the data your program
needs are stored in a CPU register, then they can be accessed in zero cycles during
the execution of the instruction. If stored in a cache, 1 to 30 cycles. If stored in main
memory, 50 to 200 cycles. And if stored in disk tens of millions of cycles!

Here, then, is a fundamental and enduring idea in computer systems: if you
understand how the system moves data up and down the memory hierarchy, then
you can write your application programs so that their data items are stored higher
in the hierarchy, where the CPU can access them more quickly.

This idea centers around a fundamental property of computer programs
known as locality. Programs with good locality tend to access the same set of
data items over and over again, or they tend to access sets of nearby data items.
Programs with good locality tend to access more data items from the upper levels
of the memory hierarchy than programs with poor locality, and thus run faster. For
example, the running times of different matrix multiplication kernels that perform
the same number of arithmetic operations, but have different degrees of locality,
can vary by a factor of 20!

In this chapter, we will look at the basic storage technologies—SRAM mem-
ory, DRAM memory, ROM memory, and rotating and solid state disks—and
describe how they are organized into hierarchies. In particular, we focus on the
cache memories that act as staging areas between the CPU and main memory, be-
cause they have the most impact on application program performance. We show
you how to analyze your C programs for locality and we introduce techniques
for improving the locality in your programs. You will also learn an interesting
way to characterize the performance of the memory hierarchy on a particular
machine as a “memory mountain” that shows read access times as a function of
locality.

Section 6.1 Storage Technologies 561

6.1 Storage Technologies

Much of the success of computer technology stems from the tremendous progress
in storage technology. Early computers had a few kilobytes of random-access
memory. The earliest IBM PCs didn’t even have a hard disk. That changed with
the introduction of the IBM PC-XT in 1982, with its 10-megabyte disk. By the year
2010, typical machines had 150,000 times as much disk storage, and the amount of
storage was increasing by a factor of 2 every couple of years.

6.1.1 Random-Access Memory

Random-access memory (RAM) comes in two varieties—static and dynamic. Static
RAM (SRAM) is faster and significantly more expensive than Dynamic RAM
(DRAM). SRAM is used for cache memories, both on and off the CPU chip.
DRAM is used for the main memory plus the frame buffer of a graphics system.
Typically, a desktop system will have no more than a few megabytes of SRAM,
but hundreds or thousands of megabytes of DRAM.

Static RAM

SRAM stores each bit in a bistable memory cell. Each cell is implemented with
a six-transistor circuit. This circuit has the property that it can stay indefinitely
in either of two different voltage configurations, or states. Any other state will
be unstable—starting from there, the circuit will quickly move toward one of the
stable states. Such a memory cell is analogous to the inverted pendulum illustrated
in Figure 6.1.

The pendulum is stable when it is tilted either all the way to the left or all the
way to the right. From any other position, the pendulum will fall to one side or the
other. In principle, the pendulum could also remain balanced in a vertical position
indefinitely, but this state is metastable—the smallest disturbance would make it
start to fall, and once it fell it would never return to the vertical position.

Due to its bistable nature, an SRAM memory cell will retain its value indef-
initely, as long as it is kept powered. Even when a disturbance, such as electrical
noise, perturbs the voltages, the circuit will return to the stable value when the
disturbance is removed.

Figure 6.1
Inverted pendulum.
Like an SRAM cell, the
pendulum has only two
stable configurations, or
states.

Stable left Stable rightUnstable

562 Chapter 6 The Memory Hierarchy

Transistors Relative Relative
per bit access time Persistent? Sensitive? cost Applications

SRAM 6 1× Yes No 100× Cache memory
DRAM 1 10× No Yes 1× Main mem, frame buffers

Figure 6.2 Characteristics of DRAM and SRAM memory.

Dynamic RAM

DRAM stores each bit as charge on a capacitor. This capacitor is very small—
typically around 30 femtofarads, that is, 30 × 10−15 farads. Recall, however, that
a farad is a very large unit of measure. DRAM storage can be made very dense—
each cell consists of a capacitor and a single access transistor. Unlike SRAM,
however, a DRAM memory cell is very sensitive to any disturbance. When the
capacitor voltage is disturbed, it will never recover. Exposure to light rays will
cause the capacitor voltages to change. In fact, the sensors in digital cameras and
camcorders are essentially arrays of DRAM cells.

Various sources of leakage current cause a DRAM cell to lose its charge
within a time period of around 10 to 100 milliseconds. Fortunately, for computers
operating with clock cycle times measured in nanoseconds, this retention time is
quite long. The memory system must periodically refresh every bit of memory by
reading it out and then rewriting it. Some systems also use error-correcting codes,
where the computer words are encoded a few more bits (e.g., a 32-bit word might
be encoded using 38 bits), such that circuitry can detect and correct any single
erroneous bit within a word.

Figure 6.2 summarizes the characteristics of SRAM and DRAM memory.
SRAM is persistent as long as power is applied. Unlike DRAM, no refresh is
necessary. SRAM can be accessed faster than DRAM. SRAM is not sensitive to
disturbances such as light and electrical noise. The trade-off is that SRAM cells
use more transistors than DRAM cells, and thus have lower densities, are more
expensive, and consume more power.

Conventional DRAMs

The cells (bits) in a DRAM chip are partitioned into d supercells, each consisting
of w DRAM cells. A d × w DRAM stores a total of dw bits of information. The
supercells are organized as a rectangular array with r rows and c columns, where
rc = d . Each supercell has an address of the form (i, j), where i denotes the row,
and j denotes the column.

For example, Figure 6.3 shows the organization of a 16 × 8 DRAM chip with
d = 16 supercells, w = 8 bits per supercell, r = 4 rows, and c = 4 columns. The
shaded box denotes the supercell at address (2, 1). Information flows in and out
of the chip via external connectors called pins. Each pin carries a 1-bit signal.
Figure 6.3 shows two of these sets of pins: eight data pins that can transfer 1 byte

Section 6.1 Storage Technologies 563

Figure 6.3
High-level view of a 128-
bit 16 × 8 DRAM chip.

Memory
controller

2

addr

8

data

(to CPU)

DRAM chip

Cols
0

0

1

2

3

1 2 3

Supercell
(2,1)

Internal row buffer

Rows

in or out of the chip, and two addr pins that carry two-bit row and column supercell
addresses. Other pins that carry control information are not shown.

Aside A note on terminology

The storage community has never settled on a standard name for a DRAM array element. Computer
architects tend to refer to it as a “cell,” overloading the term with the DRAM storage cell. Circuit
designers tend to refer to it as a “word,” overloading the term with a word of main memory. To avoid
confusion, we have adopted the unambiguous term “supercell.”

Each DRAM chip is connected to some circuitry, known as the memory
controller, that can transfer w bits at a time to and from each DRAM chip. To read
the contents of supercell (i, j), the memory controller sends the row address i to
the DRAM, followed by the column address j . The DRAM responds by sending
the contents of supercell (i, j) back to the controller. The row address i is called a
RAS (Row Access Strobe) request. The column address j is called a CAS (Column
Access Strobe) request. Notice that the RAS and CAS requests share the same
DRAM address pins.

For example, to read supercell (2, 1) from the 16 × 8 DRAM in Figure 6.3, the
memory controller sends row address 2, as shown in Figure 6.4(a). The DRAM
responds by copying the entire contents of row 2 into an internal row buffer. Next,
the memory controller sends column address 1, as shown in Figure 6.4(b). The
DRAM responds by copying the 8 bits in supercell (2, 1) from the row buffer and
sending them to the memory controller.

One reason circuit designers organize DRAMs as two-dimensional arrays
instead of linear arrays is to reduce the number of address pins on the chip. For
example, if our example 128-bit DRAM were organized as a linear array of 16
supercells with addresses 0 to 15, then the chip would need four address pins
instead of two. The disadvantage of the two-dimensional array organization is
that addresses must be sent in two distinct steps, which increases the access time.

564 Chapter 6 The Memory Hierarchy

Memory
controller

RASRAS � 22

8

data

DRAM chip

Cols
0

0

1

2

3

1 2 3

Internal row buffer

(a) Select row 2 (RAS request).

Rows

Row 2

2

addr

(b) Select column 1 (CAS request).

Memory
controller

2
CASCAS � 11

addr

8

data

Supercell
(2,1)

DRAM chip

Cols
0

0

1

2

3

1 2 3

Internal row buffer

Rows

Figure 6.4 Reading the contents of a DRAM supercell.

Memory Modules

DRAM chips are packaged in memory modules that plug into expansion slots
on the main system board (motherboard). Common packages include the 168-
pin dual inline memory module (DIMM), which transfers data to and from the
memory controller in 64-bit chunks, and the 72-pin single inline memory module
(SIMM), which transfers data in 32-bit chunks.

Figure 6.5 shows the basic idea of a memory module. The example module
stores a total of 64 MB (megabytes) using eight 64-Mbit 8M × 8 DRAM chips,
numbered 0 to 7. Each supercell stores 1 byte of main memory, and each 64-
bit doubleword1 at byte address A in main memory is represented by the eight
supercells whose corresponding supercell address is (i, j). In the example in
Figure 6.5, DRAM 0 stores the first (lower-order) byte, DRAM 1 stores the next
byte, and so on.

To retrieve a 64-bit doubleword at memory address A, the memory controller
converts A to a supercell address (i, j) and sends it to the memory module, which
then broadcasts i and j to each DRAM. In response, each DRAM outputs the 8-
bit contents of its (i, j) supercell. Circuitry in the module collects these outputs and
forms them into a 64-bit doubleword, which it returns to the memory controller.

Main memory can be aggregated by connecting multiple memory modules to
the memory controller. In this case, when the controller receives an address A, the
controller selects the module k that contains A, converts A to its (i, j) form, and
sends (i, j) to module k.

1. IA32 would call this 64-bit quantity a “quadword.”

Section 6.1 Storage Technologies 565

addr (row = i, col = j)

DRAM 7

DRAM 0

data

: Supercell (i,j)

64 MB
memory module
consisting of
8 8M�8 DRAMs

Memory
controller

64-bit doubleword to CPU chip

64-bit doubleword at main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Figure 6.5 Reading the contents of a memory module.

Practice Problem 6.1
In the following, let r be the number of rows in a DRAM array, c the number of
columns, br the number of bits needed to address the rows, and bc the number
of bits needed to address the columns. For each of the following DRAMs, deter-
mine the power-of-two array dimensions that minimize max(br, bc), the maximum
number of bits needed to address the rows or columns of the array.

Organization r c br bc max(br, bc)

16 × 1
16 × 4
128 × 8
512 × 4
1024 × 4

Enhanced DRAMs

There are many kinds of DRAM memories, and new kinds appear on the mar-
ket with regularity as manufacturers attempt to keep up with rapidly increasing

566 Chapter 6 The Memory Hierarchy

processor speeds. Each is based on the conventional DRAM cell, with optimiza-
tions that improve the speed with which the basic DRAM cells can be accessed.

. Fast page mode DRAM (FPM DRAM). A conventional DRAM copies an
entire row of supercells into its internal row buffer, uses one, and then discards
the rest. FPM DRAM improves on this by allowing consecutive accesses to
the same row to be served directly from the row buffer. For example, to read
four supercells from row i of a conventional DRAM, the memory controller
must send four RAS/CAS requests, even though the row address i is identical
in each case. To read supercells from the same row of an FPM DRAM, the
memory controller sends an initial RAS/CAS request, followed by three CAS
requests. The initial RAS/CAS request copies row i into the row buffer and
returns the supercell addressed by the CAS. The next three supercells are
served directly from the row buffer, and thus more quickly than the initial
supercell.

. Extended data out DRAM (EDO DRAM). An enhanced form of FPM DRAM
that allows the individual CAS signals to be spaced closer together in time.

. Synchronous DRAM (SDRAM). Conventional, FPM, and EDO DRAMs are
asynchronous in the sense that they communicate with the memory controller
using a set of explicit control signals. SDRAM replaces many of these control
signals with the rising edges of the same external clock signal that drives the
memory controller. Without going into detail, the net effect is that an SDRAM
can output the contents of its supercells at a faster rate than its asynchronous
counterparts.

. Double Data-Rate Synchronous DRAM (DDR SDRAM). DDR SDRAM is
an enhancement of SDRAM that doubles the speed of the DRAM by using
both clock edges as control signals. Different types of DDR SDRAMs are
characterized by the size of a small prefetch buffer that increases the effective
bandwidth: DDR (2 bits), DDR2 (4 bits), and DDR3 (8 bits).

. Rambus DRAM (RDRAM). This is an alternative proprietary technology with
a higher maximum bandwidth than DDR SDRAM.

. Video RAM (VRAM). Used in the frame buffers of graphics systems. VRAM
is similar in spirit to FPM DRAM. Two major differences are that (1) VRAM
output is produced by shifting the entire contents of the internal buffer in
sequence, and (2) VRAM allows concurrent reads and writes to the memory.
Thus, the system can be painting the screen with the pixels in the frame buffer
(reads) while concurrently writing new values for the next update (writes).

Aside Historical popularity of DRAM technologies

Until 1995, most PCs were built with FPM DRAMs. From 1996 to 1999, EDO DRAMs dominated the
market, while FPM DRAMs all but disappeared. SDRAMs first appeared in 1995 in high-end systems,
and by 2002 most PCs were built with SDRAMs and DDR SDRAMs. By 2010, most server and desktop
systems were built with DDR3 SDRAMs. In fact, the Intel Core i7 supports only DDR3 SDRAM.

Section 6.1 Storage Technologies 567

Nonvolatile Memory

DRAMs and SRAMs are volatile in the sense that they lose their information if the
supply voltage is turned off. Nonvolatile memories, on the other hand, retain their
information even when they are powered off. There are a variety of nonvolatile
memories. For historical reasons, they are referred to collectively as read-only
memories (ROMs), even though some types of ROMs can be written to as well as
read. ROMs are distinguished by the number of times they can be reprogrammed
(written to) and by the mechanism for reprogramming them.

A programmable ROM (PROM) can be programmed exactly once. PROMs
include a sort of fuse with each memory cell that can be blown once by zapping it
with a high current.

An erasable programmable ROM (EPROM) has a transparent quartz window
that permits light to reach the storage cells. The EPROM cells are cleared to zeros
by shining ultraviolet light through the window. Programming an EPROM is done
by using a special device to write ones into the EPROM. An EPROM can be
erased and reprogrammed on the order of 1000 times. An electrically erasable
PROM (EEPROM) is akin to an EPROM, but does not require a physically
separate programming device, and thus can be reprogrammed in-place on printed
circuit cards. An EEPROM can be reprogrammed on the order of 105 times before
it wears out.

Flash memory is a type of nonvolatile memory, based on EEPROMs, that
has become an important storage technology. Flash memories are everywhere,
providing fast and durable nonvolatile storage for a slew of electronic devices,
including digital cameras, cell phones, music players, PDAs, and laptop, desktop,
and server computer systems. In Section 6.1.3, we will look in detail at a new form
of flash-based disk drive, known as a solid state disk (SSD), that provides a faster,
sturdier, and less power-hungry alternative to conventional rotating disks.

Programs stored in ROM devices are often referred to as firmware. When
a computer system is powered up, it runs firmware stored in a ROM. Some
systems provide a small set of primitive input and output functions in firmware, for
example, a PC’s BIOS (basic input/output system) routines. Complicated devices
such as graphics cards and disk drive controllers also rely on firmware to translate
I/O (input/output) requests from the CPU.

Accessing Main Memory

Data flows back and forth between the processor and the DRAM main memory
over shared electrical conduits called buses. Each transfer of data between the
CPU and memory is accomplished with a series of steps called a bus transaction.
A read transaction transfers data from the main memory to the CPU. A write
transaction transfers data from the CPU to the main memory.

A bus is a collection of parallel wires that carry address, data, and control
signals. Depending on the particular bus design, data and address signals can share
the same set of wires, or they can use different sets. Also, more than two devices can
share the same bus. The control wires carry signals that synchronize the transaction
and identify what kind of transaction is currently being performed. For example,

568 Chapter 6 The Memory Hierarchy

Figure 6.6
Example bus structure
that connects the CPU
and main memory.

CPU chip

Register file

System bus Memory bus

Main
memoryBus interface I/O

bridge

ALU

is this transaction of interest to the main memory, or to some other I/O device
such as a disk controller? Is the transaction a read or a write? Is the information
on the bus an address or a data item?

Figure 6.6 shows the configuration of an example computer system. The main
components are the CPU chip, a chipset that we will call an I/O bridge (which
includes the memory controller), and the DRAM memory modules that make up
main memory. These components are connected by a pair of buses: a system bus
that connects the CPU to the I/O bridge, and a memory bus that connects the I/O
bridge to the main memory.

The I/O bridge translates the electrical signals of the system bus into the
electrical signals of the memory bus. As we will see, the I/O bridge also connects
the system bus and memory bus to an I/O bus that is shared by I/O devices such
as disks and graphics cards. For now, though, we will focus on the memory bus.

Aside A note on bus designs

Bus design is a complex and rapidly changing aspect of computer systems. Different vendors develop
different bus architectures as a way to differentiate their products. For example, Intel systems use
chipsets known as the northbridge and the southbridge to connect the CPU to memory and I/O devices,
respectively. In older Pentium and Core 2 systems, a front side bus (FSB) connects the CPU to the
northbridge. Systems from AMD replace the FSB with the HyperTransport interconnect, while newer
Intel Core i7 systems use the QuickPath interconnect. The details of these different bus architectures
are beyond the scope of this text. Instead, we will use the high-level bus architecture from Figure 6.6 as a
running example throughout the text. It is a simple but useful abstraction that allows us to be concrete,
and captures the main ideas without being tied too closely to the detail of any proprietary designs.

Consider what happens when the CPU performs a load operation such as

movl A,%eax

where the contents of address A are loaded into register %eax. Circuitry on the
CPU chip called the bus interface initiates a read transaction on the bus. The
read transaction consists of three steps. First, the CPU places the address A

on the system bus. The I/O bridge passes the signal along to the memory bus
(Figure 6.7(a)). Next, the main memory senses the address signal on the memory

Section 6.1 Storage Technologies 569

(a) CPU places address A on the memory bus.

Main
memory

Bus interface

Register file

I/O
bridge

ALU

A

X

0

A

%eax

(b) Main memory reads A from the bus, retrieves word x, and places it on the bus.

Register file

Main
memory

Bus interface

I/O
bridge

ALU

x

X

0

A

%eax

(c) CPU reads word x from the bus, and copies it into register %eax.

Register file

Main
memory

Bus interface

I/O
bridge

ALU

X

X

0

A

%eax

Figure 6.7 Memory read transaction for a load operation: movl A,%eax.

bus, reads the address from the memory bus, fetches the data word from the
DRAM, and writes the data to the memory bus. The I/O bridge translates the
memory bus signal into a system bus signal, and passes it along to the system bus
(Figure 6.7(b)). Finally, the CPU senses the data on the system bus, reads it from
the bus, and copies it to register %eax (Figure 6.7(c)).

Conversely, when the CPU performs a store instruction such as

movl %eax,A

where the contents of register %eax are written to address A, the CPU initiates
a write transaction. Again, there are three basic steps. First, the CPU places the
address on the system bus. The memory reads the address from the memory bus
and waits for the data to arrive (Figure 6.8(a)). Next, the CPU copies the data word
in %eax to the system bus (Figure 6.8(b)). Finally, the main memory reads the data
word from the memory bus and stores the bits in the DRAM (Figure 6.8(c)).

570 Chapter 6 The Memory Hierarchy

(a) CPU places address A on the memory bus. Main memory reads it and waits for the data word.

Register file

Main
memory

Bus interface

I/O
bridge

ALU

A

y

0

A

%eax

(b) CPU places data word y on the bus.

Register file

Main
memory

Bus interface

I/O
bridge

ALU

y

y

0

A

%eax

(c) Main memory reads data word y from the bus and stores it at address A.

Register file

Main
memory

Bus interface

I/O
bridge

ALU
y

0

Ay

%eax

Figure 6.8 Memory write transaction for a store operation: movl %eax,A.

6.1.2 Disk Storage

Disks are workhorse storage devices that hold enormous amounts of data, on
the order of hundreds to thousands of gigabytes, as opposed to the hundreds or
thousands of megabytes in a RAM-based memory. However, it takes on the order
of milliseconds to read information from a disk, a hundred thousand times longer
than from DRAM and a million times longer than from SRAM.

Disk Geometry

Disks are constructed from platters. Each platter consists of two sides, or surfaces,
that are coated with magnetic recording material. A rotating spindle in the center
of the platter spins the platter at a fixed rotational rate, typically between 5400 and

Section 6.1 Storage Technologies 571

Tracks

(a) Single-platter view

Track k Gaps
Surface

Spindle

Sectors

(b) Multiple-platter view

Cylinder k

Platter 0
Surface 0
Surface 1
Surface 2

Platter 1

Platter 2

Spindle

Surface 3
Surface 4
Surface 5

Figure 6.9 Disk geometry.

15,000 revolutions per minute (RPM). A disk will typically contain one or more of
these platters encased in a sealed container.

Figure 6.9(a) shows the geometry of a typical disk surface. Each surface
consists of a collection of concentric rings called tracks. Each track is partitioned
into a collection of sectors. Each sector contains an equal number of data bits
(typically 512 bytes) encoded in the magnetic material on the sector. Sectors are
separated by gaps where no data bits are stored. Gaps store formatting bits that
identify sectors.

A disk consists of one or more platters stacked on top of each other and
encased in a sealed package, as shown in Figure 6.9(b). The entire assembly is
often referred to as a disk drive, although we will usually refer to it as simply a
disk. We will sometime refer to disks as rotating disks to distinguish them from
flash-based solid state disks (SSDs), which have no moving parts.

Disk manufacturers describe the geometry of multiple-platter drives in terms
of cylinders, where a cylinder is the collection of tracks on all the surfaces that are
equidistant from the center of the spindle. For example, if a drive has three platters
and six surfaces, and the tracks on each surface are numbered consistently, then
cylinder k is the collection of the six instances of track k.

Disk Capacity

The maximum number of bits that can be recorded by a disk is known as its max-
imum capacity, or simply capacity. Disk capacity is determined by the following
technology factors:

. Recording density (bits/in): The number of bits that can be squeezed into a
1-inch segment of a track.

. Track density (tracks/in): The number of tracks that can be squeezed into a
1-inch segment of the radius extending from the center of the platter.

572 Chapter 6 The Memory Hierarchy

. Areal density (bits/in2): The product of the recording density and the track
density.

Disk manufacturers work tirelessly to increase areal density (and thus capac-
ity), and this is doubling every few years. The original disks, designed in an age of
low areal density, partitioned every track into the same number of sectors, which
was determined by the number of sectors that could be recorded on the innermost
track. To maintain a fixed number of sectors per track, the sectors were spaced far-
ther apart on the outer tracks. This was a reasonable approach when areal densities
were relatively low. However, as areal densities increased, the gaps between sec-
tors (where no data bits were stored) became unacceptably large. Thus, modern
high-capacity disks use a technique known as multiple zone recording, where the
set of cylinders is partitioned into disjoint subsets known as recording zones. Each
zone consists of a contiguous collection of cylinders. Each track in each cylinder in
a zone has the same number of sectors, which is determined by the number of sec-
tors that can be packed into the innermost track of the zone. Note that diskettes
(floppy disks) still use the old-fashioned approach, with a constant number of
sectors per track.

The capacity of a disk is given by the following formula:

Disk capacity = # bytes
sector

× average # sectors
track

× # tracks
surface

× # surfaces
platter

× # platters
disk

For example, suppose we have a disk with 5 platters, 512 bytes per sector,
20,000 tracks per surface, and an average of 300 sectors per track. Then the capacity
of the disk is:

Disk capacity = 512 bytes
sector

× 300 sectors
track

× 20,000 tracks
surface

× 2 surfaces
platter

× 5 platters
disk

= 30,720,000,000 bytes

= 30.72 GB.

Notice that manufacturers express disk capacity in units of gigabytes (GB), where
1 GB = 109 bytes.

Aside How much is a gigabyte?

Unfortunately, the meanings of prefixes such as kilo (K), mega (M), giga (G), and tera (T) depend
on the context. For measures that relate to the capacity of DRAMs and SRAMs, typically K = 210,
M = 220, G = 230, and T = 240. For measures related to the capacity of I/O devices such as disks and
networks, typically K = 103, M = 106, G = 109, and T = 1012. Rates and throughputs usually use these
prefix values as well.

Fortunately, for the back-of-the-envelope estimates that we typically rely on, either assump-
tion works fine in practice. For example, the relative difference between 220 = 1,048,576 and 106 =
1,000,000 is small: (220 − 106)/106 ≈ 5%. Similarly for 230 = 1,073,741,824 and 109 = 1,000,000,000:
(230 − 109)/109 ≈ 7%.

Section 6.1 Storage Technologies 573

Spindle

The disk surface
spins at a fixed
rotational rate The read/write head

is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air

By moving radially, the arm
can position the read/write
head over any track

(a) Single-platter view

Read/write heads

Arm

Spindle

(b) Multiple-platter view

Figure 6.10 Disk dynamics.

Practice Problem 6.2
What is the capacity of a disk with two platters, 10,000 cylinders, an average of 400
sectors per track, and 512 bytes per sector?

Disk Operation

Disks read and write bits stored on the magnetic surface using a read/write head
connected to the end of an actuator arm, as shown in Figure 6.10(a). By moving
the arm back and forth along its radial axis, the drive can position the head over
any track on the surface. This mechanical motion is known as a seek. Once the
head is positioned over the desired track, then as each bit on the track passes
underneath, the head can either sense the value of the bit (read the bit) or alter
the value of the bit (write the bit). Disks with multiple platters have a separate
read/write head for each surface, as shown in Figure 6.10(b). The heads are lined
up vertically and move in unison. At any point in time, all heads are positioned
on the same cylinder.

The read/write head at the end of the arm flies (literally) on a thin cushion of
air over the disk surface at a height of about 0.1 microns and a speed of about 80
km/h. This is analogous to placing the Sears Tower on its side and flying it around
the world at a height of 2.5 cm (1 inch) above the ground, with each orbit of the
earth taking only 8 seconds! At these tolerances, a tiny piece of dust on the surface
is like a huge boulder. If the head were to strike one of these boulders, the head
would cease flying and crash into the surface (a so-called head crash). For this
reason, disks are always sealed in airtight packages.

Disks read and write data in sector-sized blocks. The access time for a sector
has three main components: seek time, rotational latency, and transfer time:

574 Chapter 6 The Memory Hierarchy

. Seek time: To read the contents of some target sector, the arm first positions
the head over the track that contains the target sector. The time required to
move the arm is called the seek time. The seek time, Tseek, depends on the
previous position of the head and the speed that the arm moves across the
surface. The average seek time in modern drives, Tavg seek, measured by taking
the mean of several thousand seeks to random sectors, is typically on the order
of 3 to 9 ms. The maximum time for a single seek, Tmax seek, can be as high as
20 ms.

. Rotational latency: Once the head is in position over the track, the drive waits
for the first bit of the target sector to pass under the head. The performance
of this step depends on both the position of the surface when the head arrives
at the target sector and the rotational speed of the disk. In the worst case, the
head just misses the target sector and waits for the disk to make a full rotation.
Thus, the maximum rotational latency, in seconds, is given by

Tmax rotation = 1
RPM

× 60 secs
1 min

The average rotational latency, Tavg rotation, is simply half of Tmax rotation.
. Transfer time: When the first bit of the target sector is under the head, the

drive can begin to read or write the contents of the sector. The transfer time
for one sector depends on the rotational speed and the number of sectors per
track. Thus, we can roughly estimate the average transfer time for one sector
in seconds as

Tavg transf er = 1
RPM

× 1
(average # sectors/track)

× 60 secs
1 min

We can estimate the average time to access the contents of a disk sector as
the sum of the average seek time, the average rotational latency, and the average
transfer time. For example, consider a disk with the following parameters:

Parameter Value

Rotational rate 7200 RPM
Tavg seek 9 ms
Average # sectors/track 400

For this disk, the average rotational latency (in ms) is

Tavg rotation = 1/2 × Tmax rotation

= 1/2 × (60 secs / 7200 RPM) × 1000 ms/sec

≈ 4 ms

The average transfer time is

Tavg transf er = 60 / 7200 RPM × 1 / 400 sectors/track × 1000 ms/sec

≈ 0.02 ms

Section 6.1 Storage Technologies 575

Putting it all together, the total estimated access time is

Taccess = Tavg seek + Tavg rotation + Tavg transf er

= 9 ms + 4 ms + 0.02 ms

= 13.02 ms

This example illustrates some important points:

. The time to access the 512 bytes in a disk sector is dominated by the seek time
and the rotational latency. Accessing the first byte in the sector takes a long
time, but the remaining bytes are essentially free.

. Since the seek time and rotational latency are roughly the same, twice the
seek time is a simple and reasonable rule for estimating disk access time.

. The access time for a doubleword stored in SRAM is roughly 4 ns, and 60 ns
for DRAM. Thus, the time to read a 512-byte sector-sized block from memory
is roughly 256 ns for SRAM and 4000 ns for DRAM. The disk access time,
roughly 10 ms, is about 40,000 times greater than SRAM, and about 2500 times
greater than DRAM. The difference in access times is even more dramatic if
we compare the times to access a single word.

Practice Problem 6.3
Estimate the average time (in ms) to access a sector on the following disk:

Parameter Value

Rotational rate 15,000 RPM
Tavg seek 8 ms
Average # sectors/track 500

Logical Disk Blocks

As we have seen, modern disks have complex geometries, with multiple surfaces
and different recording zones on those surfaces. To hide this complexity from
the operating system, modern disks present a simpler view of their geometry as
a sequence of B sector-sized logical blocks, numbered 0, 1, . . . , B − 1. A small
hardware/firmware device in the disk package, called the disk controller, maintains
the mapping between logical block numbers and actual (physical) disk sectors.

When the operating system wants to perform an I/O operation such as reading
a disk sector into main memory, it sends a command to the disk controller asking
it to read a particular logical block number. Firmware on the controller performs
a fast table lookup that translates the logical block number into a (surface, track,
sector) triple that uniquely identifies the corresponding physical sector. Hardware
on the controller interprets this triple to move the heads to the appropriate
cylinder, waits for the sector to pass under the head, gathers up the bits sensed

576 Chapter 6 The Memory Hierarchy

by the head into a small memory buffer on the controller, and copies them into
main memory.

Aside Formatted disk capacity

Before a disk can be used to store data, it must be formatted by the disk controller. This involves filling
in the gaps between sectors with information that identifies the sectors, identifying any cylinders with
surface defects and taking them out of action, and setting aside a set of cylinders in each zone as spares
that can be called into action if one or more cylinders in the zone goes bad during the lifetime of the
disk. The formatted capacity quoted by disk manufacturers is less than the maximum capacity because
of the existence of these spare cylinders.

Practice Problem 6.4
Suppose that a 1 MB file consisting of 512-byte logical blocks is stored on a disk
drive with the following characteristics:

Parameter Value

Rotational rate 10,000 RPM
Tavg seek 5 ms
Average # sectors/track 1000
Surfaces 4
Sector size 512 bytes

For each case below, suppose that a program reads the logical blocks of the
file sequentially, one after the other, and that the time to position the head over
the first block is Tavg seek + Tavg rotation.

A. Best case: Estimate the optimal time (in ms) required to read the file given
the best possible mapping of logical blocks to disk sectors (i.e., sequential).

B. Random case: Estimate the time (in ms) required to read the file if blocks
are mapped randomly to disk sectors.

Connecting I/O Devices

Input/output (I/O) devices such as graphics cards, monitors, mice, keyboards,
and disks are connected to the CPU and main memory using an I/O bus such as
Intel’s Peripheral Component Interconnect (PCI) bus. Unlike the system bus and
memory buses, which are CPU-specific, I/O buses such as PCI are designed to be
independent of the underlying CPU. For example, PCs and Macs both incorporate
the PCI bus. Figure 6.11 shows a typical I/O bus structure (modeled on PCI) that
connects the CPU, main memory, and I/O devices.

Although the I/O bus is slower than the system and memory buses, it can
accommodate a wide variety of third-party I/O devices. For example, the bus in
Figure 6.11 has three different types of devices attached to it.

Section 6.1 Storage Technologies 577

Figure 6.11
Example bus structure
that connects the CPU,
main memory, and I/O
devices.

CPU

Register file

System bus Memory bus

I/O bus

MonitorKey-
board

Mouse

Disk drive

Main
memory

Expansion slots for
other devices such
as network adapters

Bus interface I/O
bridge

USB
controller

Graphics
adapter

Disk
controller

Host bus
adaptor

(SCSI/SATA)

ALU

Solid
state
disk

. A Universal Serial Bus (USB) controller is a conduit for devices attached to
a USB bus, which is a wildly popular standard for connecting a variety of
peripheral I/O devices, including keyboards, mice, modems, digital cameras,
game controllers, printers, external disk drives, and solid state disks. USB 2.0
buses have a maximum bandwidth of 60 MB/s. USB 3.0 buses have a maximum
bandwidth of 600 MB/s.

. A graphics card (or adapter) contains hardware and software logic that is
responsible for painting the pixels on the display monitor on behalf of the
CPU.

. A host bus adapter that connects one or more disks to the I/O bus using
a communication protocol defined by a particular host bus interface. The
two most popular such interfaces for disks are SCSI (pronounced “scuzzy”)
and SATA (pronounced “sat-uh”). SCSI disks are typically faster and more
expensive than SATA drives. A SCSI host bus adapter (often called a SCSI
controller) can support multiple disk drives, as opposed to SATA adapters,
which can only support one drive.

Additional devices such as network adapters can be attached to the I/O bus by
plugging the adapter into empty expansion slots on the motherboard that provide
a direct electrical connection to the bus.

578 Chapter 6 The Memory Hierarchy

KeyboardMouse

USB
controller

CPU chip

(a) The CPU initiates a disk read by writing a command, logical block number, and
destination memory address to the memory-mapped address associated with the disk.

Register file

I/O bus

Monitor

Disk

Main
memoryBus interface

Graphics
adapter

Disk
controller

ALU

KeyboardMouse

USB
controller

CPU chip

Register file

I/O bus

Monitor

Disk

Main
memoryBus interface

Graphics
adapter

Disk
controller

ALU

(b) The disk controller reads the sector and performs a DMA transfer into main memory.

Figure 6.12 Reading a disk sector.

Accessing Disks

While a detailed description of how I/O devices work and how they are pro-
grammed is outside our scope here, we can give you a general idea. For example,
Figure 6.12 summarizes the steps that take place when a CPU reads data from a
disk.

The CPU issues commands to I/O devices using a technique called memory-
mapped I/O (Figure 6.12(a)). In a system with memory-mapped I/O, a block of

Section 6.1 Storage Technologies 579

KeyboardMouse

USB
controller

CPU chip

Register file

Interrupt

I/O bus

Monitor

Disk

Main
memoryBus interface

Graphics
adapter

Disk
controller

ALU

(c) When the DMA transfer is complete, the disk controller notifies the CPU with an interrupt.

Figure 6.12 (continued) Reading a disk sector.

addresses in the address space is reserved for communicating with I/O devices.
Each of these addresses is known as an I/O port. Each device is associated with
(or mapped to) one or more ports when it is attached to the bus.

As a simple example, suppose that the disk controller is mapped to port 0xa0.
Then the CPU might initiate a disk read by executing three store instructions to
address 0xa0: The first of these instructions sends a command word that tells the
disk to initiate a read, along with other parameters such as whether to interrupt
the CPU when the read is finished. (We will discuss interrupts in Section 8.1.)
The second instruction indicates the logical block number that should be read.
The third instruction indicates the main memory address where the contents of
the disk sector should be stored.

After it issues the request, the CPU will typically do other work while the
disk is performing the read. Recall that a 1 GHz processor with a 1 ns clock cycle
can potentially execute 16 million instructions in the 16 ms it takes to read the
disk. Simply waiting and doing nothing while the transfer is taking place would be
enormously wasteful.

After the disk controller receives the read command from the CPU, it trans-
lates the logical block number to a sector address, reads the contents of the sector,
and transfers the contents directly to main memory, without any intervention from
the CPU (Figure 6.12(b)). This process, whereby a device performs a read or write
bus transaction on its own, without any involvement of the CPU, is known as direct
memory access (DMA). The transfer of data is known as a DMA transfer.

After the DMA transfer is complete and the contents of the disk sector are
safely stored in main memory, the disk controller notifies the CPU by sending an
interrupt signal to the CPU (Figure 6.12(c)). The basic idea is that an interrupt
signals an external pin on the CPU chip. This causes the CPU to stop what it is

580 Chapter 6 The Memory Hierarchy

Geometry attribute Value

Platters 4
Surfaces (read/write heads) 8
Surface diameter 3.5 in.
Sector size 512 bytes
Zones 15
Cylinders 50,864
Recording density (max) 628,000 bits/in.
Track density 85,000 tracks/in.
Areal density (max) 53.4 Gbits/sq. in.
Formatted capacity 146.8 GB

Performance attribute Value

Rotational rate 15,000 RPM
Avg. rotational latency 2 ms
Avg. seek time 4 ms
Sustained transfer rate 58–96 MB/s

Figure 6.13 Seagate Cheetah 15K.4 geometry and performance. Source: www.seagate.com.

currently working on and jump to an operating system routine. The routine records
the fact that the I/O has finished and then returns control to the point where the
CPU was interrupted.

Anatomy of a Commercial Disk

Disk manufacturers publish a lot of useful high-level technical information on
their Web pages. For example, the Cheetah 15K.4 is a SCSI disk first manufactured
by Seagate in 2005. If we consult the online product manual on the Seagate
Web page, we can glean the geometry and performance information shown in
Figure 6.13.

Disk manufacturers rarely publish detailed technical information about the
geometry of the individual recording zones. However, storage researchers at
Carnegie Mellon University have developed a useful tool, called DIXtrac, that
automatically discovers a wealth of low-level information about the geometry
and performance of SCSI disks [92]. For example, DIXtrac is able to discover the
detailed zone geometry of our example Seagate disk, which we’ve shown in Fig-
ure 6.14. Each row in the table characterizes one of the 15 zones. The first column
gives the zone number, with zone 0 being the outermost and zone 14 the inner-
most. The second column gives the number of sectors contained in each track
in that zone. The third column shows the number of cylinders assigned to that
zone, where each cylinder consists of eight tracks, one from each surface. Simi-
larly, the fourth column gives the total number of logical blocks assigned to each
zone, across all eight surfaces. (The tool was not able to extract valid data for the
innermost zone, so these are omitted.)

The zone map reveals some interesting facts about the Seagate disk. First,
more sectors are packed into the outer zones (which have a larger circumference)
than the inner zones. Second, each zone has more sectors than logical blocks

www.seagate.com

Section 6.1 Storage Technologies 581

Zone Sectors Cylinders Logical blocks
number per track per zone per zone

(outer) 0 864 3201 22,076,928
1 844 3200 21,559,136
2 816 3400 22,149,504
3 806 3100 19,943,664
4 795 3100 19,671,480
5 768 3400 20,852,736
6 768 3450 21,159,936
7 725 3650 21,135,200
8 704 3700 20,804,608
9 672 3700 19,858,944

10 640 3700 18,913,280
11 603 3700 17,819,856
12 576 3707 17,054,208
13 528 3060 12,900,096

(inner) 14 — — —

Figure 6.14 Seagate Cheetah 15K.4 zone map. Source: DIXtrac automatic disk drive
characterization tool [92]. Data for zone 14 not available.

(check this yourself). These spare sectors form a pool of spare cylinders. If the
recording material on a sector goes bad, the disk controller will automatically
remap the logical blocks on that cylinder to an available spare. So we see that the
notion of a logical block not only provides a simpler interface to the operating
system, it also provides a level of indirection that enables the disk to be more
robust. This general idea of indirection is very powerful, as we will see when we
study virtual memory in Chapter 9.

Practice Problem 6.5
Use the zone map in Figure 6.14 to determine the number of spare cylinders in
the following zones:

A. Zone 0

B. Zone 8

6.1.3 Solid State Disks

A solid state disk (SSD) is a storage technology, based on flash memory (Sec-
tion 6.1.1), that in some situations is an attractive alternative to the conventional
rotating disk. Figure 6.15 shows the basic idea. An SSD package plugs into a stan-
dard disk slot on the I/O bus (typically USB or SATA) and behaves like any other

582 Chapter 6 The Memory Hierarchy

Page 0 Page 1Page P-1

Block 0

Page 0 Page 1 . . . Page P-1

Block B-1

Flash memory

Solid state disk (SSD)

I/O bus

Flash
translation layer

Requests to read and
write logical disk blocks

Figure 6.15 Solid state disk (SSD).

Reads Writes

Sequential read throughput 250 MB/s Sequential write throughput 170 MB/s
Random read throughput 140 MB/s Random write throughput 14 MB/s
Random read access time 30 μs Random write access time 300 μs

Figure 6.16 Performance characteristics of a typical solid state disk. Source: Intel
X25-E SATA solid state drive product manual.

disk, processing requests from the CPU to read and write logical disk blocks. An
SSD package consists of one or more flash memory chips, which replace the me-
chanical drive in a conventional rotating disk, and a flash translation layer, which
is a hardware/firmware device that plays the same role as a disk controller, trans-
lating requests for logical blocks into accesses of the underlying physical device.

SSDs have different performance characteristics than rotating disks. As shown
in Figure 6.16, sequential reads and writes (where the CPU accesses logical disk
blocks in sequential order) have comparable performance, with sequential read-
ing somewhat faster than sequential writing. However, when logical blocks are
accessed in random order, writing is an order of magnitude slower than reading.

The difference between random reading and writing performance is caused by
a fundamental property of the underlying flash memory. As shown in Figure 6.15,
a flash memory consists of a sequence of B blocks, where each block consists of P

pages. Typically, pages are 512–4KB in size, and a block consists of 32–128 pages,
with total block sizes ranging from 16 KB to 512 KB. Data is read and written
in units of pages. A page can be written only after the entire block to which it
belongs has been erased (typically this means that all bits in the block are set
to 1). However, once a block is erased, each page in the block can be written once
with no further erasing. A blocks wears out after roughly 100,000 repeated writes.
Once a block wears out it can no longer be used.

Section 6.1 Storage Technologies 583

Random writes are slow for two reasons. First, erasing a block takes a rela-
tively long time, on the order of 1 ms, which is more than an order of magnitude
longer than it takes to access a page. Second, if a write operation attempts to
modify a page p that contains existing data (i.e., not all ones), then any pages in
the same block with useful data must be copied to a new (erased) block before
the write to page p can occur. Manufacturers have developed sophisticated logic
in the flash translation layer that attempts to amortize the high cost of erasing
blocks and to minimize the number of internal copies on writes, but it is unlikely
that random writing will ever perform as well as reading.

SSDs have a number of advantages over rotating disks. They are built of
semiconductor memory, with no moving parts, and thus have much faster random
access times than rotating disks, use less power, and are more rugged. However,
there are some disadvantages. First, because flash blocks wear out after repeated
writes, SSDs have the potential to wear out as well. Wear leveling logic in the flash
translation layer attempts to maximize the lifetime of each block by spreading
erasures evenly across all blocks, but the fundamental limit remains. Second, SSDs
are about 100 times more expensive per byte than rotating disks, and thus the
typical storage capacities are 100 times less than rotating disks. However, SSD
prices are decreasing rapidly as they become more popular, and the gap between
the two appears to be decreasing.

SSDs have completely replaced rotating disks in portable music devices, are
popular as disk replacements in laptops, and have even begun to appear in desk-
tops and servers. While rotating disks are here to stay, it is clear that SSDs are an
important new storage technology.

Practice Problem 6.6
As we have seen, a potential drawback of SSDs is that the underlying flash memory
can wear out. For example, one major manufacturer guarantees 1 petabyte (1015

bytes) of random writes for their SSDs before they wear out. Given this assump-
tion, estimate the lifetime (in years) of the SSD in Figure 6.16 for the following
workloads:

A. Worst case for sequential writes: The SSD is written to continuously at a rate
of 170 MB/s (the average sequential write throughput of the device).

B. Worst case for random writes: The SSD is written to continuously at a rate
of 14 MB/s (the average random write throughput of the device).

C. Average case: The SSD is written to at a rate of 20 GB/day (the average
daily write rate assumed by some computer manufacturers in their mobile
computer workload simulations).

6.1.4 Storage Technology Trends

There are several important concepts to take away from our discussion of storage
technologies.

584 Chapter 6 The Memory Hierarchy

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 19,200 2900 320 256 100 75 60 320
Access (ns) 300 150 35 15 3 2 1.5 200

(a) SRAM trends

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 8000 880 100 30 1 .1 0.06 130,000
Access (ns) 375 200 100 70 60 50 40 9
Typical size (MB) 0.064 0.256 4 16 64 2000 8,000 125,000

(b) DRAM trends

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 500 100 8 0.30 0.01 0.005 0.0003 1,600,000
Seek time (ms) 87 75 28 10 8 5 3 29
Typical size (MB) 1 10 160 1000 20,000 160,000 1,500,000 1,500,000

(c) Rotating disk trends

Metric 1980 1985 1990 1995 2000 2003 2005 2010 2010:1980

Intel CPU 8080 80286 80386 Pent. P-III Pent. 4 Core 2 Core i7 —

Clock rate (MHz) 1 6 20 150 600 3300 2000 2500 2500
Cycle time (ns) 1000 166 50 6 1.6 0.30 0.50 0.4 2500
Cores 1 1 1 1 1 1 2 4 4
Eff. cycle time (ns) 1000 166 50 6 1.6 0.30 0.25 0.10 10,000

(d) CPU trends

Figure 6.17 Storage and processing technology trends.

Different storage technologies have different price and performance trade-offs.
SRAM is somewhat faster than DRAM, and DRAM is much faster than disk. On
the other hand, fast storage is always more expensive than slower storage. SRAM
costs more per byte than DRAM. DRAM costs much more than disk. SSDs split
the difference between DRAM and rotating disk.

The price and performance properties of different storage technologies are
changing at dramatically different rates. Figure 6.17 summarizes the price and
performance properties of storage technologies since 1980, when the first PCs
were introduced. The numbers were culled from back issues of trade magazines
and the Web. Although they were collected in an informal survey, the numbers
reveal some interesting trends.

Since 1980, both the cost and performance of SRAM technology have im-
proved at roughly the same rate. Access times have decreased by a factor of about
200 and cost per megabyte by a factor of 300 (Figure 6.17(a)). However, the trends

Section 6.1 Storage Technologies 585

for DRAM and disk are much more dramatic and divergent. While the cost per
megabyte of DRAM has decreased by a factor of 130,000 (more than five orders of
magnitude!), DRAM access times have decreased by only a factor of 10 or so (Fig-
ure 6.17(b)). Disk technology has followed the same trend as DRAM and in even
more dramatic fashion. While the cost of a megabyte of disk storage has plum-
meted by a factor of more than 1,000,000 (more than six orders of magnitude!)
since 1980, access times have improved much more slowly, by only a factor of 30
or so (Figure 6.17(c)). These startling long-term trends highlight a basic truth of
memory and disk technology: it is easier to increase density (and thereby reduce
cost) than to decrease access time.

DRAM and disk performance are lagging behind CPU performance.As we see
in Figure 6.17(d), CPU cycle times improved by a factor of 2500 between 1980 and
2010. If we look at the effective cycle time—which we define to be the cycle time of
an individual CPU (processor) divided by the number of its processor cores—then
the improvement between 1980 and 2010 is even greater, a factor of 10,000. The
split in the CPU performance curve around 2003 reflects the introduction of multi-
core processors (see aside on next page). After this split, cycle times of individual
cores actually increased a bit before starting to decrease again, albeit at a slower
rate than before.

Note that while SRAM performance lags, it is roughly keeping up. However,
the gap between DRAM and disk performance and CPU performance is actually
widening. Until the advent of multi-core processors around 2003, this performance
gap was a function of latency, with DRAM and disk access times increasing
more slowly than the cycle time of an individual processor. However, with the
introduction of multiple cores, this performance gap is increasingly a function of
throughput, with multiple processor cores issuing requests to the DRAM and disk
in parallel.

The various trends are shown quite clearly in Figure 6.18, which plots the
access and cycle times from Figure 6.17 on a semi-log scale.

100,000,000.0

10,000,000.0

1,000,000.0

100,000.0

10,000.0

1000.0

100.0

10.0

1.0

0.1

0.0
1980 1985 1990 1995 2000 2003 2005 2010

Year

T
im

e
(n

s)

Disk seek time
SSD write time
SSD read time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

Figure 6.18 The increasing gap between disk, DRAM, and CPU speeds.

586 Chapter 6 The Memory Hierarchy

As we will see in Section 6.4, modern computers make heavy use of SRAM-
based caches to try to bridge the processor-memory gap. This approach works
because of a fundamental property of application programs known as locality,
which we discuss next.

Aside When cycle time stood still: the advent of multi-core processors

The history of computers is marked by some singular events that caused profound changes in the
industry and the world. Interestingly, these inflection points tend to occur about once per decade: the
development of Fortran in the 1950s, the introduction of the IBM 360 in the early 1960s, the dawn of
the Internet (then called ARPANET) in the early 1970s, the introduction of the IBM PC in the early
1980s, and the creation of the World Wide Web in the early 1990s.

The most recent such event occurred early in the 21st century, when computer manufacturers ran
headlong into the so-called “power wall,” discovering that they could no longer increase CPU clock
frequencies as quickly because the chips would then consume too much power. The solution was to
improve performance by replacing a single large processor with multiple smaller processor cores, each
a complete processor capable of executing programs independently and in parallel with the other cores.
This multi-core approach works in part because the power consumed by a processor is proportional to
P = f Cv2, where f is the clock frequency, C is the capacitance, and v is the voltage. The capacitance
C is roughly proportional to the area, so the power drawn by multiple cores can be held constant
as long as the total area of the cores is constant. As long as feature sizes continue to shrink at the
exponential Moore’s law rate, the number of cores in each processor, and thus its effective performance,
will continue to increase.

From this point forward, computers will get faster not because the clock frequency increases, but
because the number of cores in each processor increases, and because architectural innovations increase
the efficiency of programs running on those cores. We can see this trend clearly in Figure 6.18. CPU
cycle time reached its lowest point in 2003 and then actually started to rise before leveling off and
starting to decline again at a slower rate than before. However, because of the advent of multi-core
processors (dual-core in 2004 and quad-core in 2007), the effective cycle time continues to decrease at
close to its previous rate.

Practice Problem 6.7
Using the data from the years 2000 to 2010 in Figure 6.17(c), estimate the year
when you will be able to buy a petabyte (1015 bytes) of rotating disk storage for
$500. Assume constant dollars (no inflation).

6.2 Locality

Well-written computer programs tend to exhibit good locality. That is, they tend
to reference data items that are near other recently referenced data items, or
that were recently referenced themselves. This tendency, known as the principle
of locality, is an enduring concept that has enormous impact on the design and
performance of hardware and software systems.

Section 6.2 Locality 587

Locality is typically described as having two distinct forms: temporal locality
and spatial locality. In a program with good temporal locality, a memory location
that is referenced once is likely to be referenced again multiple times in the near
future. In a program with good spatial locality, if a memory location is referenced
once, then the program is likely to reference a nearby memory location in the near
future.

Programmers should understand the principle of locality because, in general,
programs with good locality run faster than programs with poor locality. All levels
of modern computer systems, from the hardware, to the operating system, to
application programs, are designed to exploit locality. At the hardware level, the
principle of locality allows computer designers to speed up main memory accesses
by introducing small fast memories known as cache memories that hold blocks of
the most recently referenced instructions and data items. At the operating system
level, the principle of locality allows the system to use the main memory as a cache
of the most recently referenced chunks of the virtual address space. Similarly, the
operating system uses main memory to cache the most recently used disk blocks in
the disk file system. The principle of locality also plays a crucial role in the design
of application programs. For example, Web browsers exploit temporal locality by
caching recently referenced documents on a local disk. High-volume Web servers
hold recently requested documents in front-end disk caches that satisfy requests
for these documents without requiring any intervention from the server.

6.2.1 Locality of References to Program Data

Consider the simple function in Figure 6.19(a) that sums the elements of a vector.
Does this function have good locality? To answer this question, we look at the
reference pattern for each variable. In this example, the sum variable is referenced
once in each loop iteration, and thus there is good temporal locality with respect
to sum. On the other hand, since sum is a scalar, there is no spatial locality with
respect to sum.

As we see in Figure 6.19(b), the elements of vector v are read sequentially, one
after the other, in the order they are stored in memory (we assume for convenience
that the array starts at address 0). Thus, with respect to variable v, the function
has good spatial locality but poor temporal locality since each vector element

1 int sumvec(int v[N])

2 {

3 int i, sum = 0;

4

5 for (i = 0; i < N; i++)

6 sum += v[i];

7 return sum;

8 }

(a)

Address 0 4 8 12 16 20 24 28
Contents v0 v1 v2 v3 v4 v5 v6 v7

Access order 1 2 3 4 5 6 7 8

(b)

Figure 6.19 (a) A function with good locality. (b) Reference pattern for vector v (N = 8). Notice how
the vector elements are accessed in the same order that they are stored in memory.

588 Chapter 6 The Memory Hierarchy

1 int sumarrayrows(int a[M][N])

2 {

3 int i, j, sum = 0;

4

5 for (i = 0; i < M; i++)

6 for (j = 0; j < N; j++)

7 sum += a[i][j];

8 return sum;

9 }

(a)

Address 0 4 8 12 16 20
Contents a00 a01 a02 a10 a11 a12

Access order 1 2 3 4 5 6

(b)

Figure 6.20 (a) Another function with good locality. (b) Reference pattern for array a (M = 2, N = 3).
There is good spatial locality because the array is accessed in the same row-major order in which it is stored
in memory.

is accessed exactly once. Since the function has either good spatial or temporal
locality with respect to each variable in the loop body, we can conclude that the
sumvec function enjoys good locality.

A function such as sumvec that visits each element of a vector sequentially
is said to have a stride-1 reference pattern (with respect to the element size).
We will sometimes refer to stride-1 reference patterns as sequential reference
patterns. Visiting every kth element of a contiguous vector is called a stride-k
reference pattern. Stride-1 reference patterns are a common and important source
of spatial locality in programs. In general, as the stride increases, the spatial locality
decreases.

Stride is also an important issue for programs that reference multidimensional
arrays. For example, consider the sumarrayrows function in Figure 6.20(a) that
sums the elements of a two-dimensional array. The doubly nested loop reads the
elements of the array in row-major order. That is, the inner loop reads the elements
of the first row, then the second row, and so on. The sumarrayrows function enjoys
good spatial locality because it references the array in the same row-major order
that the array is stored (Figure 6.20(b)). The result is a nice stride-1 reference
pattern with excellent spatial locality.

Seemingly trivial changes to a program can have a big impact on its locality.
For example, the sumarraycols function in Figure 6.21(a) computes the same
result as the sumarrayrows function in Figure 6.20(a). The only difference is that
we have interchanged the i and j loops. What impact does interchanging the loops
have on its locality? The sumarraycols function suffers from poor spatial locality
because it scans the array column-wise instead of row-wise. Since C arrays are
laid out in memory row-wise, the result is a stride-N reference pattern, as shown
in Figure 6.21(b).

6.2.2 Locality of Instruction Fetches

Since program instructions are stored in memory and must be fetched (read)
by the CPU, we can also evaluate the locality of a program with respect to its
instruction fetches. For example, in Figure 6.19 the instructions in the body of the

Section 6.2 Locality 589

1 int sumarraycols(int a[M][N])

2 {

3 int i, j, sum = 0;

4

5 for (j = 0; j < N; j++)

6 for (i = 0; i < M; i++)

7 sum += a[i][j];

8 return sum;

9 }

(a)

Address 0 4 8 12 16 20
Contents a00 a01 a02 a10 a11 a12

Access order 1 3 5 2 4 6

(b)

Figure 6.21 (a) A function with poor spatial locality. (b) Reference pattern for array a (M = 2, N = 3).
The function has poor spatial locality because it scans memory with a stride-N reference pattern.

for loop are executed in sequential memory order, and thus the loop enjoys good
spatial locality. Since the loop body is executed multiple times, it also enjoys good
temporal locality.

An important property of code that distinguishes it from program data is
that it is rarely modified at run time. While a program is executing, the CPU
reads its instructions from memory. The CPU rarely overwrites or modifies these
instructions.

6.2.3 Summary of Locality

In this section, we have introduced the fundamental idea of locality and have
identified some simple rules for qualitatively evaluating the locality in a
program:

. Programs that repeatedly reference the same variables enjoy good temporal
locality.

. For programs with stride-k reference patterns, the smaller the stride the better
the spatial locality. Programs with stride-1 reference patterns have good spa-
tial locality. Programs that hop around memory with large strides have poor
spatial locality.

. Loops have good temporal and spatial locality with respect to instruction
fetches. The smaller the loop body and the greater the number of loop it-
erations, the better the locality.

Later in this chapter, after we have learned about cache memories and how they
work, we will show you how to quantify the idea of locality in terms of cache
hits and misses. It will also become clear to you why programs with good locality
typically run faster than programs with poor locality. Nonetheless, knowing how to

590 Chapter 6 The Memory Hierarchy

glance at a source code and getting a high-level feel for the locality in the program
is a useful and important skill for a programmer to master.

Practice Problem 6.8
Permute the loops in the following function so that it scans the three-dimensional
array a with a stride-1 reference pattern.

1 int sumarray3d(int a[N][N][N])

2 {

3 int i, j, k, sum = 0;

4

5 for (i = 0; i < N; i++) {

6 for (j = 0; j < N; j++) {

7 for (k = 0; k < N; k++) {

8 sum += a[k][i][j];

9 }

10 }

11 }

12 return sum;

13 }

Practice Problem 6.9
The three functions in Figure 6.22 perform the same operation with varying de-
grees of spatial locality. Rank-order the functions with respect to the spatial local-
ity enjoyed by each. Explain how you arrived at your ranking.

(a) An array of structs

1 #define N 1000

2

3 typedef struct {

4 int vel[3];

5 int acc[3];

6 } point;

7

8 point p[N];

(b) The clear1 function

1 void clear1(point *p, int n)

2 {

3 int i, j;

4

5 for (i = 0; i < n; i++) {

6 for (j = 0; j < 3; j++)

7 p[i].vel[j] = 0;

8 for (j = 0; j < 3; j++)

9 p[i].acc[j] = 0;

10 }

11 }

Figure 6.22 Code examples for Practice Problem 6.9.

Section 6.3 The Memory Hierarchy 591

(c) The clear2 function

1 void clear2(point *p, int n)

2 {

3 int i, j;

4

5 for (i = 0; i < n; i++) {

6 for (j = 0; j < 3; j++) {

7 p[i].vel[j] = 0;

8 p[i].acc[j] = 0;

9 }

10 }

11 }

(d) The clear3 function

1 void clear3(point *p, int n)

2 {

3 int i, j;

4

5 for (j = 0; j < 3; j++) {

6 for (i = 0; i < n; i++)

7 p[i].vel[j] = 0;

8 for (i = 0; i < n; i++)

9 p[i].acc[j] = 0;

10 }

11 }

Figure 6.22 (continued) Code examples for Practice Problem 6.9.

6.3 The Memory Hierarchy

Sections 6.1 and 6.2 described some fundamental and enduring properties of
storage technology and computer software:

. Storage technology: Different storage technologies have widely different ac-
cess times. Faster technologies cost more per byte than slower ones and have
less capacity. The gap between CPU and main memory speed is widening.

. Computer software: Well-written programs tend to exhibit good locality.

In one of the happier coincidences of computing, these fundamental properties
of hardware and software complement each other beautifully. Their complemen-
tary nature suggests an approach for organizing memory systems, known as the
memory hierarchy, that is used in all modern computer systems. Figure 6.23 shows
a typical memory hierarchy. In general, the storage devices get slower, cheaper,
and larger as we move from higher to lower levels. At the highest level (L0) are a
small number of fast CPU registers that the CPU can access in a single clock cycle.
Next are one or more small to moderate-sized SRAM-based cache memories that
can be accessed in a few CPU clock cycles. These are followed by a large DRAM-
based main memory that can be accessed in tens to hundreds of clock cycles. Next
are slow but enormous local disks. Finally, some systems even include an addi-
tional level of disks on remote servers that can be accessed over a network. For
example, distributed file systems such as the Andrew File System (AFS) or the
Network File System (NFS) allow a program to access files that are stored on re-
mote network-connected servers. Similarly, the World Wide Web allows programs
to access remote files stored on Web servers anywhere in the world.

592 Chapter 6 The Memory Hierarchy

CPU registers hold words
retrieved from cache memory.

L1 cache holds cache lines
retrieved from L2 cache.

L2 cache holds cache lines
retrieved from L3 cache.

Main memory holds disk blocks
retrieved from local disks.

Local disks hold files
retrieved from disks on
remote network servers.

Regs

L3 cache
(SRAM)

L2 cache
(SRAM)

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Remote secondary storage
(distributed file systems, Web servers)

Smaller,
faster,
and

costlier
(per byte)
storage
devices

Larger,
slower,

and
cheaper

(per byte)
storage
devices

L0:

L1:

L2:

L3:

L4:

L5:

L6:

L3 cache holds cache lines
retrieved from memory.

Figure 6.23 The memory hierarchy.

Aside Other memory hierarchies

We have shown you one example of a memory hierarchy, but other combinations are possible, and
indeed common. For example, many sites back up local disks onto archival magnetic tapes. At some of
these sites, human operators manually mount the tapes onto tape drives as needed. At other sites, tape
robots handle this task automatically. In either case, the collection of tapes represents a level in the
memory hierarchy, below the local disk level, and the same general principles apply. Tapes are cheaper
per byte than disks, which allows sites to archive multiple snapshots of their local disks. The trade-
off is that tapes take longer to access than disks. As another example, solid state disks are playing an
increasingly important role in the memory hierarchy, bridging the gulf between DRAM and rotating
disk.

6.3.1 Caching in the Memory Hierarchy

In general, a cache (pronounced “cash”) is a small, fast storage device that acts as
a staging area for the data objects stored in a larger, slower device. The process of
using a cache is known as caching (pronounced “cashing”).

The central idea of a memory hierarchy is that for each k, the faster and smaller
storage device at level k serves as a cache for the larger and slower storage device
at level k + 1. In other words, each level in the hierarchy caches data objects from
the next lower level. For example, the local disk serves as a cache for files (such
as Web pages) retrieved from remote disks over the network, the main memory
serves as a cache for data on the local disks, and so on, until we get to the smallest
cache of all, the set of CPU registers.

Section 6.3 The Memory Hierarchy 593

4 9 14 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level k:

Level k�1:

Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k�1.

Larger, slower, cheaper storage
device at level k�1 is partitioned
into blocks.

Data is copied between
levels in block-sized transfer units.

Figure 6.24 The basic principle of caching in a memory hierarchy.

Figure 6.24 shows the general concept of caching in a memory hierarchy. The
storage at level k + 1 is partitioned into contiguous chunks of data objects called
blocks. Each block has a unique address or name that distinguishes it from other
blocks. Blocks can be either fixed-sized (the usual case) or variable-sized (e.g., the
remote HTML files stored on Web servers). For example, the level k + 1 storage
in Figure 6.24 is partitioned into 16 fixed-sized blocks, numbered 0 to 15.

Similarly, the storage at level k is partitioned into a smaller set of blocks that
are the same size as the blocks at level k + 1. At any point in time, the cache at
level k contains copies of a subset of the blocks from level k + 1. For example, in
Figure 6.24, the cache at level k has room for four blocks and currently contains
copies of blocks 4, 9, 14, and 3.

Data is always copied back and forth between level k and level k + 1 in block-
sized transfer units. It is important to realize that while the block size is fixed
between any particular pair of adjacent levels in the hierarchy, other pairs of levels
can have different block sizes. For example, in Figure 6.23, transfers between L1
and L0 typically use one-word blocks. Transfers between L2 and L1 (and L3 and
L2, and L4 and L3) typically use blocks of 8 to 16 words. And transfers between
L5 and L4 use blocks with hundreds or thousands of bytes. In general, devices
lower in the hierarchy (further from the CPU) have longer access times, and thus
tend to use larger block sizes in order to amortize these longer access times.

Cache Hits

When a program needs a particular data object d from level k + 1, it first looks
for d in one of the blocks currently stored at level k. If d happens to be cached
at level k, then we have what is called a cache hit. The program reads d directly
from level k, which by the nature of the memory hierarchy is faster than reading d

from level k + 1. For example, a program with good temporal locality might read
a data object from block 14, resulting in a cache hit from level k.

594 Chapter 6 The Memory Hierarchy

Cache Misses

If, on the other hand, the data object d is not cached at level k, then we have what
is called a cache miss. When there is a miss, the cache at level k fetches the block
containing d from the cache at level k + 1, possibly overwriting an existing block
if the level k cache is already full.

This process of overwriting an existing block is known as replacing or evicting
the block. The block that is evicted is sometimes referred to as a victim block.
The decision about which block to replace is governed by the cache’s replacement
policy. For example, a cache with a random replacement policy would choose
a random victim block. A cache with a least-recently used (LRU) replacement
policy would choose the block that was last accessed the furthest in the past.

After the cache at level k has fetched the block from level k + 1, the program
can read d from level k as before. For example, in Figure 6.24, reading a data object
from block 12 in the level k cache would result in a cache miss because block 12 is
not currently stored in the level k cache. Once it has been copied from level k + 1
to level k, block 12 will remain there in expectation of later accesses.

Kinds of Cache Misses

It is sometimes helpful to distinguish between different kinds of cache misses. If
the cache at level k is empty, then any access of any data object will miss. An
empty cache is sometimes referred to as a cold cache, and misses of this kind are
called compulsory misses or cold misses. Cold misses are important because they
are often transient events that might not occur in steady state, after the cache has
been warmed up by repeated memory accesses.

Whenever there is a miss, the cache at level k must implement some placement
policy that determines where to place the block it has retrieved from level k + 1.
The most flexible placement policy is to allow any block from level k + 1 to be
stored in any block at level k. For caches high in the memory hierarchy (close to
the CPU) that are implemented in hardware and where speed is at a premium,
this policy is usually too expensive to implement because randomly placed blocks
are expensive to locate.

Thus, hardware caches typically implement a more restricted placement policy
that restricts a particular block at level k + 1 to a small subset (sometimes a
singleton) of the blocks at level k. For example, in Figure 6.24, we might decide that
a block i at level k + 1 must be placed in block (i mod 4) at level k. For example,
blocks 0, 4, 8, and 12 at level k + 1 would map to block 0 at level k; blocks 1,
5, 9, and 13 would map to block 1; and so on. Notice that our example cache in
Figure 6.24 uses this policy.

Restrictive placement policies of this kind lead to a type of miss known as
a conflict miss, in which the cache is large enough to hold the referenced data
objects, but because they map to the same cache block, the cache keeps missing.
For example, in Figure 6.24, if the program requests block 0, then block 8, then
block 0, then block 8, and so on, each of the references to these two blocks would
miss in the cache at level k, even though this cache can hold a total of four blocks.

Section 6.3 The Memory Hierarchy 595

Programs often run as a sequence of phases (e.g., loops) where each phase
accesses some reasonably constant set of cache blocks. For example, a nested loop
might access the elements of the same array over and over again. This set of blocks
is called the working set of the phase. When the size of the working set exceeds
the size of the cache, the cache will experience what are known as capacity misses.
In other words, the cache is just too small to handle this particular working set.

Cache Management

As we have noted, the essence of the memory hierarchy is that the storage device
at each level is a cache for the next lower level. At each level, some form of logic
must manage the cache. By this we mean that something has to partition the cache
storage into blocks, transfer blocks between different levels, decide when there are
hits and misses, and then deal with them. The logic that manages the cache can be
hardware, software, or a combination of the two.

For example, the compiler manages the register file, the highest level of
the cache hierarchy. It decides when to issue loads when there are misses, and
determines which register to store the data in. The caches at levels L1, L2, and
L3 are managed entirely by hardware logic built into the caches. In a system
with virtual memory, the DRAM main memory serves as a cache for data blocks
stored on disk, and is managed by a combination of operating system software
and address translation hardware on the CPU. For a machine with a distributed
file system such as AFS, the local disk serves as a cache that is managed by the
AFS client process running on the local machine. In most cases, caches operate
automatically and do not require any specific or explicit actions from the program.

6.3.2 Summary of Memory Hierarchy Concepts

To summarize, memory hierarchies based on caching work because slower storage
is cheaper than faster storage and because programs tend to exhibit locality:

. Exploiting temporal locality. Because of temporal locality, the same data ob-
jects are likely to be reused multiple times. Once a data object has been copied
into the cache on the first miss, we can expect a number of subsequent hits on
that object. Since the cache is faster than the storage at the next lower level,
these subsequent hits can be served much faster than the original miss.

. Exploiting spatial locality. Blocks usually contain multiple data objects. Be-
cause of spatial locality, we can expect that the cost of copying a block after a
miss will be amortized by subsequent references to other objects within that
block.

Caches are used everywhere in modern systems. As you can see from Fig-
ure 6.25, caches are used in CPU chips, operating systems, distributed file systems,
and on the World Wide Web. They are built from and managed by various com-
binations of hardware and software. Note that there are a number of terms and
acronyms in Figure 6.25 that we haven’t covered yet. We include them here to
demonstrate how common caches are.

596 Chapter 6 The Memory Hierarchy

Type What cached Where cached Latency (cycles) Managed by

CPU registers 4-byte or 8-byte word On-chip CPU registers 0 Compiler

TLB Address translations On-chip TLB 0 Hardware MMU

L1 cache 64-byte block On-chip L1 cache 1 Hardware

L2 cache 64-byte block On/off-chip L2 cache 10 Hardware

L3 cache 64-byte block On/off-chip L3 cache 30 Hardware

Virtual memory 4-KB page Main memory 100 Hardware + OS

Buffer cache Parts of files Main memory 100 OS

Disk cache Disk sectors Disk controller 100,000 Controller firmware

Network cache Parts of files Local disk 10,000,000 AFS/NFS client

Browser cache Web pages Local disk 10,000,000 Web browser

Web cache Web pages Remote server disks 1,000,000,000 Web proxy server

Figure 6.25 The ubiquity of caching in modern computer systems. Acronyms: TLB: translation lookaside
buffer, MMU: memory management unit, OS: operating system, AFS: Andrew File System, NFS: Network File
System.

6.4 Cache Memories

The memory hierarchies of early computer systems consisted of only three levels:
CPU registers, main DRAM memory, and disk storage. However, because of the
increasing gap between CPU and main memory, system designers were compelled
to insert a small SRAM cache memory, called an L1 cache (Level 1 cache) between
the CPU register file and main memory, as shown in Figure 6.26. The L1 cache can
be accessed nearly as fast as the registers, typically in 2 to 4 clock cycles.

As the performance gap between the CPU and main memory continued
to increase, system designers responded by inserting an additional larger cache,
called an L2 cache, between the L1 cache and main memory, that can be accessed
in about 10 clock cycles. Some modern systems include an additional even larger
cache, called an L3 cache, which sits between the L2 cache and main memory

Figure 6.26
Typical bus structure for
cache memories.

I/O
bridge

CPU chip

Cache
memories

Register file

System bus Memory bus

Bus interface
Main

memory

ALU

Section 6.4 Cache Memories 597

in the memory hierarchy and can be accessed in 30 or 40 cycles. While there is
considerable variety in the arrangements, the general principles are the same. For
our discussion in the next section, we will assume a simple memory hierarchy with
a single L1 cache between the CPU and main memory.

6.4.1 Generic Cache Memory Organization

Consider a computer system where each memory address has m bits that form
M = 2m unique addresses. As illustrated in Figure 6.27(a), a cache for such a
machine is organized as an array of S = 2s cache sets. Each set consists of E cache
lines. Each line consists of a data block of B = 2b bytes, a valid bit that indicates
whether or not the line contains meaningful information, and t = m − (b + s) tag
bits (a subset of the bits from the current block’s memory address) that uniquely
identify the block stored in the cache line.

In general, a cache’s organization can be characterized by the tuple
(S, E, B, m). The size (or capacity) of a cache, C, is stated in terms of the ag-
gregate size of all the blocks. The tag bits and valid bit are not included. Thus,
C = S × E × B.

When the CPU is instructed by a load instruction to read a word from ad-
dress A of main memory, it sends the address A to the cache. If the cache is holding
a copy of the word at address A, it sends the word immediately back to the CPU.

Figure 6.27
General organization
of cache (S, E, B, m).
(a) A cache is an
array of sets. Each
set contains one or
more lines. Each line
contains a valid bit,
some tag bits, and a
block of data. (b) The
cache organization
induces a partition of
the m address bits into
t tag bits, s set index
bits, and b block offset
bits.

Valid Tag 0 1 B�1. . .

. .
 .

Valid Tag 0 1 B�1. . .

Set 0:

Valid Tag 0 1 B�1. . .

. .
 .

Valid Tag 0 1 B�1. . .

Set 1:

Valid Tag

Cache size: C � B � E � S data bytes

0 1 B�1. . .

. .
 .

. .
 .

Valid Tag 0 1 B�1. . .

Set S�1:

1 valid bit
per line

t tag bits
per line

B � 2b bytes
per cache block

S � 2s sets

E lines per set

(a)

m�1 0

t bits
Address:

Tag Set index Block offset

s bits

(b)

b bits

598 Chapter 6 The Memory Hierarchy

Fundamental parameters

Parameter Description

S = 2s Number of sets
E Number of lines per set
B = 2b Block size (bytes)
m = log2(M) Number of physical (main memory) address bits

Derived quantities

Parameter Description

M = 2m Maximum number of unique memory addresses
s = log2(S) Number of set index bits
b = log2(B) Number of block offset bits
t = m − (s + b) Number of tag bits
C = B × E × S Cache size (bytes) not including overhead such as the valid

and tag bits

Figure 6.28 Summary of cache parameters.

So how does the cache know whether it contains a copy of the word at address A?
The cache is organized so that it can find the requested word by simply inspect-
ing the bits of the address, similar to a hash table with an extremely simple hash
function. Here is how it works:

The parameters S and B induce a partitioning of the m address bits into the
three fields shown in Figure 6.27(b). The s set index bits in A form an index into
the array of S sets. The first set is set 0, the second set is set 1, and so on. When
interpreted as an unsigned integer, the set index bits tell us which set the word
must be stored in. Once we know which set the word must be contained in, the t

tag bits in A tell us which line (if any) in the set contains the word. A line in the
set contains the word if and only if the valid bit is set and the tag bits in the line
match the tag bits in the address A. Once we have located the line identified by
the tag in the set identified by the set index, then the b block offset bits give us the
offset of the word in the B-byte data block.

As you may have noticed, descriptions of caches use a lot of symbols. Fig-
ure 6.28 summarizes these symbols for your reference.

Practice Problem 6.10
The following table gives the parameters for a number of different caches. For
each cache, determine the number of cache sets (S), tag bits (t), set index bits (s),
and block offset bits (b).

Section 6.4 Cache Memories 599

Cache m C B E S t s b

1. 32 1024 4 1
2. 32 1024 8 4
3. 32 1024 32 32

6.4.2 Direct-Mapped Caches

Caches are grouped into different classes based on E, the number of cache lines
per set. A cache with exactly one line per set (E = 1) is known as a direct-mapped
cache (see Figure 6.29). Direct-mapped caches are the simplest both to implement
and to understand, so we will use them to illustrate some general concepts about
how caches work.

Suppose we have a system with a CPU, a register file, an L1 cache, and a main
memory. When the CPU executes an instruction that reads a memory word w,
it requests the word from the L1 cache. If the L1 cache has a cached copy of w,
then we have an L1 cache hit, and the cache quickly extracts w and returns it to
the CPU. Otherwise, we have a cache miss, and the CPU must wait while the L1
cache requests a copy of the block containing w from the main memory. When
the requested block finally arrives from memory, the L1 cache stores the block in
one of its cache lines, extracts word w from the stored block, and returns it to the
CPU. The process that a cache goes through of determining whether a request is a
hit or a miss and then extracting the requested word consists of three steps: (1) set
selection, (2) line matching, and (3) word extraction.

Set Selection in Direct-Mapped Caches

In this step, the cache extracts the s set index bits from the middle of the address
for w. These bits are interpreted as an unsigned integer that corresponds to a set
number. In other words, if we think of the cache as a one-dimensional array of
sets, then the set index bits form an index into this array. Figure 6.30 shows how
set selection works for a direct-mapped cache. In this example, the set index bits
000012 are interpreted as an integer index that selects set 1.

Line Matching in Direct-Mapped Caches

Now that we have selected some set i in the previous step, the next step is to
determine if a copy of the word w is stored in one of the cache lines contained in

Figure 6.29
Direct-mapped cache
(E = 1). There is exactly
one line per set.

Valid Tag Cache blockSet 0:

Valid Tag Cache blockSet 1:

Valid Tag Cache blockSet S�1:

. .
 .

E �1 line per set

600 Chapter 6 The Memory Hierarchy

m�1 0

t bits

Tag Set index Block offset

s bits b bits

Selected set

0 0 0 0 1

Valid Tag Cache blockSet 0:

Valid Tag Cache blockSet 1:

Valid Tag Cache blockSet S�1:

. .
 .

Figure 6.30 Set selection in a direct-mapped cache.

set i. In a direct-mapped cache, this is easy and fast because there is exactly one
line per set. A copy of w is contained in the line if and only if the valid bit is set
and the tag in the cache line matches the tag in the address of w.

Figure 6.31 shows how line matching works in a direct-mapped cache. In this
example, there is exactly one cache line in the selected set. The valid bit for this
line is set, so we know that the bits in the tag and block are meaningful. Since the
tag bits in the cache line match the tag bits in the address, we know that a copy of
the word we want is indeed stored in the line. In other words, we have a cache hit.
On the other hand, if either the valid bit were not set or the tags did not match,
then we would have had a cache miss.

Word Selection in Direct-Mapped Caches

Once we have a hit, we know that w is somewhere in the block. This last step
determines where the desired word starts in the block. As shown in Figure 6.31,
the block offset bits provide us with the offset of the first byte in the desired word.
Similar to our view of a cache as an array of lines, we can think of a block as an
array of bytes, and the byte offset as an index into that array. In the example, the
block offset bits of 1002 indicate that the copy of w starts at byte 4 in the block.
(We are assuming that words are 4 bytes long.)

Line Replacement on Misses in Direct-Mapped Caches

If the cache misses, then it needs to retrieve the requested block from the next
level in the memory hierarchy and store the new block in one of the cache lines of

Figure 6.31
Line matching and word
selection in a direct-
mapped cache. Within the
cache block, w0 denotes
the low-order byte of the
word w, w1 the next byte,
and so on.

0 1

m�1 0

2 3 4 5 6 7

1 0110

t bits

Tag Set index Block offset

s bits b bits

� ?

w0 w1 w2 w3

0110 i 100

� 1? (1) The valid bit must be set.

Selected set (i):

The tag bits in the
cache line must

match the tag bits
in the address.

(3) If (1) and (2), then
cache hit, and

block offset selects
starting byte.

(2)

Section 6.4 Cache Memories 601

Address bits

Address Tag bits Index bits Offset bits Block number
(decimal) (t = 1) (s = 2) (b = 1) (decimal)

0 0 00 0 0
1 0 00 1 0
2 0 01 0 1
3 0 01 1 1
4 0 10 0 2
5 0 10 1 2
6 0 11 0 3
7 0 11 1 3
8 1 00 0 4
9 1 00 1 4

10 1 01 0 5
11 1 01 1 5
12 1 10 0 6
13 1 10 1 6
14 1 11 0 7
15 1 11 1 7

Figure 6.32 4-bit address space for example direct-mapped cache.

the set indicated by the set index bits. In general, if the set is full of valid cache lines,
then one of the existing lines must be evicted. For a direct-mapped cache, where
each set contains exactly one line, the replacement policy is trivial: the current line
is replaced by the newly fetched line.

Putting It Together: A Direct-Mapped Cache in Action

The mechanisms that a cache uses to select sets and identify lines are extremely
simple. They have to be, because the hardware must perform them in a few
nanoseconds. However, manipulating bits in this way can be confusing to us
humans. A concrete example will help clarify the process. Suppose we have a
direct-mapped cache described by

(S, E, B, m) = (4, 1, 2, 4)

In other words, the cache has four sets, one line per set, 2 bytes per block, and 4-
bit addresses. We will also assume that each word is a single byte. Of course, these
assumptions are totally unrealistic, but they will help us keep the example simple.

When you are first learning about caches, it can be very instructive to enumer-
ate the entire address space and partition the bits, as we’ve done in Figure 6.32 for
our 4-bit example. There are some interesting things to notice about this enumer-
ated space:

602 Chapter 6 The Memory Hierarchy

. The concatenation of the tag and index bits uniquely identifies each block in
memory. For example, block 0 consists of addresses 0 and 1, block 1 consists
of addresses 2 and 3, block 2 consists of addresses 4 and 5, and so on.

. Since there are eight memory blocks but only four cache sets, multiple blocks
map to the same cache set (i.e., they have the same set index). For example,
blocks 0 and 4 both map to set 0, blocks 1 and 5 both map to set 1, and so on.

. Blocks that map to the same cache set are uniquely identified by the tag. For
example, block 0 has a tag bit of 0 while block 4 has a tag bit of 1, block 1 has
a tag bit of 0 while block 5 has a tag bit of 1, and so on.

Let us simulate the cache in action as the CPU performs a sequence of reads.
Remember that for this example, we are assuming that the CPU reads 1-byte
words. While this kind of manual simulation is tedious and you may be tempted
to skip it, in our experience students do not really understand how caches work
until they work their way through a few of them.

Initially, the cache is empty (i.e., each valid bit is zero):

Set Valid Tag block[0] block[1]

0 0
1 0
2 0
3 0

Each row in the table represents a cache line. The first column indicates the set
that the line belongs to, but keep in mind that this is provided for convenience and
is not really part of the cache. The next three columns represent the actual bits in
each cache line. Now, let us see what happens when the CPU performs a sequence
of reads:

1. Read word at address 0. Since the valid bit for set 0 is zero, this is a cache miss.
The cache fetches block 0 from memory (or a lower-level cache) and stores the
block in set 0. Then the cache returns m[0] (the contents of memory location 0)
from block[0] of the newly fetched cache line.

Set Valid Tag block[0] block[1]

0 1 0 m[0] m[1]
1 0
2 0
3 0

2. Read word at address 1. This is a cache hit. The cache immediately returns
m[1] from block[1] of the cache line. The state of the cache does not change.

3. Read word at address 13. Since the cache line in set 2 is not valid, this is a
cache miss. The cache loads block 6 into set 2 and returns m[13] from block[1]
of the new cache line.

Section 6.4 Cache Memories 603

Set Valid Tag block[0] block[1]

0 1 0 m[0] m[1]
1 0
2 1 1 m[12] m[13]
3 0

4. Read word at address 8. This is a miss. The cache line in set 0 is indeed valid,
but the tags do not match. The cache loads block 4 into set 0 (replacing the
line that was there from the read of address 0) and returns m[8] from block[0]
of the new cache line.

Set Valid Tag block[0] block[1]

0 1 1 m[8] m[9]
1 0
2 1 1 m[12] m[13]
3 0

5. Read word at address 0. This is another miss, due to the unfortunate fact
that we just replaced block 0 during the previous reference to address 8. This
kind of miss, where we have plenty of room in the cache but keep alternating
references to blocks that map to the same set, is an example of a conflict miss.

Set Valid Tag block[0] block[1]

0 1 0 m[0] m[1]
1 0
2 1 1 m[12] m[13]
3 0

Conflict Misses in Direct-Mapped Caches

Conflict misses are common in real programs and can cause baffling performance
problems. Conflict misses in direct-mapped caches typically occur when programs
access arrays whose sizes are a power of 2. For example, consider a function that
computes the dot product of two vectors:

1 float dotprod(float x[8], float y[8])

2 {

3 float sum = 0.0;

4 int i;

5

6 for (i = 0; i < 8; i++)

7 sum += x[i] * y[i];

8 return sum;

9 }

604 Chapter 6 The Memory Hierarchy

This function has good spatial locality with respect to x and y, and so we might
expect it to enjoy a good number of cache hits. Unfortunately, this is not always
true.

Suppose that floats are 4 bytes, that x is loaded into the 32 bytes of contiguous
memory starting at address 0, and that y starts immediately after x at address 32.
For simplicity, suppose that a block is 16 bytes (big enough to hold four floats)
and that the cache consists of two sets, for a total cache size of 32 bytes. We will
assume that the variable sum is actually stored in a CPU register and thus does not
require a memory reference. Given these assumptions, each x[i] and y[i] will
map to the identical cache set:

Element Address Set index Element Address Set index

x[0] 0 0 y[0] 32 0

x[1] 4 0 y[1] 36 0

x[2] 8 0 y[2] 40 0

x[3] 12 0 y[3] 44 0

x[4] 16 1 y[4] 48 1

x[5] 20 1 y[5] 52 1

x[6] 24 1 y[6] 56 1

x[7] 28 1 y[7] 60 1

At run time, the first iteration of the loop references x[0], a miss that causes
the block containing x[0]–x[3] to be loaded into set 0. The next reference is to
y[0], another miss that causes the block containing y[0]–y[3] to be copied into
set 0, overwriting the values of x that were copied in by the previous reference.
During the next iteration, the reference to x[1] misses, which causes the x[0]–
x[3] block to be loaded back into set 0, overwriting the y[0]–y[3] block. So now
we have a conflict miss, and in fact each subsequent reference to x and ywill result
in a conflict miss as we thrash back and forth between blocks of x and y. The term
thrashing describes any situation where a cache is repeatedly loading and evicting
the same sets of cache blocks.

The bottom line is that even though the program has good spatial locality
and we have room in the cache to hold the blocks for both x[i] and y[i], each
reference results in a conflict miss because the blocks map to the same cache set. It
is not unusual for this kind of thrashing to result in a slowdown by a factor of 2 or
3. Also, be aware that even though our example is extremely simple, the problem
is real for larger and more realistic direct-mapped caches.

Luckily, thrashing is easy for programmers to fix once they recognize what is
going on. One easy solution is to put B bytes of padding at the end of each array.
For example, instead of defining x to be float x[8], we define it to be float
x[12]. Assuming y starts immediately after x in memory, we have the following
mapping of array elements to sets:

Section 6.4 Cache Memories 605

Element Address Set index Element Address Set index

x[0] 0 0 y[0] 48 1
x[1] 4 0 y[1] 52 1
x[2] 8 0 y[2] 56 1
x[3] 12 0 y[3] 60 1
x[4] 16 1 y[4] 64 0
x[5] 20 1 y[5] 68 0
x[6] 24 1 y[6] 72 0
x[7] 28 1 y[7] 76 0

With the padding at the end of x, x[i] and y[i] now map to different sets,
which eliminates the thrashing conflict misses.

Practice Problem 6.11
In the previous dotprod example, what fraction of the total references to x and y
will be hits once we have padded array x?

Practice Problem 6.12
In general, if the high-order s bits of an address are used as the set index, contigu-
ous chunks of memory blocks are mapped to the same cache set.

A. How many blocks are in each of these contiguous array chunks?

B. Consider the following code that runs on a system with a cache of the form
(S, E, B, m) = (512, 1, 32, 32):

int array[4096];

for (i = 0; i < 4096; i++)

sum += array[i];

What is the maximum number of array blocks that are stored in the cache
at any point in time?

Aside Why index with the middle bits?

You may be wondering why caches use the middle bits for the set index instead of the high-order bits.
There is a good reason why the middle bits are better. Figure 6.33 shows why. If the high-order bits are
used as an index, then some contiguous memory blocks will map to the same cache set. For example, in
the figure, the first four blocks map to the first cache set, the second four blocks map to the second set,
and so on. If a program has good spatial locality and scans the elements of an array sequentially, then
the cache can only hold a block-sized chunk of the array at any point in time. This is an inefficient use of
the cache. Contrast this with middle-bit indexing, where adjacent blocks always map to different cache
lines. In this case, the cache can hold an entire C-sized chunk of the array, where C is the cache size.

606 Chapter 6 The Memory Hierarchy

Set index bits

Four-set cache

High-order
bit indexing

Middle-order
bit indexing

00

01

10

11

0000

1100

1101

1110

1111

0101

0110

0111

1000

1001

1010

1011

0001

0010

0011

0100

0000

1100

1101

1110

1111

0101

0110

0111

1000

1001

1010

1011

0001

0010

0011

0100

Figure 6.33 Why caches index with the middle bits.

6.4.3 Set Associative Caches

The problem with conflict misses in direct-mapped caches stems from the con-
straint that each set has exactly one line (or in our terminology, E = 1). A set
associative cache relaxes this constraint so each set holds more than one cache
line. A cache with 1 < E < C/B is often called an E-way set associative cache. We
will discuss the special case, where E = C/B, in the next section. Figure 6.34 shows
the organization of a two-way set associative cache.

Figure 6.34
Set associative cache
(1 < E < C/B). In a set
associative cache, each
set contains more than
one line. This particular
example shows a two-way
set associative cache.

Valid Tag Cache block
Set 0:

Valid Tag Cache block

Set S�1:

. .
 .

E � 2 lines per set

Valid Tag Cache block

Valid Tag Cache block

Valid Tag Cache block

Valid Tag Cache block

Set 1:

Section 6.4 Cache Memories 607

Valid Tag Cache block
Set 0:

Valid Tag Cache block

Set S�1:

. .
 .

Valid Tag Cache block

Valid Tag Cache block

Valid Tag Cache block

Valid Tag Cache block

Set 1:

m�1 0

t bits

Tag Set index Block offset

s bits b bits

Selected set

0 0 0 0 1

Figure 6.35 Set selection in a set associative cache.

Set Selection in Set Associative Caches

Set selection is identical to a direct-mapped cache, with the set index bits identi-
fying the set. Figure 6.35 summarizes this principle.

Line Matching and Word Selection in Set Associative Caches

Line matching is more involved in a set associative cache than in a direct-mapped
cache because it must check the tags and valid bits of multiple lines in order to
determine if the requested word is in the set. A conventional memory is an array of
values that takes an address as input and returns the value stored at that address.
An associative memory, on the other hand, is an array of (key, value) pairs that
takes as input the key and returns a value from one of the (key, value) pairs that
matches the input key. Thus, we can think of each set in a set associative cache as
a small associative memory where the keys are the concatenation of the tag and
valid bits, and the values are the contents of a block.

Figure 6.36 shows the basic idea of line matching in an associative cache. An
important idea here is that any line in the set can contain any of the memory blocks

Figure 6.36
Line matching and
word selection in a set
associative cache.

0 1

m�1 0

2 3 4 5 6 7

1

1

1001

0110

t bits

Tag Set index Block offset

s bits b bits

� ?

w0 w1 w2 w3

0110 i 100

� 1? (1) The valid bit must be set.

Selected set (i):

(2) The tag bits in one
of the cache lines

must match the tag
bits in the address.

(3) If (1) and (2), then
cache hit, and

block offset selects
starting byte.

608 Chapter 6 The Memory Hierarchy

that map to that set. So the cache must search each line in the set, searching for a
valid line whose tag matches the tag in the address. If the cache finds such a line,
then we have a hit and the block offset selects a word from the block, as before.

Line Replacement on Misses in Set Associative Caches

If the word requested by the CPU is not stored in any of the lines in the set, then
we have a cache miss, and the cache must fetch the block that contains the word
from memory. However, once the cache has retrieved the block, which line should
it replace? Of course, if there is an empty line, then it would be a good candidate.
But if there are no empty lines in the set, then we must choose one of the nonempty
lines and hope that the CPU does not reference the replaced line anytime soon.

It is very difficult for programmers to exploit knowledge of the cache replace-
ment policy in their codes, so we will not go into much detail about it here. The
simplest replacement policy is to choose the line to replace at random. Other more
sophisticated policies draw on the principle of locality to try to minimize the prob-
ability that the replaced line will be referenced in the near future. For example, a
least-frequently-used (LFU) policy will replace the line that has been referenced
the fewest times over some past time window. A least-recently-used (LRU) policy
will replace the line that was last accessed the furthest in the past. All of these
policies require additional time and hardware. But as we move further down the
memory hierarchy, away from the CPU, the cost of a miss becomes more expen-
sive and it becomes more worthwhile to minimize misses with good replacement
policies.

6.4.4 Fully Associative Caches

A fully associative cache consists of a single set (i.e., E = C/B) that contains all of
the cache lines. Figure 6.37 shows the basic organization.

Set Selection in Fully Associative Caches

Set selection in a fully associative cache is trivial because there is only one set,
summarized in Figure 6.38. Notice that there are no set index bits in the address,
which is partitioned into only a tag and a block offset.

Line Matching and Word Selection in Fully Associative Caches

Line matching and word selection in a fully associative cache work the same as
with a set associative cache, as we show in Figure 6.39. The difference is mainly
a question of scale. Because the cache circuitry must search for many matching

Figure 6.37
Fully associative cache
(E = C/B). In a fully
associative cache, a single
set contains all of the lines.

Valid Tag Cache block

Set 0:
Valid Tag Cache block

. .
 .

E � C/B lines in
the one and only set

Valid Tag Cache block

Section 6.4 Cache Memories 609

Valid Tag Cache block

Set 0:
Valid Tag Cache block

. .
 .

Valid Tag Cache block

m�1 0

t bits

Tag Block offset

b bits

The entire cache is one set, so
by default set 0 is always selected.

Figure 6.38 Set selection in a fully associative cache. Notice that there are no set
index bits.

m�1 0

1

0

0110

1110

t bits

Tag Block offset

b bits

� ?

w0 w1 w2 w3

0110 100

0 1 2 3 4 5 6 7

1

0

1001

0110

� 1? (1) The valid bit must be set.

Entire cache

(2) The tag bits in one
of the cache lines

must match the tag
bits in the address.

(3) If (1) and (2), then
cache hit, and

block offset selects
starting byte.

Figure 6.39 Line matching and word selection in a fully associative cache.

tags in parallel, it is difficult and expensive to build an associative cache that is
both large and fast. As a result, fully associative caches are only appropriate for
small caches, such as the translation lookaside buffers (TLBs) in virtual memory
systems that cache page table entries (Section 9.6.2).

Practice Problem 6.13
The problems that follow will help reinforce your understanding of how caches
work. Assume the following:

. The memory is byte addressable.

. Memory accesses are to 1-byte words (not to 4-byte words).

. Addresses are 13 bits wide.

. The cache is two-way set associative (E = 2), with a 4-byte block size (B = 4)
and eight sets (S = 8).

The contents of the cache are as follows, with all numbers given in hexadecimal
notation.

610 Chapter 6 The Memory Hierarchy

2-way set associative cache

Line 0 Line 1

Set index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 09 1 86 30 3F 10 00 0 — — — —
1 45 1 60 4F E0 23 38 1 00 BC 0B 37
2 EB 0 — — — — 0B 0 — — — —
3 06 0 — — — — 32 1 12 08 7B AD
4 C7 1 06 78 07 C5 05 1 40 67 C2 3B
5 71 1 0B DE 18 4B 6E 0 — — — —
6 91 1 A0 B7 26 2D F0 0 — — — —
7 46 0 — — — — DE 1 12 C0 88 37

The following figure shows the format of an address (one bit per box). Indicate
(by labeling the diagram) the fields that would be used to determine the following:

CO The cache block offset
CI The cache set index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

Practice Problem 6.14
Suppose a program running on the machine in Problem 6.13 references the 1-byte
word at address 0x0E34. Indicate the cache entry accessed and the cache byte
value returned in hex. Indicate whether a cache miss occurs. If there is a cache
miss, enter “–” for “Cache byte returned.”

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

B. Memory reference:

Parameter Value

Cache block offset (CO) 0x

Cache set index (CI) 0x

Cache tag (CT) 0x

Cache hit? (Y/N)
Cache byte returned 0x

Section 6.4 Cache Memories 611

Practice Problem 6.15
Repeat Problem 6.14 for memory address 0x0DD5.

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

B. Memory reference:

Parameter Value

Cache block offset (CO) 0x

Cache set index (CI) 0x

Cache tag (CT) 0x

Cache hit? (Y/N)
Cache byte returned 0x

Practice Problem 6.16
Repeat Problem 6.14 for memory address 0x1FE4.

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

B. Memory reference:

Parameter Value

Cache block offset (CO) 0x

Cache set index (CI) 0x

Cache tag (CT) 0x

Cache hit? (Y/N)
Cache byte returned 0x

Practice Problem 6.17
For the cache in Problem 6.13, list all of the hex memory addresses that will hit in
set 3.

6.4.5 Issues with Writes

As we have seen, the operation of a cache with respect to reads is straightforward.
First, look for a copy of the desired word w in the cache. If there is a hit, return

612 Chapter 6 The Memory Hierarchy

w immediately. If there is a miss, fetch the block that contains w from the next
lower level of the memory hierarchy, store the block in some cache line (possibly
evicting a valid line), and then return w.

The situation for writes is a little more complicated. Suppose we write a word
w that is already cached (a write hit). After the cache updates its copy of w, what
does it do about updating the copy of w in the next lower level of the hierarchy?
The simplest approach, known as write-through, is to immediately write w’s cache
block to the next lower level. While simple, write-through has the disadvantage
of causing bus traffic with every write. Another approach, known as write-back,
defers the update as long as possible by writing the updated block to the next lower
level only when it is evicted from the cache by the replacement algorithm. Because
of locality, write-back can significantly reduce the amount of bus traffic, but it has
the disadvantage of additional complexity. The cache must maintain an additional
dirty bit for each cache line that indicates whether or not the cache block has been
modified.

Another issue is how to deal with write misses. One approach, known as write-
allocate, loads the corresponding block from the next lower level into the cache
and then updates the cache block. Write-allocate tries to exploit spatial locality
of writes, but it has the disadvantage that every miss results in a block transfer
from the next lower level to cache. The alternative, known as no-write-allocate,
bypasses the cache and writes the word directly to the next lower level. Write-
through caches are typically no-write-allocate. Write-back caches are typically
write-allocate.

Optimizing caches for writes is a subtle and difficult issue, and we are only
scratching the surface here. The details vary from system to system and are often
proprietary and poorly documented. To the programmer trying to write reason-
ably cache-friendly programs, we suggest adopting a mental model that assumes
write-back write-allocate caches. There are several reasons for this suggestion.

As a rule, caches at lower levels of the memory hierarchy are more likely
to use write-back instead of write-through because of the larger transfer times.
For example, virtual memory systems (which use main memory as a cache for the
blocks stored on disk) use write-back exclusively. But as logic densities increase,
the increased complexity of write-back is becoming less of an impediment and we
are seeing write-back caches at all levels of modern systems. So this assumption
matches current trends. Another reason for assuming a write-back write-allocate
approach is that it is symmetric to the way reads are handled, in that write-back
write-allocate tries to exploit locality. Thus, we can develop our programs at a high
level to exhibit good spatial and temporal locality rather than trying to optimize
for a particular memory system.

6.4.6 Anatomy of a Real Cache Hierarchy

So far, we have assumed that caches hold only program data. But in fact, caches
can hold instructions as well as data. A cache that holds instructions only is called
an i-cache. A cache that holds program data only is called a d-cache. A cache that
holds both instructions and data is known as a unified cache. Modern processors

Section 6.4 Cache Memories 613

Figure 6.40
Intel Core i7 cache
hierarchy.

Processor package

Core 0 Core 3

. . .

Regs

L1
d-cache

L2 unified cache

L3 unified cache
(shared by all cores)

Main memory

L1
i-cache

Regs

L1
d-cache

L2 unified cache

L1
i-cache

include separate i-caches and d-caches. There are a number of reasons for this.
With two separate caches, the processor can read an instruction word and a data
word at the same time. I-caches are typically read-only, and thus simpler. The
two caches are often optimized to different access patterns and can have different
block sizes, associativities, and capacities. Also, having separate caches ensures
that data accesses do not create conflict misses with instruction accesses, and vice
versa, at the cost of a potential increase in capacity misses.

Figure 6.40 shows the cache hierarchy for the Intel Core i7 processor. Each
CPU chip has four cores. Each core has its own private L1 i-cache, L1 d-cache, and
L2 unified cache. All of the cores share an on-chip L3 unified cache. An interesting
feature of this hierarchy is that all of the SRAM cache memories are contained in
the CPU chip.

Figure 6.41 summarizes the basic characteristics of the Core i7 caches.

Cache type Access time (cycles) Cache size (C) Assoc. (E) Block size (B) Sets (S)

L1 i-cache 4 32 KB 8 64 B 64
L1 d-cache 4 32 KB 8 64 B 64
L2 unified cache 11 256 KB 8 64 B 512
L3 unified cache 30–40 8 MB 16 64 B 8192

Figure 6.41 Characteristics of the Intel Core i7 cache hierarchy.

614 Chapter 6 The Memory Hierarchy

6.4.7 Performance Impact of Cache Parameters

Cache performance is evaluated with a number of metrics:

. Miss rate. The fraction of memory references during the execution of a pro-
gram, or a part of a program, that miss. It is computed as #misses/#references.

. Hit rate. The fraction of memory references that hit. It is computed as 1 −
miss rate.

. Hit time. The time to deliver a word in the cache to the CPU, including the
time for set selection, line identification, and word selection. Hit time is on
the order of several clock cycles for L1 caches.

. Miss penalty. Any additional time required because of a miss. The penalty for
L1 misses served from L2 is on the order of 10 cycles; from L3, 40 cycles; and
from main memory, 100 cycles.

Optimizing the cost and performance trade-offs of cache memories is a subtle
exercise that requires extensive simulation on realistic benchmark codes and thus
is beyond our scope. However, it is possible to identify some of the qualitative
trade-offs.

Impact of Cache Size

On the one hand, a larger cache will tend to increase the hit rate. On the other
hand, it is always harder to make large memories run faster. As a result, larger
caches tend to increase the hit time. This is especially important for on-chip L1
caches that must have a short hit time.

Impact of Block Size

Large blocks are a mixed blessing. On the one hand, larger blocks can help
increase the hit rate by exploiting any spatial locality that might exist in a program.
However, for a given cache size, larger blocks imply a smaller number of cache
lines, which can hurt the hit rate in programs with more temporal locality than
spatial locality. Larger blocks also have a negative impact on the miss penalty, since
larger blocks cause larger transfer times. Modern systems usually compromise
with cache blocks that contain 32 to 64 bytes.

Impact of Associativity

The issue here is the impact of the choice of the parameter E, the number of
cache lines per set. The advantage of higher associativity (i.e., larger values of E)
is that it decreases the vulnerability of the cache to thrashing due to conflict misses.
However, higher associativity comes at a significant cost. Higher associativity is
expensive to implement and hard to make fast. It requires more tag bits per
line, additional LRU state bits per line, and additional control logic. Higher
associativity can increase hit time, because of the increased complexity, and it can
also increase the miss penalty because of the increased complexity of choosing a
victim line.

Section 6.5 Writing Cache-friendly Code 615

The choice of associativity ultimately boils down to a trade-off between the
hit time and the miss penalty. Traditionally, high-performance systems that pushed
the clock rates would opt for smaller associativity for L1 caches (where the miss
penalty is only a few cycles) and a higher degree of associativity for the lower
levels, where the miss penalty is higher. For example, in Intel Core i7 systems, the
L1 and L2 caches are 8-way associative, and the L3 cache is 16-way.

Impact of Write Strategy

Write-through caches are simpler to implement and can use a write buffer that
works independently of the cache to update memory. Furthermore, read misses
are less expensive because they do not trigger a memory write. On the other
hand, write-back caches result in fewer transfers, which allows more bandwidth
to memory for I/O devices that perform DMA. Further, reducing the number of
transfers becomes increasingly important as we move down the hierarchy and the
transfer times increase. In general, caches further down the hierarchy are more
likely to use write-back than write-through.

Aside Cache lines, sets, and blocks: What’s the difference?

It is easy to confuse the distinction between cache lines, sets, and blocks. Let’s review these ideas and
make sure they are clear:

. A block is a fixed-sized packet of information that moves back and forth between a cache and main
memory (or a lower-level cache).

. A line is a container in a cache that stores a block, as well as other information such as the valid
bit and the tag bits.

. A set is a collection of one or more lines. Sets in direct-mapped caches consist of a single line. Sets
in set associative and fully associative caches consist of multiple lines.

In direct-mapped caches, sets and lines are indeed equivalent. However, in associative caches, sets and
lines are very different things and the terms cannot be used interchangeably.

Since a line always stores a single block, the terms “line” and “block” are often used interchange-
ably. For example, systems professionals usually refer to the “line size” of a cache, when what they
really mean is the block size. This usage is very common, and shouldn’t cause any confusion, so long as
you understand the distinction between blocks and lines.

6.5 Writing Cache-friendly Code

In Section 6.2, we introduced the idea of locality and talked in qualitative terms
about what constitutes good locality. Now that we understand how cache memo-
ries work, we can be more precise. Programs with better locality will tend to have
lower miss rates, and programs with lower miss rates will tend to run faster than
programs with higher miss rates. Thus, good programmers should always try to

616 Chapter 6 The Memory Hierarchy

write code that is cache friendly, in the sense that it has good locality. Here is the
basic approach we use to try to ensure that our code is cache friendly.

1. Make the common case go fast. Programs often spend most of their time in a
few core functions. These functions often spend most of their time in a few
loops. So focus on the inner loops of the core functions and ignore the rest.

2. Minimize the number of cache misses in each inner loop.All other things being
equal, such as the total number of loads and stores, loops with better miss rates
will run faster.

To see how this works in practice, consider the sumvec function from Section 6.2:

1 int sumvec(int v[N])

2 {

3 int i, sum = 0;

4

5 for (i = 0; i < N; i++)

6 sum += v[i];

7 return sum;

8 }

Is this function cache friendly? First, notice that there is good temporal locality in
the loop body with respect to the local variables i and sum. In fact, because these
are local variables, any reasonable optimizing compiler will cache them in the
register file, the highest level of the memory hierarchy. Now consider the stride-1
references to vector v. In general, if a cache has a block size of B bytes, then a
stride-k reference pattern (where k is expressed in words) results in an average of
min (1, (wordsize × k)/B) misses per loop iteration. This is minimized for k = 1,
so the stride-1 references to v are indeed cache friendly. For example, suppose
that v is block aligned, words are 4 bytes, cache blocks are 4 words, and the cache
is initially empty (a cold cache). Then, regardless of the cache organization, the
references to v will result in the following pattern of hits and misses:

v[i] i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

Access order, [h]it or [m]iss 1 [m] 2 [h] 3 [h] 4 [h] 5 [m] 6 [h] 7 [h] 8 [h]

In this example, the reference to v[0] misses and the corresponding block,
which contains v[0]–v[3], is loaded into the cache from memory. Thus, the next
three references are all hits. The reference to v[4] causes another miss as a new
block is loaded into the cache, the next three references are hits, and so on. In
general, three out of four references will hit, which is the best we can do in this
case with a cold cache.

To summarize, our simple sumvec example illustrates two important points
about writing cache-friendly code:

. Repeated references to local variables are good because the compiler can
cache them in the register file (temporal locality).

Section 6.5 Writing Cache-friendly Code 617

. Stride-1 reference patterns are good because caches at all levels of the memory
hierarchy store data as contiguous blocks (spatial locality).

Spatial locality is especially important in programs that operate on multi-
dimensional arrays. For example, consider the sumarrayrows function from Sec-
tion 6.2, which sums the elements of a two-dimensional array in row-major order:

1 int sumarrayrows(int a[M][N])

2 {

3 int i, j, sum = 0;

4

5 for (i = 0; i < M; i++)

6 for (j = 0; j < N; j++)

7 sum += a[i][j];

8 return sum;

9 }

Since C stores arrays in row-major order, the inner loop of this function has the
same desirable stride-1 access pattern as sumvec. For example, suppose we make
the same assumptions about the cache as for sumvec. Then the references to the
array a will result in the following pattern of hits and misses:

a[i][j] j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

i = 0 1 [m] 2 [h] 3 [h] 4 [h] 5 [m] 6 [h] 7 [h] 8 [h]
i = 1 9 [m] 10 [h] 11 [h] 12 [h] 13 [m] 14 [h] 15 [h] 16 [h]
i = 2 17 [m] 18 [h] 19 [h] 20 [h] 21 [m] 22 [h] 23 [h] 24 [h]
i = 3 25 [m] 26 [h] 27 [h] 28 [h] 29 [m] 30 [h] 31 [h] 32 [h]

But consider what happens if we make the seemingly innocuous change of
permuting the loops:

1 int sumarraycols(int a[M][N])

2 {

3 int i, j, sum = 0;

4

5 for (j = 0; j < N; j++)

6 for (i = 0; i < M; i++)

7 sum += a[i][j];

8 return sum;

9 }

In this case, we are scanning the array column by column instead of row by row.
If we are lucky and the entire array fits in the cache, then we will enjoy the same
miss rate of 1/4. However, if the array is larger than the cache (the more likely
case), then each and every access of a[i][j] will miss!

618 Chapter 6 The Memory Hierarchy

a[i][j] j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

i = 0 1 [m] 5 [m] 9 [m] 13 [m] 17 [m] 21 [m] 25 [m] 29 [m]
i = 1 2 [m] 6 [m] 10 [m] 14 [m] 18 [m] 22 [m] 26 [m] 30 [m]
i = 2 3 [m] 7 [m] 11 [m] 15 [m] 19 [m] 23 [m] 27 [m] 31 [m]
i = 3 4 [m] 8 [m] 12 [m] 16 [m] 20 [m] 24 [m] 28 [m] 32 [m]

Higher miss rates can have a significant impact on running time. For example,
on our desktop machine, sumarrayrows runs twice as fast as sumarraycols. To
summarize, programmers should be aware of locality in their programs and try to
write programs that exploit it.

Practice Problem 6.18
Transposing the rows and columns of a matrix is an important problem in signal
processing and scientific computing applications. It is also interesting from a local-
ity point of view because its reference pattern is both row-wise and column-wise.
For example, consider the following transpose routine:

1 typedef int array[2][2];

2

3 void transpose1(array dst, array src)

4 {

5 int i, j;

6

7 for (i = 0; i < 2; i++) {

8 for (j = 0; j < 2; j++) {

9 dst[j][i] = src[i][j];

10 }

11 }

12 }

Assume this code runs on a machine with the following properties:

. sizeof(int) == 4.

. The src array starts at address 0 and the dst array starts at address 16
(decimal).

. There is a single L1 data cache that is direct-mapped, write-through, and write-
allocate, with a block size of 8 bytes.

. The cache has a total size of 16 data bytes and the cache is initially empty.

. Accesses to the src and dst arrays are the only sources of read and write
misses, respectively.

A. For each row and col, indicate whether the access to src[row][col] and
dst[row][col] is a hit (h) or a miss (m). For example, reading src[0][0]
is a miss and writing dst[0][0] is also a miss.

Section 6.5 Writing Cache-friendly Code 619

dst array src array

Col 0 Col 1 Col 0 Col 1
Row 0 m Row 0 m
Row 1 Row 1

B. Repeat the problem for a cache with 32 data bytes.

Practice Problem 6.19
The heart of the recent hit game SimAquarium is a tight loop that calculates the
average position of 256 algae. You are evaluating its cache performance on a
machine with a 1024-byte direct-mapped data cache with 16-byte blocks (B = 16).
You are given the following definitions:

1 struct algae_position {

2 int x;

3 int y;

4 };

5

6 struct algae_position grid[16][16];

7 int total_x = 0, total_y = 0;

8 int i, j;

You should also assume the following:

. sizeof(int) == 4.

. grid begins at memory address 0.

. The cache is initially empty.

. The only memory accesses are to the entries of the array grid. Variables i, j,
total_x, and total_y are stored in registers.

Determine the cache performance for the following code:

1 for (i = 0; i < 16; i++) {

2 for (j = 0; j < 16; j++) {

3 total_x += grid[i][j].x;

4 }

5 }

6

7 for (i = 0; i < 16; i++) {

8 for (j = 0; j < 16; j++) {

9 total_y += grid[i][j].y;

10 }

11 }

620 Chapter 6 The Memory Hierarchy

A. What is the total number of reads?

B. What is the total number of reads that miss in the cache?

C. What is the miss rate?

Practice Problem 6.20
Given the assumptions of Problem 6.19, determine the cache performance of the
following code:

1 for (i = 0; i < 16; i++){

2 for (j = 0; j < 16; j++) {

3 total_x += grid[j][i].x;

4 total_y += grid[j][i].y;

5 }

6 }

A. What is the total number of reads?

B. What is the total number of reads that miss in the cache?

C. What is the miss rate?

D. What would the miss rate be if the cache were twice as big?

Practice Problem 6.21
Given the assumptions of Problem 6.19, determine the cache performance of the
following code:

1 for (i = 0; i < 16; i++){

2 for (j = 0; j < 16; j++) {

3 total_x += grid[i][j].x;

4 total_y += grid[i][j].y;

5 }

6 }

A. What is the total number of reads?

B. What is the total number of reads that miss in the cache?

C. What is the miss rate?

D. What would the miss rate be if the cache were twice as big?

6.6 Putting It Together: The Impact of Caches on
Program Performance

This section wraps up our discussion of the memory hierarchy by studying the im-
pact that caches have on the performance of programs running on real machines.

Section 6.6 Putting It Together: The Impact of Caches on Program Performance 621

6.6.1 The Memory Mountain

The rate that a program reads data from the memory system is called the read
throughput, or sometimes the read bandwidth. If a program reads n bytes over a
period of s seconds, then the read throughput over that period is n/s, typically
expressed in units of megabytes per second (MB/s).

If we were to write a program that issued a sequence of read requests from
a tight program loop, then the measured read throughput would give us some
insight into the performance of the memory system for that particular sequence
of reads. Figure 6.42 shows a pair of functions that measure the read throughput
for a particular read sequence.

The test function generates the read sequence by scanning the first elems
elements of an array with a stride of stride. The run function is a wrapper that
calls the test function and returns the measured read throughput. The call to the
test function in line 29 warms the cache. The fcyc2 function in line 30 calls the
test function with arguments elems and estimates the running time of the test
function in CPU cycles. Notice that the size argument to the run function is in
units of bytes, while the corresponding elems argument to the test function is in
units of array elements. Also, notice that line 31 computes MB/s as 106 bytes/s, as
opposed to 220 bytes/s.

The size and stride arguments to the run function allow us to control the
degree of temporal and spatial locality in the resulting read sequence. Smaller
values of size result in a smaller working set size, and thus better temporal
locality. Smaller values of stride result in better spatial locality. If we call the run
function repeatedly with different values of size and stride, then we can recover
a fascinating two-dimensional function of read throughput versus temporal and
spatial locality. This function is called a memory mountain.

Every computer has a unique memory mountain that characterizes the ca-
pabilities of its memory system. For example, Figure 6.43 shows the memory
mountain for an Intel Core i7 system. In this example, the size varies from 2 KB
to 64 MB, and the stride varies from 1 to 64 elements, where each element is an
8-byte double.

The geography of the Core i7 mountain reveals a rich structure. Perpendicular
to the size axis are four ridges that correspond to the regions of temporal locality
where the working set fits entirely in the L1 cache, the L2 cache, the L3 cache, and
main memory, respectively. Notice that there is an order of magnitude difference
between the highest peak of the L1 ridge, where the CPU reads at a rate of over
6 GB/s, and the lowest point of the main memory ridge, where the CPU reads at
a rate of 600 MB/s.

There is a feature of the L1 ridge that should be pointed out. For very large
strides, notice how the read throughput drops as the working set size approaches
2 KB (falling off the back side of the ridge). Since the L1 cache holds the entire
working set, this feature does not reflect the true L1 cache performance. It is an
artifact of overheads of calling thetest function and setting up to execute the loop.
For large strides in small working set sizes, these overheads are not amortized, as
they are with the larger sizes.

622 Chapter 6 The Memory Hierarchy

code/mem/mountain/mountain.c

1 double data[MAXELEMS]; /* The global array we’ll be traversing */

2

3 /*

4 * test - Iterate over first "elems" elements of array "data"

5 * with stride of "stride".

6 */

7 void test(int elems, int stride) /* The test function */

8 {

9 int i;

10 double result = 0.0;

11 volatile double sink;

12

13 for (i = 0; i < elems; i += stride) {

14 result += data[i];

15 }

16 sink = result; /* So compiler doesn’t optimize away the loop */

17 }

18

19 /*

20 * run - Run test(elems, stride) and return read throughput (MB/s).

21 * "size" is in bytes, "stride" is in array elements, and

22 * Mhz is CPU clock frequency in Mhz.

23 */

24 double run(int size, int stride, double Mhz)

25 {

26 double cycles;

27 int elems = size / sizeof(double);

28

29 test(elems, stride); /* warm up the cache */

30 cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */

31 return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */

32 }

code/mem/mountain/mountain.c

Figure 6.42 Functions that measure and compute read throughput. We can generate a memory mountain
for a particular computer by calling the run function with different values of size (which corresponds to
temporal locality) and stride (which corresponds to spatial locality).

On each of the L2, L3, and main memory ridges, there is a slope of spatial
locality that falls downhill as the stride increases, and spatial locality decreases.
Notice that even when the working set is too large to fit in any of the caches, the
highest point on the main memory ridge is a factor of 7 higher than its lowest point.
So even when a program has poor temporal locality, spatial locality can still come
to the rescue and make a significant difference.

Section 6.6 Putting It Together: The Impact of Caches on Program Performance 623

s1

s3

s5

s7

s9

s1
1

s1
3

s1
5

s3
2

16
M

64
M

4M

1M 25
6k 64

k 16
k 4k

7000

6000

5000

3000

4000

2000

1000

0

R
ea

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)
Size (bytes)

Core i7
2.67 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

Slopes
of spatial
locality

Ridges of
temporal
locality

L1

Mem

L2

L3

Figure 6.43 The memory mountain.

There is a particularly interesting flat ridge line that extends perpendicular
to the stride axis for strides of 1 and 2, where the read throughput is a relatively
constant 4.5 GB/s. This is apparently due to a hardware prefetching mechanism
in the Core i7 memory system that automatically identifies memory referencing
patterns and attempts to fetch those blocks into cache before they are accessed.
While the details of the particular prefetching algorithm are not documented, it is
clear from the memory mountain that the algorithm works best for small strides—
yet another reason to favor sequential accesses in your code.

If we take a slice through the mountain, holding the stride constant as in Fig-
ure 6.44, we can see the impact of cache size and temporal locality on performance.
For sizes up to 32 KB, the working set fits entirely in the L1 d-cache, and thus reads
are served from L1 at the peak throughput of about 6 GB/s. For sizes up to 256 KB,
the working set fits entirely in the unified L2 cache, and for sizes up to 8M, the
working set fits entirely in the unified L3 cache. Larger working set sizes are served
primarily from main memory.

The dips in read throughputs at the leftmost edges of the L1, L2, and L3 cache
regions—where the working set sizes of 32 KB, 256 KB, and 8 MB are equal to
their respective cache sizes—are interesting. It is not entirely clear why these dips
occur. The only way to be sure is to perform a detailed cache simulation, but it

624 Chapter 6 The Memory Hierarchy

7000

6000

5000

4000

3000

2000

1000

0

64
M

32
M

16
M 8M 4M 2M 1M

51
2k

25
6k

12
8k 64
k

32
k

16
k 8k 4k 2k

Working set size (bytes)

R
ea

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

L1 cache
region

L2 cache
region

L3 cache
region

Main memory
region

Figure 6.44 Ridges of temporal locality in the memory mountain. The graph shows a slice through
Figure 6.43 with stride=16.

is likely that the drops are caused by other data and code blocks that make it
impossible to fit the entire array in the respective cache.

Slicing through the memory mountain in the opposite direction, holding the
working set size constant, gives us some insight into the impact of spatial locality on
the read throughput. For example, Figure 6.45 shows the slice for a fixed working
set size of 4 MB. This slice cuts along the L3 ridge in Figure 6.43, where the working
set fits entirely in the L3 cache, but is too large for the L2 cache.

Notice how the read throughput decreases steadily as the stride increases from
one to eight doublewords. In this region of the mountain, a read miss in L2 causes
a block to be transferred from L3 to L2. This is followed by some number of hits
on the block in L2, depending on the stride. As the stride increases, the ratio of
L2 misses to L2 hits increases. Since misses are served more slowly than hits, the
read throughput decreases. Once the stride reaches eight doublewords, which on
this system equals the block size of 64 bytes, every read request misses in L2 and
must be served from L3. Thus, the read throughput for strides of at least eight
doublewords is a constant rate determined by the rate that cache blocks can be
transferred from L3 into L2.

To summarize our discussion of the memory mountain, the performance of the
memory system is not characterized by a single number. Instead, it is a mountain
of temporal and spatial locality whose elevations can vary by over an order of
magnitude. Wise programmers try to structure their programs so that they run in
the peaks instead of the valleys. The aim is to exploit temporal locality so that

Section 6.6 Putting It Together: The Impact of Caches on Program Performance 625

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

s1 s2 s3 s4 s5 s6 s7 s8 s9 s1
0

s1
1

s1
2

s1
3

s1
4

s1
5

s1
6

s3
2

s6
4

R
ea

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

One access per cache line

Figure 6.45 A slope of spatial locality. The graph shows a slice through Figure 6.43 with size=4 MB.

heavily used words are fetched from the L1 cache, and to exploit spatial locality
so that as many words as possible are accessed from a single L1 cache line.

Practice Problem 6.22
Use the memory mountain in Figure 6.43 to estimate the time, in CPU cycles, to
read an 8-byte word from the L1 d-cache.

6.6.2 Rearranging Loops to Increase Spatial Locality

Consider the problem of multiplying a pair of n × n matrices: C = AB. For exam-
ple, if n = 2, then [

c11 c12

c21 c22

]
=

[
a11 a12

a21 a22

] [
b11 b12

b21 b22

]
where

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

A matrix multiply function is usually implemented using three nested loops, which
are identified by their indexes i, j , and k. If we permute the loops and make some
other minor code changes, we can create the six functionally equivalent versions

626 Chapter 6 The Memory Hierarchy

(a) Version ijk

code/mem/matmult/mm.c

1 for (i = 0; i < n; i++)

2 for (j = 0; j < n; j++) {

3 sum = 0.0;

4 for (k = 0; k < n; k++)

5 sum += A[i][k]*B[k][j];

6 C[i][j] += sum;

7 }

code/mem/matmult/mm.c

(c) Version jki

code/mem/matmult/mm.c

1 for (j = 0; j < n; j++)

2 for (k = 0; k < n; k++) {

3 r = B[k][j];

4 for (i = 0; i < n; i++)

5 C[i][j] += A[i][k]*r;

6 }

code/mem/matmult/mm.c

(e) Version kij

code/mem/matmult/mm.c

1 for (k = 0; k < n; k++)

2 for (i = 0; i < n; i++) {

3 r = A[i][k];

4 for (j = 0; j < n; j++)

5 C[i][j] += r*B[k][j];

6 }

code/mem/matmult/mm.c

(b) Version jik

code/mem/matmult/mm.c

1 for (j = 0; j < n; j++)

2 for (i = 0; i < n; i++) {

3 sum = 0.0;

4 for (k = 0; k < n; k++)

5 sum += A[i][k]*B[k][j];

6 C[i][j] += sum;

7 }

code/mem/matmult/mm.c

(d) Version kji

code/mem/matmult/mm.c

1 for (k = 0; k < n; k++)

2 for (j = 0; j < n; j++) {

3 r = B[k][j];

4 for (i = 0; i < n; i++)

5 C[i][j] += A[i][k]*r;

6 }

code/mem/matmult/mm.c

(f) Version ikj

code/mem/matmult/mm.c

1 for (i = 0; i < n; i++)

2 for (k = 0; k < n; k++) {

3 r = A[i][k];

4 for (j = 0; j < n; j++)

5 C[i][j] += r*B[k][j];

6 }

code/mem/matmult/mm.c

Figure 6.46 Six versions of matrix multiply. Each version is uniquely identified by the ordering of its loops.

of matrix multiply shown in Figure 6.46. Each version is uniquely identified by the
ordering of its loops.

At a high level, the six versions are quite similar. If addition is associative,
then each version computes an identical result.2 Each version performs O(n3) total

2. As we learned in Chapter 2, floating-point addition is commutative, but in general not associative.
In practice, if the matrices do not mix extremely large values with extremely small ones, as often is
true when the matrices store physical properties, then the assumption of associativity is reasonable.

Section 6.6 Putting It Together: The Impact of Caches on Program Performance 627

Matrix multiply Loads Stores A misses B misses C misses Total misses
version (class) per iter. per iter. per iter. per iter. per iter. per iter.

ijk & jik (AB) 2 0 0.25 1.00 0.00 1.25
jki & kji (AC) 2 1 1.00 0.00 1.00 2.00
kij & ikj (BC) 2 1 0.00 0.25 0.25 0.50

Figure 6.47 Analysis of matrix multiply inner loops. The six versions partition into
three equivalence classes, denoted by the pair of arrays that are accessed in the inner
loop.

operations and an identical number of adds and multiplies. Each of the n2 elements
of A and B is read n times. Each of the n2 elements of C is computed by summing
n values. However, if we analyze the behavior of the innermost loop iterations, we
find that there are differences in the number of accesses and the locality. For the
purposes of this analysis, we make the following assumptions:

. Each array is an n × n array of double, with sizeof(double) == 8.

. There is a single cache with a 32-byte block size (B = 32).

. The array size n is so large that a single matrix row does not fit in the L1 cache.

. The compiler stores local variables in registers, and thus references to local
variables inside loops do not require any load or store instructions.

Figure 6.47 summarizes the results of our inner loop analysis. Notice that the
six versions pair up into three equivalence classes, which we denote by the pair of
matrices that are accessed in the inner loop. For example, versions ijk and jik are
members of Class AB because they reference arrays A and B (but not C) in their
innermost loop. For each class, we have counted the number of loads (reads) and
stores (writes) in each inner loop iteration, the number of references to A, B, and
C that will miss in the cache in each loop iteration, and the total number of cache
misses per iteration.

The inner loops of the Class AB routines (Figure 6.46(a) and (b)) scan a row
of array A with a stride of 1. Since each cache block holds four doublewords, the
miss rate for A is 0.25 misses per iteration. On the other hand, the inner loop scans
a column of B with a stride of n. Since n is large, each access of array B results in
a miss, for a total of 1.25 misses per iteration.

The inner loops in the Class AC routines (Figure 6.46(c) and (d)) have some
problems. Each iteration performs two loads and a store (as opposed to the
Class AB routines, which perform two loads and no stores). Second, the inner
loop scans the columns of A and C with a stride of n. The result is a miss on each
load, for a total of two misses per iteration. Notice that interchanging the loops
has decreased the amount of spatial locality compared to the Class AB routines.

The BC routines (Figure 6.46(e) and (f)) present an interesting trade-off: With
two loads and a store, they require one more memory operation than the AB

routines. On the other hand, since the inner loop scans both B and C row-wise

628 Chapter 6 The Memory Hierarchy

Figure 6.48
Core i7 matrix multiply
performance. Legend: jki

and kji: Class AC; ijk and
jik: Class AB; kij and ikj :
Class BC.

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Array size (n)

C
yc

le
s

p
er

 in
n

er
 lo

o
p

 it
er

at
io

n

jki
kji
ijk
jik
kij
ikj

with a stride-1 access pattern, the miss rate on each array is only 0.25 misses per
iteration, for a total of 0.50 misses per iteration.

Figure 6.48 summarizes the performance of different versions of matrix mul-
tiply on a Core i7 system. The graph plots the measured number of CPU cycles
per inner loop iteration as a function of array size (n).

There are a number of interesting points to notice about this graph:

. For large values of n, the fastest version runs almost 20 times faster than the
slowest version, even though each performs the same number of floating-point
arithmetic operations.

. Pairs of versions with the same number of memory references and misses per
iteration have almost identical measured performance.

. The two versions with the worst memory behavior, in terms of the number of
accesses and misses per iteration, run significantly slower than the other four
versions, which have fewer misses or fewer accesses, or both.

. Miss rate, in this case, is a better predictor of performance than the total
number of memory accesses. For example, the Class BC routines, with 0.5
misses per iteration, perform much better than the Class AB routines, with
1.25 misses per iteration, even though the Class BC routines perform more
memory references in the inner loop (two loads and one store) than the
Class AB routines (two loads).

. For large values of n, the performance of the fastest pair of versions (kij and
ikj) is constant. Even though the array is much larger than any of the SRAM
cache memories, the prefetching hardware is smart enough to recognize the
stride-1 access pattern, and fast enough to keep up with memory accesses
in the tight inner loop. This is a stunning accomplishment by the Intel engi-

Section 6.7 Summary 629

neers who designed this memory system, providing even more incentive for
programmers to develop programs with good spatial locality.

Web Aside MEM:BLOCKING Using blocking to increase temporal locality

There is an interesting technique called blocking that can improve the temporal locality of inner loops.
The general idea of blocking is to organize the data structures in a program into large chunks called
blocks. (In this context, “block” refers to an application-level chunk of data, not to a cache block.) The
program is structured so that it loads a chunk into the L1 cache, does all the reads and writes that it
needs to on that chunk, then discards the chunk, loads in the next chunk, and so on.

Unlike the simple loop transformations for improving spatial locality, blocking makes the code
harder to read and understand. For this reason, it is best suited for optimizing compilers or frequently
executed library routines. Still, the technique is interesting to study and understand because it is a
general concept that can produce big performance gains on some systems.

6.6.3 Exploiting Locality in Your Programs

As we have seen, the memory system is organized as a hierarchy of storage
devices, with smaller, faster devices toward the top and larger, slower devices
toward the bottom. Because of this hierarchy, the effective rate that a program
can access memory locations is not characterized by a single number. Rather, it is
a wildly varying function of program locality (what we have dubbed the memory
mountain) that can vary by orders of magnitude. Programs with good locality
access most of their data from fast cache memories. Programs with poor locality
access most of their data from the relatively slow DRAM main memory.

Programmers who understand the nature of the memory hierarchy can ex-
ploit this understanding to write more efficient programs, regardless of the specific
memory system organization. In particular, we recommend the following tech-
niques:

. Focus your attention on the inner loops, where the bulk of the computations
and memory accesses occur.

. Try to maximize the spatial locality in your programs by reading data objects
sequentially, with stride 1, in the order they are stored in memory.

. Try to maximize the temporal locality in your programs by using a data object
as often as possible once it has been read from memory.

6.7 Summary

The basic storage technologies are random-access memories (RAMs), nonvolatile
memories (ROMs), and disks. RAM comes in two basic forms. Static RAM
(SRAM) is faster and more expensive, and is used for cache memories both on
and off the CPU chip. Dynamic RAM (DRAM) is slower and less expensive, and
is used for the main memory and graphics frame buffers. Nonvolatile memories,
also called read-only memories (ROMs), retain their information even if the sup-
ply voltage is turned off, and they are used to store firmware. Rotating disks are

630 Chapter 6 The Memory Hierarchy

mechanical nonvolatile storage devices that hold enormous amounts of data at a
low cost per bit, but with much longer access times than DRAM. Solid state disks
(SSDs) based on nonvolatile flash memory are becoming increasingly attractive
alternatives to rotating disks for some applications.

In general, faster storage technologies are more expensive per bit and have
smaller capacities. The price and performance properties of these technologies
are changing at dramatically different rates. In particular, DRAM and disk access
times are much larger than CPU cycle times. Systems bridge these gaps by orga-
nizing memory as a hierarchy of storage devices, with smaller, faster devices at
the top and larger, slower devices at the bottom. Because well-written programs
have good locality, most data are served from the higher levels, and the effect is
a memory system that runs at the rate of the higher levels, but at the cost and
capacity of the lower levels.

Programmers can dramatically improve the running times of their programs
by writing programs with good spatial and temporal locality. Exploiting SRAM-
based cache memories is especially important. Programs that fetch data pri-
marily from cache memories can run much faster than programs that fetch data
primarily from memory.

Bibliographic Notes

Memory and disk technologies change rapidly. In our experience, the best sources
of technical information are the Web pages maintained by the manufacturers.
Companies such as Micron, Toshiba, and Samsung provide a wealth of current
technical information on memory devices. The pages for Seagate, Maxtor, and
Western Digital provide similarly useful information about disks.

Textbooks on circuit and logic design provide detailed information about
memory technology [56, 85]. IEEE Spectrum published a series of survey articles
on DRAM [53]. The International Symposium on Computer Architecture (ISCA)
is a common forum for characterizations of DRAM memory performance [34, 35].

Wilkes wrote the first paper on cache memories [116]. Smith wrote a clas-
sic survey [101]. Przybylski wrote an authoritative book on cache design [82].
Hennessy and Patterson provide a comprehensive discussion of cache design is-
sues [49].

Stricker introduced the idea of the memory mountain as a comprehensive
characterization of the memory system in [111], and suggested the term “memory
mountain” informally in later presentations of the work. Compiler researchers
work to increase locality by automatically performing the kinds of manual code
transformations we discussed in Section 6.6 [22, 38, 63, 68, 75, 83, 118]. Carter and
colleagues have proposed a cache-aware memory controller [18]. Seward devel-
oped an open-source cache profiler, called cacheprof, that characterizes the miss
behavior of C programs on an arbitrary simulated cache (www.cacheprof.org).
Other researchers have developed cache oblivious algorithms that are designed to
run well without any explicit knowledge of the structure of the underlying cache
memory [36, 42, 43].

www.cacheprof.org

Homework Problems 631

There is a large body of literature on building and using disk storage. Many
storage researchers look for ways to aggregate individual disks into larger, more
robust, and more secure storage pools [20, 44, 45, 79, 119]. Others look for ways
to use caches and locality to improve the performance of disk accesses [12, 21].
Systems such as Exokernel provide increased user-level control of disk and mem-
ory resources [55]. Systems such as the Andrew File System [74] and Coda [91]
extend the memory hierarchy across computer networks and mobile notebook
computers. Schindler and Ganger developed an interesting tool that automatically
characterizes the geometry and performance of SCSI disk drives [92]. Researchers
are investigating techniques for building and using Flash-based SSDs [8, 77].

Homework Problems

6.23 ◆◆
Suppose you are asked to design a rotating disk where the number of bits per
track is constant. You know that the number of bits per track is determined
by the circumference of the innermost track, which you can assume is also the
circumference of the hole. Thus, if you make the hole in the center of the disk
larger, the number of bits per track increases, but the total number of tracks
decreases. If you let r denote the radius of the platter, and x . r the radius of the
hole, what value of x maximizes the capacity of the disk?

6.24 ◆
Estimate the average time (in ms) to access a sector on the following disk:

Parameter Value

Rotational rate 15,000 RPM
Tavg seek 4 ms
Average # sectors/track 800

6.25 ◆◆
Suppose that a 2 MB file consisting of 512-byte logical blocks is stored on a disk
drive with the following characteristics:

Parameter Value

Rotational rate 15,000 RPM
Tavg seek 4 ms
Average # sectors/track 1000
Surfaces 8
Sector size 512 bytes

For each case below, suppose that a program reads the logical blocks of the
file sequentially, one after the other, and that the time to position the head over
the first block is Tavg seek + Tavg rotation.

632 Chapter 6 The Memory Hierarchy

A. Best case: Estimate the optimal time (in ms) required to read the file over
all possible mappings of logical blocks to disk sectors.

B. Random case: Estimate the time (in ms) required to read the file if blocks
are mapped randomly to disk sectors.

6.26 ◆
The following table gives the parameters for a number of different caches. For
each cache, fill in the missing fields in the table. Recall that m is the number of
physical address bits, C is the cache size (number of data bytes), B is the block
size in bytes, E is the associativity, S is the number of cache sets, t is the number of
tag bits, s is the number of set index bits, and b is the number of block offset bits.

Cache m C B E S t s b

1. 32 1024 4 4
2. 32 1024 4 256
3. 32 1024 8 1
4. 32 1024 8 128
5. 32 1024 32 1
6. 32 1024 32 4

6.27 ◆
The following table gives the parameters for a number of different caches. Your
task is to fill in the missing fields in the table. Recall that m is the number of physical
address bits, C is the cache size (number of data bytes), B is the block size in bytes,
E is the associativity, S is the number of cache sets, t is the number of tag bits, s is
the number of set index bits, and b is the number of block offset bits.

Cache m C B E S t s b

1. 32 8 1 21 8 3
2. 32 2048 128 23 7 2
3. 32 1024 2 8 64 1
4. 32 1024 2 16 23 4

6.28 ◆
This problem concerns the cache in Problem 6.13.

A. List all of the hex memory addresses that will hit in set 1.

B. List all of the hex memory addresses that will hit in set 6.

6.29 ◆◆
This problem concerns the cache in Problem 6.13.

A. List all of the hex memory addresses that will hit in set 2.

B. List all of the hex memory addresses that will hit in set 4.

Homework Problems 633

C. List all of the hex memory addresses that will hit in set 5.

D. List all of the hex memory addresses that will hit in set 7.

6.30 ◆◆
Suppose we have a system with the following properties:

. The memory is byte addressable.

. Memory accesses are to 1-byte words (not to 4-byte words).

. Addresses are 12 bits wide.

. The cache is two-way set associative (E = 2), with a 4-byte block size (B = 4)
and four sets (S = 4).

The contents of the cache are as follows, with all addresses, tags, and values given
in hexadecimal notation:

Set index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 00 1 40 41 42 43
83 1 FE 97 CC D0

1 00 1 44 45 46 47
83 0 — — — —

2 00 1 48 49 4A 4B
40 0 — — — —

3 FF 1 9A C0 03 FF
00 0 — — — —

A. The following diagram shows the format of an address (one bit per box).
Indicate (by labeling the diagram) the fields that would be used to determine
the following:

CO The cache block offset
CI The cache set index
CT The cache tag

11 10 9 8 7 6 5 4 3 2 1 0

B. For each of the following memory accesses indicate if it will be a cache hit
or miss when carried out in sequence as listed. Also give the value of a read
if it can be inferred from the information in the cache.

Operation Address Hit? Read value (or unknown)

Read 0x834
Write 0x836
Read 0xFFD

634 Chapter 6 The Memory Hierarchy

6.31 ◆
Suppose we have a system with the following properties:

. The memory is byte addressable.

. Memory accesses are to 1-byte words (not to 4-byte words).

. Addresses are 13 bits wide.

. The cache is four-way set associative (E = 4), with a 4-byte block size (B = 4)
and eight sets (S = 8).

Consider the following cache state. All addresses, tags, and values are given in
hexadecimal format. The Index column contains the set index for each set of four
lines. The Tag columns contain the tag value for each line. The V columns contain
the valid bit for each line. The Bytes 0–3 columns contain the data for each line,
numbered left-to-right starting with byte 0 on the left.

4-way set associative cache

Index Tag V Bytes 0–3 Tag V Bytes 0–3 Tag V Bytes 0–3 Tag V Bytes 0–3

0 F0 1 ED 32 0A A2 8A 1 BF 80 1D FC 14 1 EF 09 86 2A BC 0 25 44 6F 1A

1 BC 0 03 3E CD 38 A0 0 16 7B ED 5A BC 1 8E 4C DF 18 E4 1 FB B7 12 02

2 BC 1 54 9E 1E FA B6 1 DC 81 B2 14 00 0 B6 1F 7B 44 74 0 10 F5 B8 2E

3 BE 0 2F 7E 3D A8 C0 1 27 95 A4 74 C4 0 07 11 6B D8 BC 0 C7 B7 AF C2

4 7E 1 32 21 1C 2C 8A 1 22 C2 DC 34 BC 1 BA DD 37 D8 DC 0 E7 A2 39 BA

5 98 0 A9 76 2B EE 54 0 BC 91 D5 92 98 1 80 BA 9B F6 BC 1 48 16 81 0A

6 38 0 5D 4D F7 DA BC 1 69 C2 8C 74 8A 1 A8 CE 7F DA 38 1 FA 93 EB 48

7 8A 1 04 2A 32 6A 9E 0 B1 86 56 0E CC 1 96 30 47 F2 BC 1 F8 1D 42 30

A. What is size (C) of this cache in bytes?

B. The box that follows shows the format of an address (one bit per box).
Indicate (by labeling the diagram) the fields that would be used to determine
the following:

CO The cache block offset
CI The cache set index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

6.32 ◆◆
Supppose that a program using the cache in Problem 6.31 references the 1-byte
word at address 0x071A. Indicate the cache entry accessed and the cache byte
value returned in hex. Indicate whether a cache miss occurs. If there is a cache
miss, enter “–” for “Cache byte returned”. Hint: Pay attention to those valid bits!

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

Homework Problems 635

B. Memory reference:

Parameter Value

Block offset (CO) 0x

Index (CI) 0x

Cache tag (CT) 0x

Cache hit? (Y/N)
Cache byte returned 0x

6.33 ◆◆
Repeat Problem 6.32 for memory address 0x16E8.

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

B. Memory reference:

Parameter Value

Cache offset (CO) 0x

Cache index (CI) 0x

Cache tag (CT) 0x

Cache hit? (Y/N)
Cache byte returned 0x

6.34 ◆◆
For the cache in Problem 6.31, list the eight memory addresses (in hex) that will
hit in set 2.

6.35 ◆◆
Consider the following matrix transpose routine:

1 typedef int array[4][4];

2

3 void transpose2(array dst, array src)

4 {

5 int i, j;

6

7 for (i = 0; i < 4; i++) {

8 for (j = 0; j < 4; j++) {

9 dst[j][i] = src[i][j];

10 }

11 }

12 }

636 Chapter 6 The Memory Hierarchy

Assume this code runs on a machine with the following properties:

. sizeof(int) == 4.

. The src array starts at address 0 and the dst array starts at address 64
(decimal).

. There is a single L1 data cache that is direct-mapped, write-through, write-
allocate, with a block size of 16 bytes.

. The cache has a total size of 32 data bytes and the cache is initially empty.

. Accesses to the src and dst arrays are the only sources of read and write
misses, respectively.

A. For each row and col, indicate whether the access to src[row][col] and
dst[row][col] is a hit (h) or a miss (m). For example, reading src[0][0]
is a miss and writing dst[0][0] is also a miss.

dst array src array

Col 0 Col 1 Col 2 Col 3 Col 0 Col 1 Col 2 Col 3

Row 0 m Row 0 m
Row 1 Row 1
Row 2 Row 2
Row 3 Row 3

6.36 ◆◆
Repeat Problem 6.35 for a cache with a total size of 128 data bytes.

dst array src array

Col 0 Col 1 Col 2 Col 3 Col 0 Col 1 Col 2 Col 3

Row 0 Row 0
Row 1 Row 1
Row 2 Row 2
Row 3 Row 3

6.37 ◆◆
This problem tests your ability to predict the cache behavior of C code. You are
given the following code to analyze:

1 int x[2][128];

2 int i;

3 int sum = 0;

4

5 for (i = 0; i < 128; i++) {

6 sum += x[0][i] * x[1][i];

7 }

Homework Problems 637

Assume we execute this under the following conditions:

. sizeof(int) = 4.

. Array x begins at memory address 0x0 and is stored in row-major order.

. In each case below, the cache is initially empty.

. The only memory accesses are to the entries of the array x. All other variables
are stored in registers.

Given these assumptions, estimate the miss rates for the following cases:

A. Case 1: Assume the cache is 512 bytes, direct-mapped, with 16-byte cache
blocks. What is the miss rate?

B. Case 2: What is the miss rate if we double the cache size to 1024 bytes?

C. Case 3: Now assume the cache is 512 bytes, two-way set associative using an
LRU replacement policy, with 16-byte cache blocks. What is the cache miss
rate?

D. For Case 3, will a larger cache size help to reduce the miss rate? Why or why
not?

E. For Case 3, will a larger block size help to reduce the miss rate? Why or why
not?

6.38 ◆◆
This is another problem that tests your ability to analyze the cache behavior of C
code. Assume we execute the three summation functions in Figure 6.49 under the
following conditions:

. sizeof(int) == 4.

. The machine has a 4KB direct-mapped cache with a 16-byte block size.

. Within the two loops, the code uses memory accesses only for the array data.
The loop indices and the value sum are held in registers.

. Array a is stored starting at memory address 0x08000000.

Fill in the table for the approximate cache miss rate for the two cases N = 64
and N = 60.

Function N = 64 N = 60

sumA

sumB

sumC

6.39 ◆
3M™ decides to make Post-It® notes by printing yellow squares on white pieces of
paper. As part of the printing process, they need to set the CMYK (cyan, magenta,
yellow, black) value for every point in the square. 3M hires you to determine

638 Chapter 6 The Memory Hierarchy

1 typedef int array_t[N][N];

2

3 int sumA(array_t a)

4 {

5 int i, j;

6 int sum = 0;

7 for (i = 0; i < N; i++)

8 for (j = 0; j < N; j++) {

9 sum += a[i][j];

10 }

11 return sum;

12 }

13

14 int sumB(array_t a)

15 {

16 int i, j;

17 int sum = 0;

18 for (j = 0; j < N; j++)

19 for (i = 0; i < N; i++) {

20 sum += a[i][j];

21 }

22 return sum;

23 }

24

25 int sumC(array_t a)

26 {

27 int i, j;

28 int sum = 0;

29 for (j = 0; j < N; j+=2)

30 for (i = 0; i < N; i+=2) {

31 sum += (a[i][j] + a[i+1][j]

32 + a[i][j+1] + a[i+1][j+1]);

33 }

34 return sum;

35 }

Figure 6.49 Functions referenced in Problem 6.38.

the efficiency of the following algorithms on a machine with a 2048-byte direct-
mapped data cache with 32-byte blocks. You are given the following definitions:

1 struct point_color {

2 int c;

3 int m;

4 int y;

5 int k;

6 };

Homework Problems 639

7

8 struct point_color square[16][16];

9 int i, j;

Assume the following:

. sizeof(int) == 4.

. square begins at memory address 0.

. The cache is initially empty.

. The only memory accesses are to the entries of the array square. Variables i
and j are stored in registers.

Determine the cache performance of the following code:

1 for (i = 0; i < 16; i++){

2 for (j = 0; j < 16; j++) {

3 square[i][j].c = 0;

4 square[i][j].m = 0;

5 square[i][j].y = 1;

6 square[i][j].k = 0;

7 }

8 }

A. What is the total number of writes?

B. What is the total number of writes that miss in the cache?

C. What is the miss rate?

6.40 ◆
Given the assumptions in Problem 6.39, determine the cache performance of the
following code:

1 for (i = 0; i < 16; i++){

2 for (j = 0; j < 16; j++) {

3 square[j][i].c = 0;

4 square[j][i].m = 0;

5 square[j][i].y = 1;

6 square[j][i].k = 0;

7 }

8 }

A. What is the total number of writes?

B. What is the total number of writes that miss in the cache?

C. What is the miss rate?

640 Chapter 6 The Memory Hierarchy

6.41 ◆
Given the assumptions in Problem 6.39, determine the cache performance of the
following code:

1 for (i = 0; i < 16; i++) {

2 for (j = 0; j < 16; j++) {

3 square[i][j].y = 1;

4 }

5 }

6 for (i = 0; i < 16; i++) {

7 for (j = 0; j < 16; j++) {

8 square[i][j].c = 0;

9 square[i][j].m = 0;

10 square[i][j].k = 0;

11 }

12 }

A. What is the total number of writes?

B. What is the total number of writes that miss in the cache?

C. What is the miss rate?

6.42 ◆◆
You are writing a new 3D game that you hope will earn you fame and fortune. You
are currently working on a function to blank the screen buffer before drawing the
next frame. The screen you are working with is a 640 × 480 array of pixels. The
machine you are working on has a 64 KB direct-mapped cache with 4-byte lines.
The C structures you are using are as follows:

1 struct pixel {

2 char r;

3 char g;

4 char b;

5 char a;

6 };

7

8 struct pixel buffer[480][640];

9 int i, j;

10 char *cptr;

11 int *iptr;

Assume the following:

. sizeof(char) == 1 and sizeof(int) == 4.

. buffer begins at memory address 0.

. The cache is initially empty.

. The only memory accesses are to the entries of the array buffer. Variables i,
j, cptr, and iptr are stored in registers.

Homework Problems 641

What percentage of writes in the following code will miss in the cache?

1 for (j = 0; j < 640; j++) {

2 for (i = 0; i < 480; i++){

3 buffer[i][j].r = 0;

4 buffer[i][j].g = 0;

5 buffer[i][j].b = 0;

6 buffer[i][j].a = 0;

7 }

8 }

6.43 ◆◆
Given the assumptions in Problem 6.42, what percentage of writes in the following
code will miss in the cache?

1 char *cptr = (char *) buffer;

2 for (; cptr < (((char *) buffer) + 640 * 480 * 4); cptr++)

3 *cptr = 0;

6.44 ◆◆
Given the assumptions in Problem 6.42, what percentage of writes in the following
code will miss in the cache?

1 int *iptr = (int *)buffer;

2 for (; iptr < ((int *)buffer + 640*480); iptr++)

3 *iptr = 0;

6.45 ◆◆◆
Download the mountain program from the CS:APP2 Web site and run it on your
favorite PC/Linux system. Use the results to estimate the sizes of the caches on
your system.

6.46 ◆◆◆◆
In this assignment, you will apply the concepts you learned in Chapters 5 and 6
to the problem of optimizing code for a memory-intensive application. Consider
a procedure to copy and transpose the elements of an N × N matrix of type int.
That is, for source matrix S and destination matrix D, we want to copy each
element si,j to dj,i. This code can be written with a simple loop,

1 void transpose(int *dst, int *src, int dim)

2 {

3 int i, j;

4

5 for (i = 0; i < dim; i++)

6 for (j = 0; j < dim; j++)

7 dst[j*dim + i] = src[i*dim + j];

8 }

642 Chapter 6 The Memory Hierarchy

where the arguments to the procedure are pointers to the destination (dst) and
source (src) matrices, as well as the matrix size N (dim). Your job is to devise a
transpose routine that runs as fast as possible.

6.47 ◆◆◆◆
This assignment is an intriguing variation of Problem 6.46. Consider the problem
of converting a directed graph g into its undirected counterpart g′. The graph
g′ has an edge from vertex u to vertex v if and only if there is an edge from u

to v or from v to u in the original graph g. The graph g is represented by its
adjacency matrix G as follows. If N is the number of vertices in g, then G is an
N × N matrix and its entries are all either 0 or 1. Suppose the vertices of g are
named v0, v1, v2, . . . , vN−1. Then G[i][j] is 1 if there is an edge from vi to vj and
is 0 otherwise. Observe that the elements on the diagonal of an adjacency matrix
are always 1 and that the adjacency matrix of an undirected graph is symmetric.
This code can be written with a simple loop:

1 void col_convert(int *G, int dim) {

2 int i, j;

3

4 for (i = 0; i < dim; i++)

5 for (j = 0; j < dim; j++)

6 G[j*dim + i] = G[j*dim + i] || G[i*dim + j];

7 }

Your job is to devise a conversion routine that runs as fast as possible. As
before, you will need to apply concepts you learned in Chapters 5 and 6 to come
up with a good solution.

Solutions to Practice Problems

Solution to Problem 6.1 (page 565)
The idea here is to minimize the number of address bits by minimizing the aspect
ratio max(r, c)/ min(r, c). In other words, the squarer the array, the fewer the
address bits.

Organization r c br bc max(br, bc)

16 × 1 4 4 2 2 2
16 × 4 4 4 2 2 2
128 × 8 16 8 4 3 4
512 × 4 32 16 5 4 5
1024 × 4 32 32 5 5 5

Solution to Problem 6.2 (page 573)
The point of this little drill is to make sure you understand the relationship between
cylinders and tracks. Once you have that straight, just plug and chug:

Solutions to Practice Problems 643

Disk capacity = 512 bytes
sector

× 400 sectors
track

× 10,000 tracks
surface

× 2 surfaces
platter

× 2 platters
disk

= 8,192,000,000 bytes

= 8.192 GB

Solution to Problem 6.3 (page 575)
This solution to this problem is a straightforward application of the formula for
disk access time. The average rotational latency (in ms) is

Tavg rotation = 1/2 × Tmax rotation

= 1/2 × (60 secs / 15,000 RPM) × 1000 ms/sec

≈ 2 ms

The average transfer time is

Tavg transf er = (60 secs / 15,000 RPM) × 1/500 sectors/track × 1000 ms/sec

≈ 0.008 ms

Putting it all together, the total estimated access time is

Taccess = Tavg seek + Tavg rotation + Tavg transf er

= 8 ms + 2 ms + 0.008 ms

≈ 10 ms

Solution to Problem 6.4 (page 576)
This is a good check of your understanding of the factors that affect disk perfor-
mance. First we need to determine a few basic properties of the file and the disk.
The file consists of 2000, 512-byte logical blocks. For the disk, Tavg seek = 5 ms,
Tmax rotation = 6 ms, and Tavg rotation = 3 ms.

A. Best case: In the optimal case, the blocks are mapped to contiguous sectors,
on the same cylinder, that can be read one after the other without moving
the head. Once the head is positioned over the first sector it takes two full
rotations (1000 sectors per rotation) of the disk to read all 2000 blocks. So
the total time to read the file is Tavg seek + Tavg rotation + 2 ∗ Tmax rotation =
5 + 3 + 12 = 20 ms.

B. Random case: In this case, where blocks are mapped randomly to sectors,
reading each of the 2000 blocks requires Tavg seek + Tavg rotation ms, so the to-
tal time to read the file is (Tavg seek + Tavg rotation) ∗ 2000 = 16,000 ms (16 sec-
onds!).

You can see now why it’s often a good idea to defragment your disk drive!

644 Chapter 6 The Memory Hierarchy

Solution to Problem 6.5 (page 581)
This problem, based on the zone map in Figure 6.14, is a good test of your
understanding of disk geometry, and it also enables you to derive an interesting
characteristic of a real disk drive.

A. Zone 0. There are a total of 864 × 8 × 3201 = 22,125,312 sectors and
22,076,928 logical blocks assigned to zone 0, for a total of 22,125,312 −
22,076,928 = 48,384 spare sectors. Given that there are 864 × 8 = 6912 sec-
tors per cylinder, there are 48,384/6912 = 7 spare cylinders in zone 0.

B. Zone 8. A similar analysis reveals there are ((3700 × 5632) − 20,804,608)/

5632 = 6 spare cylinders in zone 8.

Solution to Problem 6.6 (page 583)
This is a simple problem that will give you some interesting insights into feasibility
of SSDs. Recall that for disks, 1 PB = 109 MB. Then the following straightforward
translation of units yields the following predicted times for each case:

A. Worst case sequential writes (170 MB/s): 109 × (1/170) × (1/(86,400 × 365))
≈ 0.2 years.

B. Worst case random writes (14 MB/s): 109 × (1/14) × (1/(86,400 × 365))
≈ 2.25 years.

C. Average case (20 GB/day): 109 × (1/20,000) × (1/365) ≈ 140 years.

Solution to Problem 6.7 (page 586)
In the 10-year period between 2000 and 2010, the unit price of rotating disk
dropped by a factor of about 30, which means the price is dropping by roughly
a factor of 2 every 2 years. Assuming this trend continues, a petabyte of storage,
which costs about $300,000 in 2010, will drop below $500 after about ten of these
factor-of-2 reductions. Since these are occurring every 2 years, we can expect a
petabyte of storage to be available for $500 around the year 2030.

Solution to Problem 6.8 (page 590)
To create a stride-1 reference pattern, the loops must be permuted so that the
rightmost indices change most rapidly.

1 int sumarray3d(int a[N][N][N])

2 {

3 int i, j, k, sum = 0;

4

5 for (k = 0; k < N; k++) {

6 for (i = 0; i < N; i++) {

7 for (j = 0; j < N; j++) {

8 sum += a[k][i][j];

9 }

10 }

11 }

12 return sum;

13 }

Solutions to Practice Problems 645

This is an important idea. Make sure you understand why this particular loop
permutation results in a stride-1 access pattern.

Solution to Problem 6.9 (page 590)
The key to solving this problem is to visualize how the array is laid out in memory
and then analyze the reference patterns. Function clear1 accesses the array using
a stride-1 reference pattern and thus clearly has the best spatial locality. Function
clear2 scans each of the N structs in order, which is good, but within each struct it
hops around in a non-stride-1 pattern at the following offsets from the beginning
of the struct: 0, 12, 4, 16, 8, 20. So clear2 has worse spatial locality than clear1.
Function clear3 not only hops around within each struct, but it also hops from
struct to struct. So clear3 exhibits worse spatial locality than clear2 and clear1.

Solution to Problem 6.10 (page 598)
The solution is a straightforward application of the definitions of the various cache
parameters in Figure 6.28. Not very exciting, but you need to understand how
the cache organization induces these partitions in the address bits before you can
really understand how caches work.

Cache m C B E S t s b

1. 32 1024 4 1 256 22 8 2
2. 32 1024 8 4 32 24 5 3
3. 32 1024 32 32 1 27 0 5

Solution to Problem 6.11 (page 605)
The padding eliminates the conflict misses. Thus, three-fourths of the references
are hits.

Solution to Problem 6.12 (page 605)
Sometimes, understanding why something is a bad idea helps you understand why
the alternative is a good idea. Here, the bad idea we are looking at is indexing the
cache with the high-order bits instead of the middle bits.

A. With high-order bit indexing, each contiguous array chunk consists of 2t

blocks, where t is the number of tag bits. Thus, the first 2t contiguous blocks
of the array would map to set 0, the next 2t blocks would map to set 1, and
so on.

B. For a direct-mapped cache where (S, E, B, m) = (512, 1, 32, 32), the cache
capacity is 512 32-byte blocks, and there are t = 18 tag bits in each cache line.
Thus, the first 218 blocks in the array would map to set 0, the next 218 blocks
to set 1. Since our array consists of only (4096 ∗ 4)/32 = 512 blocks, all of
the blocks in the array map to set 0. Thus, the cache will hold at most one
array block at any point in time, even though the array is small enough to fit

646 Chapter 6 The Memory Hierarchy

entirely in the cache. Clearly, using high-order bit indexing makes poor use
of the cache.

Solution to Problem 6.13 (page 609)
The 2 low-order bits are the block offset (CO), followed by 3 bits of set index (CI),
with the remaining bits serving as the tag (CT):

12 11 10 9 8 7 6 5 4 3 2 1 0

CT CT CT CT CT CT CT CT CI CI CI CO CO

Solution to Problem 6.14 (page 610)
Address: 0x0E34

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 1 1 0 1 0 0

CT CT CT CT CT CT CT CT CI CI CI CO CO

B. Memory reference:

Parameter Value

Cache block offset (CO) 0x0

Cache set index (CI) 0x5

Cache tag (CT) 0x71

Cache hit? (Y/N) Y
Cache byte returned 0xB

Solution to Problem 6.15 (page 611)
Address: 0x0DD5

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 0 1 0 1 0 1

CT CT CT CT CT CT CT CT CI CI CI CO CO

B. Memory reference:

Parameter Value

Cache block offset (CO) 0x1

Cache set index (CI) 0x5

Cache tag (CT) 0x6E

Cache hit? (Y/N) N
Cache byte returned —

Solutions to Practice Problems 647

Solution to Problem 6.16 (page 611)
Address: 0x1FE4

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 0 1 0 0

CT CT CT CT CT CT CT CT CI CI CI CO CO

B. Memory reference:

Parameter Value

Cache block offset 0x0

Cache set index 0x1

Cache tag 0xFF

Cache hit? (Y/N) N
Cache byte returned —

Solution to Problem 6.17 (page 611)
This problem is a sort of inverse version of Problems 6.13–6.16 that requires you
to work backward from the contents of the cache to derive the addresses that will
hit in a particular set. In this case, set 3 contains one valid line with a tag of 0x32.
Since there is only one valid line in the set, four addresses will hit. These addresses
have the binary form 0 0110 0100 11xx. Thus, the four hex addresses that hit in
set 3 are
0x064C, 0x064D, 0x064E, and 0x064F

Solution to Problem 6.18 (page 618)

A. The key to solving this problem is to visualize the picture in Figure 6.50.
Notice that each cache line holds exactly one row of the array, that the cache
is exactly large enough to hold one array, and that for all i, row i of src and
dstmaps to the same cache line. Because the cache is too small to hold both
arrays, references to one array keep evicting useful lines from the other array.
For example, the write to dst[0][0] evicts the line that was loaded when
we read src[0][0]. So when we next read src[0][1], we have a miss.

dst array src array

Col 0 Col 1 Col 0 Col 1

Row 0 m m Row 0 m m
Row 1 m m Row 1 m h

Figure 6.50
Figure for Problem 6.18.

Main memory
0

 16
Line 0

Line 1

src

dst

Cache

648 Chapter 6 The Memory Hierarchy

B. When the cache is 32 bytes, it is large enough to hold both arrays. Thus, the
only misses are the initial cold misses.

dst array src array

Col 0 Col 1 Col 0 Col 1

Row 0 m h Row 0 m h
Row 1 m h Row 1 m h

Solution to Problem 6.19 (page 619)
Each 16-byte cache line holds two contiguous algae_position structures. Each
loop visits these structures in memory order, reading one integer element each
time. So the pattern for each loop is miss, hit, miss, hit, and so on. Notice that for
this problem we could have predicted the miss rate without actually enumerating
the total number of reads and misses.

A. What is the total number of read accesses? 512 reads.

B. What is the total number of read accesses that miss in the cache? 256 misses.

C. What is the miss rate? 256/512 = 50%.

Solution to Problem 6.20 (page 620)
The key to this problem is noticing that the cache can only hold 1/2 of the ar-
ray. So the column-wise scan of the second half of the array evicts the lines that
were loaded during the scan of the first half. For example, reading the first ele-
ment of grid[8][0] evicts the line that was loaded when we read elements from
grid[0][0]. This line also contained grid[0][1]. So when we begin scanning the
next column, the reference to the first element of grid[0][1] misses.

A. What is the total number of read accesses? 512 reads.

B. What is the total number of read accesses that miss in the cache? 256 misses.

C. What is the miss rate? 256/512 = 50%.

D. What would the miss rate be if the cache were twice as big? If the cache were
twice as big, it could hold the entire grid array. The only misses would be
the initial cold misses, and the miss rate would be 1/4 = 25%.

Solution to Problem 6.21 (page 620)
This loop has a nice stride-1 reference pattern, and thus the only misses are the
initial cold misses.

A. What is the total number of read accesses? 512 reads.

B. What is the total number of read accesses that miss in the cache? 128 misses.

C. What is the miss rate? 128/512 = 25%.

Solutions to Practice Problems 649

D. What would the miss rate be if the cache were twice as big? Increasing the
cache size by any amount would not change the miss rate, since cold misses
are unavoidable.

Solution to Problem 6.22 (page 625)
The peak throughput from L1 is about 6500 MB/s, the clock frequency is 2670
MHz, and the individual read accesses are in units of 8-byte doubles. Thus, from
this graph we can estimate that it takes roughly 2670/6500 × 8 = 3.2 ≈ 4 cycles to
access a word from L1 on this machine.

This page intentionally left blank

Part II
Running Programs
on a System

Our exploration of computer systems continues with a closer look
at the systems software that builds and runs application programs.
The linker combines different parts of our programs into a sin-

gle file that can be loaded into memory and executed by the processor.
Modern operating systems cooperate with the hardware to provide each
program with the illusion that it has exclusive use of a processor and the
main memory, when in reality, multiple programs are running on the sys-
tem at any point in time.

In the first part of this book, you developed a good understanding of
the interaction between your programs and the hardware. Part II of the
book will broaden your view of systems by giving you a solid understand-
ing of the interactions between your programs and the operating system.
You will learn how to use services provided by the operating system to
build system-level programs such as Unix shells and dynamic memory
allocation packages.

651

This page intentionally left blank

C H A P T E R 7
Linking

7.1 Compiler Drivers 655

7.2 Static Linking 657

7.3 Object Files 657

7.4 Relocatable Object Files 658

7.5 Symbols and Symbol Tables 660

7.6 Symbol Resolution 663

7.7 Relocation 672

7.8 Executable Object Files 678

7.9 Loading Executable Object Files 679

7.10 Dynamic Linking with Shared Libraries 681

7.11 Loading and Linking Shared Libraries from Applications 683

7.12 Position-Independent Code (PIC) 687

7.13 Tools for Manipulating Object Files 690

7.14 Summary 691

Bibliographic Notes 691

Homework Problems 692

Solutions to Practice Problems 698

653

654 Chapter 7 Linking

Linking is the process of collecting and combining various pieces of code and
data into a single file that can be loaded (copied) into memory and executed.
Linking can be performed at compile time, when the source code is translated
into machine code; at load time, when the program is loaded into memory and
executed by the loader; and even at run time, by application programs. On early
computer systems, linking was performed manually. On modern systems, linking
is performed automatically by programs called linkers.

Linkers play a crucial role in software development because they enable
separate compilation. Instead of organizing a large application as one monolithic
source file, we can decompose it into smaller, more manageable modules that can
be modified and compiled separately. When we change one of these modules, we
simply recompile it and relink the application, without having to recompile the
other files.

Linking is usually handled quietly by the linker, and is not an important
issue for students who are building small programs in introductory programming
classes. So why bother learning about linking?

. Understanding linkers will help you build large programs. Programmers who
build large programs often encounter linker errors caused by missing modules,
missing libraries, or incompatible library versions. Unless you understand how
a linker resolves references, what a library is, and how a linker uses a library
to resolve references, these kinds of errors will be baffling and frustrating.

. Understanding linkers will help you avoid dangerous programming errors.The
decisions that Unix linkers make when they resolve symbol references can
silently affect the correctness of your programs. Programs that incorrectly de-
fine multiple global variables pass through the linker without any warnings in
the default case. The resulting programs can exhibit baffling run-time behav-
ior and are extremely difficult to debug. We will show you how this happens
and how to avoid it.

. Understanding linking will help you understand how language scoping rules
are implemented.For example, what is the difference between global and local
variables? What does it really mean when you define a variable or function
with the static attribute?

. Understanding linking will help you understand other important systems con-
cepts. The executable object files produced by linkers play key roles in impor-
tant systems functions such as loading and running programs, virtual memory,
paging, and memory mapping.

. Understanding linking will enable you to exploit shared libraries. For many
years, linking was considered to be fairly straightforward and uninteresting.
However, with the increased importance of shared libraries and dynamic
linking in modern operating systems, linking is a sophisticated process that
provides the knowledgeable programmer with significant power. For exam-
ple, many software products use shared libraries to upgrade shrink-wrapped
binaries at run time. Also, most Web servers rely on dynamic linking of shared
libraries to serve dynamic content.

Section 7.1 Compiler Drivers 655

This chapter provides a thorough discussion of all aspects of linking, from
traditional static linking, to dynamic linking of shared libraries at load time,
to dynamic linking of shared libraries at run time. We will describe the basic
mechanisms using real examples, and we will identify situations in which linking
issues can affect the performance and correctness of your programs.

To keep things concrete and understandable, we will couch our discussion in
the context of an x86 system running Linux and using the standard ELF object
file format. For clarity, we will focus our discussion on linking 32-bit code, which is
easier to understand than linking 64-bit code.1 However, it is important to realize
that the basic concepts of linking are universal, regardless of the operating system,
the ISA, or the object file format. Details may vary, but the concepts are the same.

7.1 Compiler Drivers

Consider the C program in Figure 7.1. It consists of two source files, main.c and
swap.c. Function main() calls swap, which swaps the two elements in the external
global array buf. Granted, this is a strange way to swap two numbers, but it will
serve as a small running example throughout this chapter that will allow us to
make some important points about how linking works.

Most compilation systems provide a compiler driver that invokes the language
preprocessor, compiler, assembler, and linker, as needed on behalf of the user. For
example, to build the example program using the GNU compilation system, we
might invoke the gcc driver by typing the following command to the shell:

unix> gcc -O2 -g -o p main.c swap.c

Figure 7.2 summarizes the activities of the driver as it translates the example
program from an ASCII source file into an executable object file. (If you want
to see these steps for yourself, run gcc with the -v option.) The driver first runs
the C preprocessor (cpp), which translates the C source file main.c into an ASCII
intermediate file main.i:

cpp [other arguments] main.c /tmp/main.i

Next, the driver runs the C compiler (cc1), which translates main.i into an ASCII
assembly language file main.s.

cc1 /tmp/main.i main.c -O2 [other arguments] -o /tmp/main.s

Then, the driver runs the assembler (as), which translatesmain.s into a relocatable
object file main.o:

as [other arguments] -o /tmp/main.o /tmp/main.s

1. You can generate 32-bit code on an x86-64 system using gcc -m32.

656 Chapter 7 Linking

(a) main.c

code/link/main.c

1 /* main.c */

2 void swap();

3

4 int buf[2] = {1, 2};

5

6 int main()

7 {

8 swap();

9 return 0;

10 }

code/link/main.c

(b) swap.c

code/link/swap.c

1 /* swap.c */

2 extern int buf[];

3

4 int *bufp0 = &buf[0];

5 int *bufp1;

6

7 void swap()

8 {

9 int temp;

10

11 bufp1 = &buf[1];

12 temp = *bufp0;

13 *bufp0 = *bufp1;

14 *bufp1 = temp;

15 }

code/link/swap.c

Figure 7.1 Example program 1: The example program consists of two source files, main.c and swap.c.
The main function initializes a two-element array of ints, and then calls the swap function to swap the pair.

main.c

main.o

Translators
(cpp, cc1, as)

Linker (ld)

p Fully linked
executable object file

Relocatable
object files

Source filesswap.c

swap.o

Translators
(cpp, cc1, as)

Figure 7.2 Static linking. The linker combines relocatable object files to form an
executable object file p.

The driver goes through the same process to generate swap.o. Finally, it runs the
linker program ld, which combines main.o and swap.o, along with the necessary
system object files, to create the executable object file p:

ld -o p [system object files and args] /tmp/main.o /tmp/swap.o

To run the executable p, we type its name on the Unix shell’s command line:

unix> ./p

Section 7.3 Object Files 657

The shell invokes a function in the operating system called the loader, which copies
the code and data in the executable file p into memory, and then transfers control
to the beginning of the program.

7.2 Static Linking

Static linkers such as the Unix ld program take as input a collection of relocatable
object files and command-line arguments and generate as output a fully linked
executable object file that can be loaded and run. The input relocatable object
files consist of various code and data sections. Instructions are in one section,
initialized global variables are in another section, and uninitialized variables are
in yet another section.

To build the executable, the linker must perform two main tasks:

. Symbol resolution. Object files define and reference symbols. The purpose
of symbol resolution is to associate each symbol reference with exactly one
symbol definition.

. Relocation. Compilers and assemblers generate code and data sections that
start at address 0. The linker relocates these sections by associating a memory
location with each symbol definition, and then modifying all of the references
to those symbols so that they point to this memory location.

The sections that follow describe these tasks in more detail. As you read, keep in
mind some basic facts about linkers: Object files are merely collections of blocks
of bytes. Some of these blocks contain program code, others contain program
data, and others contain data structures that guide the linker and loader. A linker
concatenates blocks together, decides on run-time locations for the concatenated
blocks, and modifies various locations within the code and data blocks. Linkers
have minimal understanding of the target machine. The compilers and assemblers
that generate the object files have already done most of the work.

7.3 Object Files

Object files come in three forms:

. Relocatable object file. Contains binary code and data in a form that can be
combined with other relocatable object files at compile time to create an
executable object file.

. Executable object file. Contains binary code and data in a form that can be
copied directly into memory and executed.

. Shared object file. A special type of relocatable object file that can be loaded
into memory and linked dynamically, at either load time or run time.

Compilers and assemblers generate relocatable object files (including shared
object files). Linkers generate executable object files. Technically, an object module

658 Chapter 7 Linking

is a sequence of bytes, and an object file is an object module stored on disk in a
file. However, we will use these terms interchangeably.

Object file formats vary from system to system. The first Unix systems from
Bell Labs used the a.out format. (To this day, executables are still referred to as
a.outfiles.) Early versions of System V Unix used the Common Object File format
(COFF). Windows NT uses a variant of COFF called the Portable Executable
(PE) format. Modern Unix systems—such as Linux, later versions of System V
Unix, BSD Unix variants, and Sun Solaris—use the Unix Executable and Linkable
Format (ELF). Although our discussion will focus on ELF, the basic concepts are
similar, regardless of the particular format.

7.4 Relocatable Object Files

Figure 7.3 shows the format of a typical ELF relocatable object file. The ELF
header begins with a 16-byte sequence that describes the word size and byte
ordering of the system that generated the file. The rest of the ELF header contains
information that allows a linker to parse and interpret the object file. This includes
the size of the ELF header, the object file type (e.g., relocatable, executable, or
shared), the machine type (e.g., IA32), the file offset of the section header table,
and the size and number of entries in the section header table. The locations
and sizes of the various sections are described by the section header table, which
contains a fixed sized entry for each section in the object file.

Sandwiched between the ELF header and the section header table are the
sections themselves. A typical ELF relocatable object file contains the following
sections:

.text: The machine code of the compiled program.

.rodata: Read-only data such as the format strings in printf statements, and
jump tables for switch statements (see Problem 7.14).

Figure 7.3
Typical ELF relocatable
object file.

Section header table
Describes
object file
sections

Sections

.strtab

.line

.debug

.rel.data

.rel.text

.symtab

.bss

.data

.rodata

.text

ELF header
0

Section 7.4 Relocatable Object Files 659

.data: Initialized global C variables. Local C variables are maintained at run
time on the stack, and do not appear in either the .data or .bss sections.

.bss: Uninitialized global C variables. This section occupies no actual space
in the object file; it is merely a place holder. Object file formats distin-
guish between initialized and uninitialized variables for space efficiency:
uninitialized variables do not have to occupy any actual disk space in the
object file.

.symtab: A symbol table with information about functions and global vari-
ables that are defined and referenced in the program. Some programmers
mistakenly believe that a program must be compiled with the -g option
to get symbol table information. In fact, every relocatable object file has
a symbol table in .symtab. However, unlike the symbol table inside a
compiler, the .symtab symbol table does not contain entries for local
variables.

.rel.text: A list of locations in the .text section that will need to be modified
when the linker combines this object file with others. In general, any
instruction that calls an external function or references a global variable
will need to be modified. On the other hand, instructions that call local
functions do not need to be modified. Note that relocation information
is not needed in executable object files, and is usually omitted unless the
user explicitly instructs the linker to include it.

.rel.data: Relocation information for any global variables that are refer-
enced or defined by the module. In general, any initialized global variable
whose initial value is the address of a global variable or externally defined
function will need to be modified.

.debug: A debugging symbol table with entries for local variables and typedefs
defined in the program, global variables defined and referenced in the
program, and the original C source file. It is only present if the compiler
driver is invoked with the -g option.

.line: A mapping between line numbers in the original C source program
and machine code instructions in the .text section. It is only present if the
compiler driver is invoked with the -g option.

.strtab: A string table for the symbol tables in the .symtab and .debug
sections, and for the section names in the section headers. A string table
is a sequence of null-terminated character strings.

Aside Why is uninitialized data called .bss?

The use of the term .bss to denote uninitialized data is universal. It was originally an acronym for the
“Block Storage Start” instruction from the IBM 704 assembly language (circa 1957) and the acronym
has stuck. A simple way to remember the difference between the .data and .bss sections is to think
of “bss” as an abbreviation for “Better Save Space!”

660 Chapter 7 Linking

7.5 Symbols and Symbol Tables

Each relocatable object module, m, has a symbol table that contains information
about the symbols that are defined and referenced by m. In the context of a linker,
there are three different kinds of symbols:

. Global symbols that are defined by module m and that can be referenced by
other modules. Global linker symbols correspond to nonstatic C functions and
global variables that are defined without the C static attribute.

. Global symbols that are referenced by module m but defined by some other
module. Such symbols are called externals and correspond to C functions and
variables that are defined in other modules.

. Local symbols that are defined and referenced exclusively by module m. Some
local linker symbols correspond to C functions and global variables that are
defined with the static attribute. These symbols are visible anywhere within
module m, but cannot be referenced by other modules. The sections in an
object file and the name of the source file that corresponds to module m also
get local symbols.

It is important to realize that local linker symbols are not the same as local
program variables. The symbol table in .symtab does not contain any symbols
that correspond to local nonstatic program variables. These are managed at run
time on the stack and are not of interest to the linker.

Interestingly, local procedure variables that are defined with the C static
attribute are not managed on the stack. Instead, the compiler allocates space in
.data or .bss for each definition and creates a local linker symbol in the symbol
table with a unique name. For example, suppose a pair of functions in the same
module define a static local variable x:

1 int f()

2 {

3 static int x = 0;

4 return x;

5 }

6

7 int g()

8 {

9 static int x = 1;

10 return x;

11 }

In this case, the compiler allocates space for two integers in .data and exports a
pair of unique local linker symbols to the assembler. For example, it might use x.1
for the definition in function f and x.2 for the definition in function g.

Section 7.5 Symbols and Symbol Tables 661

New to C? Hiding variable and function names with static

C programmers use the static attribute to hide variable and function declarations inside modules,
much as you would use public and private declarations in Java and C++. C source files play the role of
modules. Any global variable or function declared with the static attribute is private to that module.
Similarly, any global variable or function declared without the static attribute is public and can be
accessed by any other module. It is good programming practice to protect your variables and functions
with the static attribute wherever possible.

Symbol tables are built by assemblers, using symbols exported by the compiler
into the assembly-language .s file. An ELF symbol table is contained in the
.symtab section. It contains an array of entries. Figure 7.4 shows the format of
each entry.

The name is a byte offset into the string table that points to the null-terminated
string name of the symbol. The value is the symbol’s address. For relocatable
modules, the value is an offset from the beginning of the section where the object
is defined. For executable object files, the value is an absolute run-time address.
The size is the size (in bytes) of the object. The type is usually either data or
function. The symbol table can also contain entries for the individual sections and
for the path name of the original source file. So there are distinct types for these
objects as well. The binding field indicates whether the symbol is local or global.

Each symbol is associated with some section of the object file, denoted by
the section field, which is an index into the section header table. There are
three special pseudo sections that don’t have entries in the section header table:
ABS is for symbols that should not be relocated. UNDEF is for undefined sym-
bols, that is, symbols that are referenced in this object module but defined else-
where. COMMON is for uninitialized data objects that are not yet allocated. For
COMMON symbols, the value field gives the alignment requirement, and size
gives the minimum size.

code/link/elfstructs.c

1 typedef struct {

2 int name; /* String table offset */

3 int value; /* Section offset, or VM address */

4 int size; /* Object size in bytes */

5 char type:4, /* Data, func, section, or src file name (4 bits) */

6 binding:4; /* Local or global (4 bits) */

7 char reserved; /* Unused */

8 char section; /* Section header index, ABS, UNDEF, */

9 /* Or COMMON */

10 } Elf_Symbol;

code/link/elfstructs.c

Figure 7.4 ELF symbol table entry. type and binding are four bits each.

662 Chapter 7 Linking

For example, here are the last three entries in the symbol table for main.o, as
displayed by the GNU readelf tool. The first eight entries, which are not shown,
are local symbols that the linker uses internally.

Num: Value Size Type Bind Ot Ndx Name

8: 0 8 OBJECT GLOBAL 0 3 buf

9: 0 17 FUNC GLOBAL 0 1 main

10: 0 0 NOTYPE GLOBAL 0 UND swap

In this example, we see an entry for the definition of global symbol buf, an 8-
byte object located at an offset (i.e., value) of zero in the .data section. This is
followed by the definition of the global symbol main, a 17-byte function located
at an offset of zero in the .text section. The last entry comes from the reference
for the external symbol swap. Readelf identifies each section by an integer index.
Ndx=1 denotes the .text section, and Ndx=3 denotes the .data section.

Similarly, here are the symbol table entries for swap.o:

Num: Value Size Type Bind Ot Ndx Name

8: 0 4 OBJECT GLOBAL 0 3 bufp0

9: 0 0 NOTYPE GLOBAL 0 UND buf

10: 0 39 FUNC GLOBAL 0 1 swap

11: 4 4 OBJECT GLOBAL 0 COM bufp1

First, we see an entry for the definition of the global symbol bufp0, which is a 4-
byte initialized object starting at offset 0 in .data. The next symbol comes from
the reference to the external buf symbol in the initialization code for bufp0. This
is followed by the global symbol swap, a 39-byte function at an offset of zero in
.text. The last entry is the global symbol bufp1, a 4-byte uninitialized data object
(with a 4-byte alignment requirement) that will eventually be allocated as a .bss
object when this module is linked.

Practice Problem 7.1
This problem concerns the swap.o module from Figure 7.1(b). For each symbol
that is defined or referenced in swap.o, indicate whether or not it will have a
symbol table entry in the .symtab section in module swap.o. If so, indicate the
module that defines the symbol (swap.oor main.o), the symbol type (local, global,
or extern), and the section (.text, .data, or .bss) it occupies in that module.

Symbol swap.o .symtab entry? Symbol type Module where defined Section

buf

bufp0

bufp1

swap

temp

Section 7.6 Symbol Resolution 663

7.6 Symbol Resolution

The linker resolves symbol references by associating each reference with exactly
one symbol definition from the symbol tables of its input relocatable object files.
Symbol resolution is straightforward for references to local symbols that are de-
fined in the same module as the reference. The compiler allows only one definition
of each local symbol per module. The compiler also ensures that static local vari-
ables, which get local linker symbols, have unique names.

Resolving references to global symbols, however, is trickier. When the com-
piler encounters a symbol (either a variable or function name) that is not defined
in the current module, it assumes that it is defined in some other module, gener-
ates a linker symbol table entry, and leaves it for the linker to handle. If the linker
is unable to find a definition for the referenced symbol in any of its input modules,
it prints an (often cryptic) error message and terminates. For example, if we try to
compile and link the following source file on a Linux machine,

1 void foo(void);

2

3 int main() {

4 foo();

5 return 0;

6 }

then the compiler runs without a hitch, but the linker terminates when it cannot
resolve the reference to foo:

unix> gcc -Wall -O2 -o linkerror linkerror.c

/tmp/ccSz5uti.o: In function ‘main’:

/tmp/ccSz5uti.o(.text+0x7): undefined reference to ‘foo’

collect2: ld returned 1 exit status

Symbol resolution for global symbols is also tricky because the same symbol
might be defined by multiple object files. In this case, the linker must either flag an
error or somehow choose one of the definitions and discard the rest. The approach
adopted by Unix systems involves cooperation between the compiler, assembler,
and linker, and can introduce some baffling bugs to the unwary programmer.

Aside Mangling of linker symbols in C++ and Java

Both C++ and Java allow overloaded methods that have the same name in the source code but different
parameter lists. So how does the linker tell the difference between these different overloaded functions?
Overloaded functions in C++ and Java work because the compiler encodes each unique method and
parameter list combination into a unique name for the linker. This encoding process is called mangling,
and the inverse process demangling.

Happily, C++ and Java use compatible mangling schemes. A mangled class name consists of the
integer number of characters in the name followed by the original name. For example, the class Foo
is encoded as 3Foo. A method is encoded as the original method name, followed by __, followed

664 Chapter 7 Linking

by the mangled class name, followed by single letter encodings of each argument. For example,
Foo::bar(int, long) is encoded as bar__3Fooil. Similar schemes are used to mangle global variable
and template names.

7.6.1 How Linkers Resolve Multiply Defined Global Symbols

At compile time, the compiler exports each global symbol to the assembler as
either strong or weak, and the assembler encodes this information implicitly in
the symbol table of the relocatable object file. Functions and initialized global
variables get strong symbols. Uninitialized global variables get weak symbols. For
the example program in Figure 7.1, buf, bufp0, main, and swap are strong symbols;
bufp1 is a weak symbol.

Given this notion of strong and weak symbols, Unix linkers use the following
rules for dealing with multiply defined symbols:

. Rule 1: Multiple strong symbols are not allowed.

. Rule 2: Given a strong symbol and multiple weak symbols, choose the strong
symbol.

. Rule 3: Given multiple weak symbols, choose any of the weak symbols.

For example, suppose we attempt to compile and link the following two C modules:

1 /* foo1.c */

2 int main()

3 {

4 return 0;

5 }

1 /* bar1.c */

2 int main()

3 {

4 return 0;

5 }

In this case, the linker will generate an error message because the strong symbol
main is defined multiple times (rule 1):

unix> gcc foo1.c bar1.c

/tmp/cca015022.o: In function ‘main’:

/tmp/cca015022.o(.text+0x0): multiple definition of ‘main’

/tmp/cca015021.o(.text+0x0): first defined here

Similarly, the linker will generate an error message for the following modules
because the strong symbol x is defined twice (rule 1):

1 /* foo2.c */

2 int x = 15213;

3

4 int main()

5 {

6 return 0;

7 }

1 /* bar2.c */

2 int x = 15213;

3

4 void f()

5 {

6 }

Section 7.6 Symbol Resolution 665

However, if x is uninitialized in one module, then the linker will quietly choose
the strong symbol defined in the other (rule 2):

1 /* foo3.c */

2 #include <stdio.h>

3 void f(void);

4

5 int x = 15213;

6

7 int main()

8 {

9 f();

10 printf("x = %d\n", x);

11 return 0;

12 }

1 /* bar3.c */

2 int x;

3

4 void f()

5 {

6 x = 15212;

7 }

At run time, function f changes the value of x from 15213 to 15212, which
might come as an unwelcome surprise to the author of function main! Notice that
the linker normally gives no indication that it has detected multiple definitions
of x:

unix> gcc -o foobar3 foo3.c bar3.c

unix> ./foobar3

x = 15212

The same thing can happen if there are two weak definitions of x (rule 3):

1 /* foo4.c */

2 #include <stdio.h>

3 void f(void);

4

5 int x;

6

7 int main()

8 {

9 x = 15213;

10 f();

11 printf("x = %d\n", x);

12 return 0;

13 }

1 /* bar4.c */

2 int x;

3

4 void f()

5 {

6 x = 15212;

7 }

The application of rules 2 and 3 can introduce some insidious run-time bugs
that are incomprehensible to the unwary programmer, especially if the duplicate
symbol definitions have different types. Consider the following example, in which
x is defined as an int in one module and a double in another:

666 Chapter 7 Linking

1 /* foo5.c */

2 #include <stdio.h>

3 void f(void);

4

5 int x = 15213;

6 int y = 15212;

7

8 int main()

9 {

10 f();

11 printf("x = 0x%x y = 0x%x \n",

12 x, y);

13 return 0;

14 }

1 /* bar5.c */

2 double x;

3

4 void f()

5 {

6 x = -0.0;

7 }

On an IA32/Linux machine, doubles are 8 bytes and ints are 4 bytes. Thus,
the assignment x = -0.0 in line 6 of bar5.c will overwrite the memory locations
for x and y (lines 5 and 6 in foo5.c) with the double-precision floating-point
representation of negative zero!

linux> gcc -o foobar5 foo5.c bar5.c

linux> ./foobar5

x = 0x0 y = 0x80000000

This is a subtle and nasty bug, especially because it occurs silently, with no
warning from the compilation system, and because it typically manifests itself
much later in the execution of the program, far away from where the error
occurred. In a large system with hundreds of modules, a bug of this kind is
extremely hard to fix, especially because many programmers are not aware of
how linkers work. When in doubt, invoke the linker with a flag such as the gcc
-fno-common flag, which triggers an error if it encounters multiply defined global
symbols.

Practice Problem 7.2
In this problem, let REF(x.i) --> DEF(x.k) denote that the linker will associate
an arbitrary reference to symbol x in module i to the definition of x in module k.
For each example that follows, use this notation to indicate how the linker would
resolve references to the multiply defined symbol in each module. If there is a link-
time error (rule 1), write “ERROR.” If the linker arbitrarily chooses one of the
definitions (rule 3), write “UNKNOWN.”

A. /* Module 1 */
int main()

{

}

/* Module 2 */

int main;

int p2()

{

}

Section 7.6 Symbol Resolution 667

(a) REF(main.1) --> DEF(.)

(b) REF(main.2) --> DEF(.)

B. /* Module 1 */
void main()

{

}

/* Module 2 */

int main=1;

int p2()

{

}

(a) REF(main.1) --> DEF(.)

(b) REF(main.2) --> DEF(.)

C. /* Module 1 */
int x;

void main()

{

}

/* Module 2 */

double x=1.0;

int p2()

{

}

(a) REF(x.1) --> DEF(.)

(b) REF(x.2) --> DEF(.)

7.6.2 Linking with Static Libraries

So far, we have assumed that the linker reads a collection of relocatable object files
and links them together into an output executable file. In practice, all compilation
systems provide a mechanism for packaging related object modules into a single
file called a static library, which can then be supplied as input to the linker. When
it builds the output executable, the linker copies only the object modules in the
library that are referenced by the application program.

Why do systems support the notion of libraries? Consider ANSI C, which
defines an extensive collection of standard I/O, string manipulation, and integer
math functions such as atoi, printf, scanf, strcpy, and rand. They are available
to every C program in the libc.a library. ANSI C also defines an extensive
collection of floating-point math functions such assin, cos, andsqrt in thelibm.a
library.

Consider the different approaches that compiler developers might use to pro-
vide these functions to users without the benefit of static libraries. One approach
would be to have the compiler recognize calls to the standard functions and to
generate the appropriate code directly. Pascal, which provides a small set of stan-
dard functions, takes this approach, but it is not feasible for C, because of the large
number of standard functions defined by the C standard. It would add significant
complexity to the compiler and would require a new compiler version each time a
function was added, deleted, or modified. To application programmers, however,
this approach would be quite convenient because the standard functions would
always be available.

668 Chapter 7 Linking

Another approach would be to put all of the standard C functions in a single
relocatable object module, say, libc.o, that application programmers could link
into their executables:

unix> gcc main.c /usr/lib/libc.o

This approach has the advantage that it would decouple the implementation
of the standard functions from the implementation of the compiler, and would
still be reasonably convenient for programmers. However, a big disadvantage
is that every executable file in a system would now contain a complete copy
of the collection of standard functions, which would be extremely wasteful of
disk space. (On a typical system, libc.a is about 8 MB and libm.a is about
1 MB.) Worse, each running program would now contain its own copy of these
functions in memory, which would be extremely wasteful of memory. Another big
disadvantage is that any change to any standard function, no matter how small,
would require the library developer to recompile the entire source file, a time-
consuming operation that would complicate the development and maintenance
of the standard functions.

We could address some of these problems by creating a separate relocatable
file for each standard function and storing them in a well-known directory. How-
ever, this approach would require application programmers to explicitly link the
appropriate object modules into their executables, a process that would be error
prone and time consuming:

unix> gcc main.c /usr/lib/printf.o /usr/lib/scanf.o ...

The notion of a static library was developed to resolve the disadvantages of
these various approaches. Related functions can be compiled into separate object
modules and then packaged in a single static library file. Application programs
can then use any of the functions defined in the library by specifying a single file
name on the command line. For example, a program that uses functions from
the standard C library and the math library could be compiled and linked with
a command of the form

unix> gcc main.c /usr/lib/libm.a /usr/lib/libc.a

At link time, the linker will only copy the object modules that are referenced
by the program, which reduces the size of the executable on disk and in memory.
On the other hand, the application programmer only needs to include the names
of a few library files. (In fact, C compiler drivers always pass libc.a to the linker,
so the reference to libc.a mentioned previously is unnecessary.)

On Unix systems, static libraries are stored on disk in a particular file format
known as an archive. An archive is a collection of concatenated relocatable object
files, with a header that describes the size and location of each member object
file. Archive filenames are denoted with the .a suffix. To make our discussion of
libraries concrete, suppose that we want to provide the vector routines in Figure 7.5
in a static library called libvector.a.

Section 7.6 Symbol Resolution 669

(a) addvec.o

code/link/addvec.c

1 void addvec(int *x, int *y,

2 int *z, int n)

3 {

4 int i;

5

6 for (i = 0; i < n; i++)

7 z[i] = x[i] + y[i];

8 }

code/link/addvec.c

(b) multvec.o

code/link/multvec.c

1 void multvec(int *x, int *y,

2 int *z, int n)

3 {

4 int i;

5

6 for (i = 0; i < n; i++)

7 z[i] = x[i] * y[i];

8 }

code/link/multvec.c

Figure 7.5 Member object files in libvector.a.

To create the library, we would use the ar tool as follows:

unix> gcc -c addvec.c multvec.c

unix> ar rcs libvector.a addvec.o multvec.o

To use the library, we might write an application such as main2.c in Figure 7.6,
which invokes the addvec library routine. (The include (header) file vector.h
defines the function prototypes for the routines in libvector.a.)

code/link/main2.c

1 /* main2.c */

2 #include <stdio.h>

3 #include "vector.h"

4

5 int x[2] = {1, 2};

6 int y[2] = {3, 4};

7 int z[2];

8

9 int main()

10 {

11 addvec(x, y, z, 2);

12 printf("z = [%d %d]\n", z[0], z[1]);

13 return 0;

14 }

code/link/main2.c

Figure 7.6 Example program 2: This program calls member functions in the static
libvector.a library.

670 Chapter 7 Linking

main2.c vector.h

libvector.a libc.a

addvec.o printf.o and any other
modules called by printf.o

main2.o

Translators
(cpp, cc1, as)

Linker (ld)

p2 Fully linked
executable object file

Relocatable
object files

Source files

Static libraries

Figure 7.7 Linking with static libraries.

To build the executable, we would compile and link the input files main.o and
libvector.a:

unix> gcc -O2 -c main2.c

unix> gcc -static -o p2 main2.o ./libvector.a

Figure 7.7 summarizes the activity of the linker. The -static argument tells
the compiler driver that the linker should build a fully linked executable object file
that can be loaded into memory and run without any further linking at load time.
When the linker runs, it determines that the addvec symbol defined by addvec.o
is referenced by main.o, so it copies addvec.o into the executable. Since the
program doesn’t reference any symbols defined by multvec.o, the linker does
not copy this module into the executable. The linker also copies the printf.o
module from libc.a, along with a number of other modules from the C run-time
system.

7.6.3 How Linkers Use Static Libraries to Resolve References

While static libraries are useful and essential tools, they are also a source of
confusion to programmers because of the way the Unix linker uses them to resolve
external references. During the symbol resolution phase, the linker scans the
relocatable object files and archives left to right in the same sequential order that
they appear on the compiler driver’s command line. (The driver automatically
translates any .c files on the command line into .o files.) During this scan, the
linker maintains a set E of relocatable object files that will be merged to form the
executable, a set U of unresolved symbols (i.e., symbols referred to, but not yet
defined), and a set D of symbols that have been defined in previous input files.
Initially, E, U , and D are empty.

. For each input file f on the command line, the linker determines if f is an
object file or an archive. If f is an object file, the linker adds f to E, updates
U and D to reflect the symbol definitions and references in f , and proceeds
to the next input file.

Section 7.6 Symbol Resolution 671

. If f is an archive, the linker attempts to match the unresolved symbols in U

against the symbols defined by the members of the archive. If some archive
member, m, defines a symbol that resolves a reference in U , then m is added
to E, and the linker updates U and D to reflect the symbol definitions and
references in m. This process iterates over the member object files in the
archive until a fixed point is reached where U and D no longer change. At
this point, any member object files not contained in E are simply discarded
and the linker proceeds to the next input file.

. If U is nonempty when the linker finishes scanning the input files on the
command line, it prints an error and terminates. Otherwise, it merges and
relocates the object files in E to build the output executable file.

Unfortunately, this algorithm can result in some baffling link-time errors because
the ordering of libraries and object files on the command line is significant. If the
library that defines a symbol appears on the command line before the object file
that references that symbol, then the reference will not be resolved and linking
will fail. For example, consider the following:

unix> gcc -static ./libvector.a main2.c

/tmp/cc9XH6Rp.o: In function ‘main’:

/tmp/cc9XH6Rp.o(.text+0x18): undefined reference to ‘addvec’

What happened? When libvector.a is processed, U is empty, so no member
object files from libvector.a are added to E. Thus, the reference to addvec is
never resolved and the linker emits an error message and terminates.

The general rule for libraries is to place them at the end of the command
line. If the members of the different libraries are independent, in that no member
references a symbol defined by another member, then the libraries can be placed
at the end of the command line in any order.

If, on the other hand, the libraries are not independent, then they must be
ordered so that for each symbol s that is referenced externally by a member of an
archive, at least one definition of s follows a reference to s on the command line.
For example, suppose foo.c calls functions in libx.a and libz.a that call func-
tions in liby.a. Then libx.a and libz.amust precede liby.a on the command
line:

unix> gcc foo.c libx.a libz.a liby.a

Libraries can be repeated on the command line if necessary to satisfy the
dependence requirements. For example, suppose foo.c calls a function in libx.a
that calls a function in liby.a that calls a function in libx.a. Then libx.a must
be repeated on the command line:

unix> gcc foo.c libx.a liby.a libx.a

Alternatively, we could combine libx.a and liby.a into a single archive.

672 Chapter 7 Linking

Practice Problem 7.3
Let a and b denote object modules or static libraries in the current directory, and
let a→b denote that a depends on b, in the sense that b defines a symbol that is
referenced by a. For each of the following scenarios, show the minimal command
line (i.e., one with the least number of object file and library arguments) that will
allow the static linker to resolve all symbol references.

A. p.o→ libx.a.

B. p.o→ libx.a→ liby.a.

C. p.o→ libx.a→ liby.a and liby.a→ libx.a→p.o.

7.7 Relocation

Once the linker has completed the symbol resolution step, it has associated each
symbol reference in the code with exactly one symbol definition (i.e., a symbol
table entry in one of its input object modules). At this point, the linker knows
the exact sizes of the code and data sections in its input object modules. It is now
ready to begin the relocation step, where it merges the input modules and assigns
run-time addresses to each symbol. Relocation consists of two steps:

. Relocating sections and symbol definitions. In this step, the linker merges all
sections of the same type into a new aggregate section of the same type.
For example, the .data sections from the input modules are all merged into
one section that will become the .data section for the output executable
object file. The linker then assigns run-time memory addresses to the new
aggregate sections, to each section defined by the input modules, and to
each symbol defined by the input modules. When this step is complete, every
instruction and global variable in the program has a unique run-time memory
address.

. Relocating symbol references within sections. In this step, the linker modifies
every symbol reference in the bodies of the code and data sections so that
they point to the correct run-time addresses. To perform this step, the linker
relies on data structures in the relocatable object modules known as relocation
entries, which we describe next.

7.7.1 Relocation Entries

When an assembler generates an object module, it does not know where the code
and data will ultimately be stored in memory. Nor does it know the locations of any
externally defined functions or global variables that are referenced by the module.
So whenever the assembler encounters a reference to an object whose ultimate

Section 7.7 Relocation 673

code/link/elfstructs.c

1 typedef struct {

2 int offset; /* Offset of the reference to relocate */

3 int symbol:24, /* Symbol the reference should point to */

4 type:8; /* Relocation type */

5 } Elf32_Rel;

code/link/elfstructs.c

Figure 7.8 ELF relocation entry. Each entry identifies a reference that must be relocated.

location is unknown, it generates a relocation entry that tells the linker how to
modify the reference when it merges the object file into an executable. Relocation
entries for code are placed in .rel.text. Relocation entries for initialized data
are placed in .rel.data.

Figure 7.8 shows the format of an ELF relocation entry. The offset is the
section offset of the reference that will need to be modified. The symbol identifies
the symbol that the modified reference should point to. The type tells the linker
how to modify the new reference.

ELF defines 11 different relocation types, some quite arcane. We are con-
cerned with only the two most basic relocation types:

. R_386_PC32: Relocate a reference that uses a 32-bit PC-relative address.
Recall from Section 3.6.3 that a PC-relative address is an offset from the
current run-time value of the program counter (PC). When the CPU executes
an instruction using PC-relative addressing, it forms the effective address (e.g.,
the target of the call instruction) by adding the 32-bit value encoded in the
instruction to the current run-time value of the PC, which is always the address
of the next instruction in memory.

. R_386_32: Relocate a reference that uses a 32-bit absolute address. With
absolute addressing, the CPU directly uses the 32-bit value encoded in the
instruction as the effective address, without further modifications.

7.7.2 Relocating Symbol References

Figure 7.9 shows the pseudo code for the linker’s relocation algorithm. Lines 1
and 2 iterate over each section s and each relocation entry r associated with
each section. For concreteness, assume that each section s is an array of bytes
and that each relocation entry r is a struct of type Elf32_Rel, as defined in
Figure 7.8. Also, assume that when the algorithm runs, the linker has already
chosen run-time addresses for each section (denoted ADDR(s)) and each sym-
bol (denoted ADDR(r.symbol)). Line 3 computes the address in the s array of
the 4-byte reference that needs to be relocated. If this reference uses PC-relative

674 Chapter 7 Linking

1 foreach section s {

2 foreach relocation entry r {

3 refptr = s + r.offset; /* ptr to reference to be relocated */

4

5 /* Relocate a PC-relative reference */

6 if (r.type == R_386_PC32) {

7 refaddr = ADDR(s) + r.offset; /* ref’s run-time address */

8 *refptr = (unsigned) (ADDR(r.symbol) + *refptr - refaddr);

9 }

10

11 /* Relocate an absolute reference */

12 if (r.type == R_386_32)

13 *refptr = (unsigned) (ADDR(r.symbol) + *refptr);

14 }

15 }

Figure 7.9 Relocation algorithm.

addressing, then it is relocated by lines 5–9. If the reference uses absolute address-
ing, then it is relocated by lines 11–13.

Relocating PC-Relative References

Recall from our running example in Figure 7.1(a) that the main routine in the
.text section of main.o calls the swap routine, which is defined in swap.o. Here
is the disassembled listing for the call instruction, as generated by the GNU
objdump tool:

6: e8 fc ff ff ff call 7 <main+0x7> swap();

7: R_386_PC32 swap relocation entry

From this listing, we see that the call instruction begins at section offset 0x6 and
consists of the 1-byte opcode 0xe8, followed by the 32-bit reference 0xfffffffc
(−4 decimal), which is stored in little-endian byte order. We also see a relocation
entry for this reference displayed on the following line. (Recall that relocation
entries and instructions are actually stored in different sections of the object file.
The objdump tool displays them together for convenience.) The relocation entry
r consists of three fields:

r.offset = 0x7

r.symbol = swap

r.type = R_386_PC32

These fields tell the linker to modify the 32-bit PC-relative reference starting at
offset 0x7 so that it will point to the swap routine at run time. Now, suppose that
the linker has determined that

ADDR(s) = ADDR(.text) = 0x80483b4

Section 7.7 Relocation 675

and

ADDR(r.symbol) = ADDR(swap) = 0x80483c8

Using the algorithm in Figure 7.9, the linker first computes the run-time address
of the reference (line 7):

refaddr = ADDR(s) + r.offset

= 0x80483b4 + 0x7

= 0x80483bb

It then updates the reference from its current value (−4) to 0x9 so that it will point
to the swap routine at run time (line 8):

*refptr = (unsigned) (ADDR(r.symbol) + *refptr - refaddr)

= (unsigned) (0x80483c8 + (-4) - 0x80483bb)

= (unsigned) (0x9)

In the resulting executable object file, the call instruction has the following
relocated form:

80483ba: e8 09 00 00 00 call 80483c8 <swap> swap();

At run time, the call instruction will be stored at address 0x80483ba. When
the CPU executes the call instruction, the PC has a value of 0x80483bf, which
is the address of the instruction immediately following the call instruction. To
execute the instruction, the CPU performs the following steps:

1. push PC onto stack

2. PC <- PC + 0x9 = 0x80483bf + 0x9 = 0x80483c8

Thus, the next instruction to execute is the first instruction of the swap routine,
which of course is what we want!

You may wonder why the assembler created the reference in the call instruc-
tion with an initial value of −4. The assembler uses this value as a bias to account
for the fact that the PC always points to the instruction following the current in-
struction. On a different machine with different instruction sizes and encodings,
the assembler for that machine would use a different bias. This is a powerful trick
that allows the linker to blindly relocate references, blissfully unaware of the in-
struction encodings for a particular machine.

Relocating Absolute References

Recall that in our example program in Figure 7.1, the swap.o module initializes
the global pointer bufp0 to the address of the first element of the global buf array:

int *bufp0 = &buf[0];

676 Chapter 7 Linking

Since bufp0 is an initialized data object, it will be stored in the .data section of the
swap.o relocatable object module. Since it is initialized to the address of a global
array, it will need to be relocated. Here is the disassembled listing of the .data
section from swap.o:

00000000 <bufp0>:

0: 00 00 00 00 int *bufp0 = &buf[0];

0: R_386_32 buf Relocation entry

We see that the .data section contains a single 32-bit reference, the bufp0
pointer, which has a value of 0x0. The relocation entry tells the linker that this is
a 32-bit absolute reference, beginning at offset 0, which must be relocated so that
it points to the symbol buf. Now, suppose that the linker has determined that

ADDR(r.symbol) = ADDR(buf) = 0x8049454

The linker updates the reference using line 13 of the algorithm in Figure 7.9:

*refptr = (unsigned) (ADDR(r.symbol) + *refptr)

= (unsigned) (0x8049454 + 0)

= (unsigned) (0x8049454)

In the resulting executable object file, the reference has the following relocated
form:

0804945c <bufp0>:

804945c: 54 94 04 08 Relocated!

In words, the linker has decided that at run time the variable bufp0will be located
at memory address 0x804945c and will be initialized to 0x8049454, which is the
run-time address of the buf array.

The .text section in the swap.omodule contains five absolute references that
are relocated in a similar way (see Problem 7.12). Figure 7.10 shows the relocated
.text and .data sections in the final executable object file.

Practice Problem 7.4
This problem concerns the relocated program in Figure 7.10.

A. What is the hex address of the relocated reference to swap in line 5?

B. What is the hex value of the relocated reference to swap in line 5?

C. Suppose the linker had decided for some reason to locate the .text sec-
tion at 0x80483b8 instead of 0x80483b4. What would the hex value of the
relocated reference in line 5 be in this case?

(a) Relocated .text section

code/link/p-exe.d

1 080483b4 <main>:

2 80483b4: 55 push %ebp

3 80483b5: 89 e5 mov %esp,%ebp

4 80483b7: 83 ec 08 sub $0x8,%esp

5 80483ba: e8 09 00 00 00 call 80483c8 <swap> swap();

6 80483bf: 31 c0 xor %eax,%eax

7 80483c1: 89 ec mov %ebp,%esp

8 80483c3: 5d pop %ebp

9 80483c4: c3 ret

10 80483c5: 90 nop

11 80483c6: 90 nop

12 80483c7: 90 nop

13 080483c8 <swap>:

14 80483c8: 55 push %ebp

15 80483c9: 8b 15 5c 94 04 08 mov 0x804945c,%edx Get *bufp0

16 80483cf: a1 58 94 04 08 mov 0x8049458,%eax Get buf[1]

17 80483d4: 89 e5 mov %esp,%ebp

18 80483d6: c7 05 48 95 04 08 58 movl $0x8049458,0x8049548 bufp1 = &buf[1]

19 80483dd: 94 04 08

20 80483e0: 89 ec mov %ebp,%esp

21 80483e2: 8b 0a mov (%edx),%ecx

22 80483e4: 89 02 mov %eax,(%edx)

23 80483e6: a1 48 95 04 08 mov 0x8049548,%eax Get *bufp1

24 80483eb: 89 08 mov %ecx,(%eax)

25 80483ed: 5d pop %ebp

26 80483ee: c3 ret

code/link/p-exe.d

(b) Relocated .data section

code/link/pdata-exe.d

1 08049454 <buf>:

2 8049454: 01 00 00 00 02 00 00 00

3 0804945c <bufp0>:

4 804945c: 54 94 04 08 Relocated!

code/link/pdata-exe.d

Figure 7.10 Relocated .text and .data sections for executable file p. The original C code is in Figure 7.1.

678 Chapter 7 Linking

7.8 Executable Object Files

We have seen how the linker merges multiple object modules into a single exe-
cutable object file. Our C program, which began life as a collection of ASCII text
files, has been transformed into a single binary file that contains all of the informa-
tion needed to load the program into memory and run it. Figure 7.11 summarizes
the kinds of information in a typical ELF executable file.

The format of an executable object file is similar to that of a relocatable object
file. The ELF header describes the overall format of the file. It also includes the
program’s entry point, which is the address of the first instruction to execute when
the program runs. The .text, .rodata, and .data sections are similar to those in
a relocatable object file, except that these sections have been relocated to their
eventual run-time memory addresses. The .init section defines a small function,
called _init, that will be called by the program’s initialization code. Since the
executable is fully linked (relocated), it needs no .rel sections.

ELF executables are designed to be easy to load into memory, with contigu-
ous chunks of the executable file mapped to contiguous memory segments. This
mapping is described by the segment header table. Figure 7.12 shows the segment
header table for our example executable p, as displayed by objdump.

From the segment header table, we see that two memory segments will be
initialized with the contents of the executable object file. Lines 1 and 2 tell us
that the first segment (the code segment) is aligned to a 4 KB (212) boundary,
has read/execute permissions, starts at memory address 0x08048000, has a total
memory size of 0x448 bytes, and is initialized with the first 0x448 bytes of the
executable object file, which includes the ELF header, the segment header table,
and the .init, .text, and .rodata sections.

Section header table
Describes
object file
sections

Maps contiguous file
sections to runtime
memory segments

.strtab

.line

.debug

.symtab

.bss

.data

.rodata

.text

.init

Segment header table

ELF header
0

Read-only memory segment
(code segment)

Read/write memory segment
(data segment)

Symbol table and
debugging info are not
loaded into memory

Figure 7.11 Typical ELF executable object file.

Section 7.9 Loading Executable Object Files 679

code/link/p-exe.d

Read-only code segment

1 LOAD off 0x00000000 vaddr 0x08048000 paddr 0x08048000 align 2**12

2 filesz 0x00000448 memsz 0x00000448 flags r-x

Read/write data segment

3 LOAD off 0x00000448 vaddr 0x08049448 paddr 0x08049448 align 2**12

4 filesz 0x000000e8 memsz 0x00000104 flags rw-

code/link/p-exe.d

Figure 7.12 Segment header table for the example executable p. Legend: off: file offset, vaddr/paddr:
virtual/physical address, align: segment alignment, filesz: segment size in the object file, memsz:
segment size in memory, flags: run-time permissions.

Lines 3 and 4 tell us that the second segment (the data segment) is aligned to a
4 KB boundary, has read/write permissions, starts at memory address 0x08049448,
has a total memory size of 0x104 bytes, and is initialized with the 0xe8 bytes
starting at file offset 0x448, which in this case is the beginning of the .data section.
The remaining bytes in the segment correspond to .bss data that will be initialized
to zero at run time.

7.9 Loading Executable Object Files

To run an executable object file p, we can type its name to the Unix shell’s
command line:

unix> ./p

Since p does not correspond to a built-in shell command, the shell assumes that
p is an executable object file, which it runs for us by invoking some memory-
resident operating system code known as the loader. Any Unix program can
invoke the loader by calling the execve function, which we will describe in detail in
Section 8.4.5. The loader copies the code and data in the executable object file from
disk into memory, and then runs the program by jumping to its first instruction, or
entry point. This process of copying the program into memory and then running
it is known as loading.

Every Unix program has a run-time memory image similar to the one in Fig-
ure 7.13. On 32-bit Linux systems, the code segment starts at address 0x08048000.
The data segment follows at the next 4 KB aligned address. The run-time heap fol-
lows on the first 4 KB aligned address past the read/write segment and grows up
via calls to the malloc library. (We will describe malloc and the heap in detail
in Section 9.9.) There is also a segment that is reserved for shared libraries. The
user stack always starts at the largest legal user address and grows down (toward
lower memory addresses). The segment starting above the stack is reserved for

680 Chapter 7 Linking

Figure 7.13
Linux run-time memory
image.

0x08048000

0

Memory
invisible to
user code

%esp (stack pointer)

brk

Loaded from the
executable file

User stack
(created at run time)

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

Read/write segment
(.data,.bss)

Read-only segment
(.init,.text,.rodata)

Kernel memory

the code and data in the memory-resident part of the operating system known as
the kernel.

When the loader runs, it creates the memory image shown in Figure 7.13.
Guided by the segment header table in the executable, it copies chunks of the
executable into the code and data segments. Next, the loader jumps to the pro-
gram’s entry point, which is always the address of the _start symbol. The startup
code at the _start address is defined in the object file crt1.o and is the same
for all C programs. Figure 7.14 shows the specific sequence of calls in the startup
code. After calling initialization routines from the .text and .init sections, the
startup code calls the atexit routine, which appends a list of routines that should
be called when the application terminates normally. The exit function runs the
functions registered by atexit, and then returns control to the operating system

1 0x080480c0 <_start>: /* Entry point in .text */

2 call __libc_init_first /* Startup code in .text */

3 call _init /* Startup code in .init */

4 call atexit /* Startup code in .text */

5 call main /* Application main routine */

6 call _exit /* Returns control to OS */

7 /* Control never reaches here */

Figure 7.14 Pseudo-code for the crt1.o startup routine in every C program. Note:
The code that pushes the arguments for each function is not shown.

Section 7.10 Dynamic Linking with Shared Libraries 681

by calling _exit. Next, the startup code calls the application’s main routine, which
begins executing our C code. After the application returns, the startup code calls
the _exit routine, which returns control to the operating system.

Aside How do loaders really work?

Our description of loading is conceptually correct, but intentionally not entirely accurate. To understand
how loading really works, you must understand the concepts of processes, virtual memory, and memory
mapping, which we haven’t discussed yet. As we encounter these concepts later in Chapters 8 and 9,
we will revisit loading and gradually reveal the mystery to you.

For the impatient reader, here is a preview of how loading really works: Each program in a Unix
system runs in the context of a process with its own virtual address space. When the shell runs a program,
the parent shell process forks a child process that is a duplicate of the parent. The child process invokes
the loader via the execve system call. The loader deletes the child’s existing virtual memory segments,
and creates a new set of code, data, heap, and stack segments. The new stack and heap segments are
initialized to zero. The new code and data segments are initialized to the contents of the executable
file by mapping pages in the virtual address space to page-sized chunks of the executable file. Finally,
the loader jumps to the _start address, which eventually calls the application’s main routine. Aside
from some header information, there is no copying of data from disk to memory during loading. The
copying is deferred until the CPU references a mapped virtual page, at which point the operating system
automatically transfers the page from disk to memory using its paging mechanism.

Practice Problem 7.5

A. Why does every C program need a routine called main?

B. Have you ever wondered why a C main routine can end with a call to exit, a
return statement, or neither, and yet the program still terminates properly?
Explain.

7.10 Dynamic Linking with Shared Libraries

The static libraries that we studied in Section 7.6.2 address many of the issues
associated with making large collections of related functions available to applica-
tion programs. However, static libraries still have some significant disadvantages.
Static libraries, like all software, need to be maintained and updated periodically.
If application programmers want to use the most recent version of a library, they
must somehow become aware that the library has changed, and then explicitly
relink their programs against the updated library.

Another issue is that almost every C program uses standard I/O functions such
as printf and scanf. At run time, the code for these functions is duplicated in the
text segment of each running process. On a typical system that is running 50–100

682 Chapter 7 Linking

processes, this can be a significant waste of scarce memory system resources. (An
interesting property of memory is that it is always a scarce resource, regardless of
how much there is in a system. Disk space and kitchen trash cans share this same
property.)

Shared libraries are modern innovations that address the disadvantages of
static libraries. A shared library is an object module that, at run time, can be
loaded at an arbitrary memory address and linked with a program in memory.
This process is known as dynamic linking and is performed by a program called a
dynamic linker.

Shared libraries are also referred to as shared objects, and on Unix systems
are typically denoted by the .so suffix. Microsoft operating systems make heavy
use of shared libraries, which they refer to as DLLs (dynamic link libraries).

Shared libraries are “shared” in two different ways. First, in any given file
system, there is exactly one .so file for a particular library. The code and data in
this.sofile are shared by all of the executable object files that reference the library,
as opposed to the contents of static libraries, which are copied and embedded in
the executables that reference them. Second, a single copy of the .text section of
a shared library in memory can be shared by different running processes. We will
explore this in more detail when we study virtual memory in Chapter 9.

Figure 7.15 summarizes the dynamic linking process for the example program
in Figure 7.6. To build a shared library libvector.so of our example vector
arithmetic routines in Figure 7.5, we would invoke the compiler driver with the
following special directive to the linker:

unix> gcc -shared -fPIC -o libvector.so addvec.c multvec.c

The -fPIC flag directs the compiler to generate position-independent code (more
on this in the next section). The -shared flag directs the linker to create a shared
object file.

Once we have created the library, we would then link it into our example
program in Figure 7.6:

unix> gcc -o p2 main2.c ./libvector.so

This creates an executable object file p2 in a form that can be linked with
libvector.so at run time. The basic idea is to do some of the linking statically
when the executable file is created, and then complete the linking process dynam-
ically when the program is loaded.

It is important to realize that none of the code or data sections from
libvector.so are actually copied into the executable p2 at this point. Instead,
the linker copies some relocation and symbol table information that will allow
references to code and data in libvector.so to be resolved at run time.

When the loader loads and runs the executable p2, it loads the partially linked
executablep2, using the techniques discussed in Section 7.9. Next, it notices that p2

Section 7.11 Loading and Linking Shared Libraries from Applications 683

Figure 7.15
Dynamic linking with
shared libraries.

main2.c

libc.so
libvector.so

libc.so
libvector.so

main2.o

p2

Translators
(cpp,cc1,as)

Linker (ld)

Fully linked
executable in memory

Partially linked
executable object file

vector.h

Loader
(execve)

Dynamic linker (ld-linux.so)

Relocatable
object file

Relocation and
symbol table info

Code and data

contains a .interp section, which contains the path name of the dynamic linker,
which is itself a shared object (e.g., ld-linux.so on Linux systems). Instead of
passing control to the application, as it would normally do, the loader loads and
runs the dynamic linker.

The dynamic linker then finishes the linking task by performing the following
relocations:

. Relocating the text and data of libc.so into some memory segment.

. Relocating the text and data of libvector.so into another memory segment.

. Relocating any references in p2 to symbols defined by libc.so and libvec-
tor.so.

Finally, the dynamic linker passes control to the application. From this point on,
the locations of the shared libraries are fixed and do not change during execution
of the program.

7.11 Loading and Linking Shared Libraries from Applications

Up to this point, we have discussed the scenario in which the dynamic linker loads
and links shared libraries when an application is loaded, just before it executes.
However, it is also possible for an application to request the dynamic linker to
load and link arbitrary shared libraries while the application is running, without
having to link in the applications against those libraries at compile time.

684 Chapter 7 Linking

Dynamic linking is a powerful and useful technique. Here are some examples
in the real world:

. Distributing software. Developers of Microsoft Windows applications fre-
quently use shared libraries to distribute software updates. They generate
a new copy of a shared library, which users can then download and use as a
replacement for the current version. The next time they run their application,
it will automatically link and load the new shared library.

. Building high-performance Web servers.Many Web servers generate dynamic
content, such as personalized Web pages, account balances, and banner ads.
Early Web servers generated dynamic content by using fork and execve
to create a child process and run a “CGI program” in the context of the
child. However, modern high-performance Web servers can generate dynamic
content using a more efficient and sophisticated approach based on dynamic
linking.

The idea is to package each function that generates dynamic content in
a shared library. When a request arrives from a Web browser, the server
dynamically loads and links the appropriate function and then calls it directly,
as opposed to using fork and execve to run the function in the context of a
child process. The function remains cached in the server’s address space, so
subsequent requests can be handled at the cost of a simple function call. This
can have a significant impact on the throughput of a busy site. Further, existing
functions can be updated and new functions can be added at run time, without
stopping the server.

Linux systems provide a simple interface to the dynamic linker that allows appli-
cation programs to load and link shared libraries at run time.

#include <dlfcn.h>

void *dlopen(const char *filename, int flag);

Returns: ptr to handle if OK, NULL on error

The dlopen function loads and links the shared library filename. The external
symbols in filename are resolved using libraries previously opened with the RTLD_
GLOBAL flag. If the current executable was compiled with the -rdynamic flag, then
its global symbols are also available for symbol resolution. The flag argument
must include either RTLD_NOW, which tells the linker to resolve references to
external symbols immediately, or the RTLD_LAZY flag, which instructs the linker
to defer symbol resolution until code from the library is executed. Either of these
values can be or’d with the RTLD_GLOBAL flag.

Section 7.11 Loading and Linking Shared Libraries from Applications 685

#include <dlfcn.h>

void *dlsym(void *handle, char *symbol);

Returns: ptr to symbol if OK, NULL on error

The dlsym function takes a handle to a previously opened shared library and
a symbol name, and returns the address of the symbol, if it exists, or NULL
otherwise.

#include <dlfcn.h>

int dlclose (void *handle);

Returns: 0 if OK, −1 on error

The dlclose function unloads the shared library if no other shared libraries are
still using it.

#include <dlfcn.h>

const char *dlerror(void);

Returns: error msg if previous call to dlopen, dlsym,
or dlclose failed, NULL if previous call was OK

The dlerror function returns a string describing the most recent error that oc-
curred as a result of calling dlopen, dlsym, or dlclose, or NULL if no error
occurred.

Figure 7.16 shows how we would use this interface to dynamically link our
libvector.so shared library (Figure 7.5), and then invoke its addvec routine. To
compile the program, we would invoke gcc in the following way:

unix> gcc -rdynamic -O2 -o p3 dll.c -ldl

Aside Shared libraries and the Java Native Interface

Java defines a standard calling convention called Java Native Interface (JNI) that allows “native” C
and C++ functions to be called from Java programs. The basic idea of JNI is to compile the native C
function, say, foo, into a shared library, say foo.so. When a running Java program attempts to invoke
function foo, the Java interpreter uses the dlopen interface (or something like it) to dynamically link
and load foo.so, and then call foo.

686 Chapter 7 Linking

code/link/dll.c

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <dlfcn.h>

4

5 int x[2] = {1, 2};

6 int y[2] = {3, 4};

7 int z[2];

8

9 int main()

10 {

11 void *handle;

12 void (*addvec)(int *, int *, int *, int);

13 char *error;

14

15 /* Dynamically load shared library that contains addvec() */

16 handle = dlopen("./libvector.so", RTLD_LAZY);

17 if (!handle) {

18 fprintf(stderr, "%s\n", dlerror());

19 exit(1);

20 }

21

22 /* Get a pointer to the addvec() function we just loaded */

23 addvec = dlsym(handle, "addvec");

24 if ((error = dlerror()) != NULL) {

25 fprintf(stderr, "%s\n", error);

26 exit(1);

27 }

28

29 /* Now we can call addvec() just like any other function */

30 addvec(x, y, z, 2);

31 printf("z = [%d %d]\n", z[0], z[1]);

32

33 /* Unload the shared library */

34 if (dlclose(handle) < 0) {

35 fprintf(stderr, "%s\n", dlerror());

36 exit(1);

37 }

38 return 0;

39 }

code/link/dll.c

Figure 7.16 An application program that dynamically loads and links the shared
library libvector.so.

Section 7.12 Position-Independent Code (PIC) 687

7.12 Position-Independent Code (PIC)

A key purpose of shared libraries is to allow multiple running processes to share
the same library code in memory and thus save precious memory resources. So
how can multiple processes share a single copy of a program? One approach would
be to assign a priori a dedicated chunk of the address space to each shared library,
and then require the loader to always load the shared library at that address.
While straightforward, this approach creates some serious problems. It would be
an inefficient use of the address space because portions of the space would be
allocated even if a process didn’t use the library. Second, it would be difficult to
manage. We would have to ensure that none of the chunks overlapped. Every
time a library were modified, we would have to make sure that it still fit in its
assigned chunk. If not, then we would have to find a new chunk. And if we created
a new library, we would have to find room for it. Over time, given the hundreds
of libraries and versions of libraries in a system, it would be difficult to keep the
address space from fragmenting into lots of small unused but unusable holes. Even
worse, the assignment of libraries to memory would be different for each system,
thus creating even more management headaches.

A better approach is to compile library code so that it can be loaded and
executed at any address without being modified by the linker. Such code is known
as position-independent code (PIC). Users direct GNU compilation systems to
generate PIC code with the -fPIC option to gcc.

On IA32 systems, calls to procedures in the same object module require no
special treatment, since the references are PC-relative, with known offsets, and
thus are already PIC (see Problem 7.4). However, calls to externally defined
procedures and references to global variables are not normally PIC, since they
require relocation at link time.

PIC Data References

Compilers generate PIC references to global variables by exploiting the following
interesting fact: No matter where we load an object module (including shared
object modules) in memory, the data segment is always allocated immediately
after the code segment. Thus, the distance between any instruction in the code
segment and any variable in the data segment is a run-time constant, independent
of the absolute memory locations of the code and data segments.

To exploit this fact, the compiler creates a table called the global offset table
(GOT) at the beginning of the data segment. The GOT contains an entry for
each global data object that is referenced by the object module. The compiler
also generates a relocation record for each entry in the GOT. At load time, the
dynamic linker relocates each entry in the GOT so that it contains the appropriate
absolute address. Each object module that references global data has its own
GOT.

At run time, each global variable is referenced indirectly through the GOT
using code of the form

688 Chapter 7 Linking

call L1

L1: popl %ebx ebx contains the current PC

addl $VAROFF, %ebx ebx points to the GOT entry for var

movl (%ebx), %eax reference indirect through the GOT

movl (%eax), %eax

In this fascinating piece of code, the call to L1 pushes the return address (which
happens to be the address of the popl instruction) on the stack. The popl instruc-
tion then pops this address into %ebx. The net effect of these two instructions is to
move the value of the PC into register %ebx.

The addl instruction adds a constant offset to %ebx so that it points to the
appropriate entry in the GOT, which contains the absolute address of the data
item. At this point, the global variable can be referenced indirectly through the
GOT entry contained in %ebx. In this example, the two movl instructions load the
contents of the global variable (indirectly through the GOT) into register %eax.

PIC code has performance disadvantages. Each global variable reference now
requires five instructions instead of one, with an additional memory reference
to the GOT. Also, PIC code uses an additional register to hold the address of
the GOT entry. On machines with large register files, this is not a major issue.
On register-starved IA32 systems, however, losing even one register can trigger
spilling of the registers onto the stack.

PIC Function Calls

It would certainly be possible for PIC code to use the same approach for resolving
external procedure calls:

call L1

L1: popl %ebx ebx contains the current PC

addl $PROCOFF, %ebx ebx points to GOT entry for proc

call *(%ebx) call indirect through the GOT

However, this approach would require three additional instructions for each run-
time procedure call. Instead, ELF compilation systems use an interesting tech-
nique, called lazy binding, that defers the binding of procedure addresses until the
first time the procedure is called. There is a nontrivial run-time overhead the first
time the procedure is called, but each call thereafter only costs a single instruction
and a memory reference for the indirection.

Lazy binding is implemented with a compact yet somewhat complex interac-
tion between two data structures: the GOT and the procedure linkage table (PLT).
If an object module calls any functions that are defined in shared libraries, then it
has its own GOT and PLT. The GOT is part of the .data section. The PLT is part
of the .text section.

Figure 7.17 shows the format of the GOT for the example program main2.o
from Figure 7.6. The first three GOT entries are special: GOT[0] contains the
address of the .dynamic segment, which contains information that the dynamic
linker uses to bind procedure addresses, such as the location of the symbol table

Section 7.12 Position-Independent Code (PIC) 689

Address Entry Contents Description

08049674 GOT[0] 0804969c address of .dynamic section
08049678 GOT[1] 4000a9f8 identifying info for the linker
0804967c GOT[2] 4000596f entry point in dynamic linker
08049680 GOT[3] 0804845a address of pushl in PLT[1] (printf)
08049684 GOT[4] 0804846a address of pushl in PLT[2] (addvec)

Figure 7.17 The global offset table (GOT) for executable p2. The original code is in
Figures 7.5 and 7.6.

and relocation information. GOT[1] contains some information that defines this
module. GOT[2] contains an entry point into the lazy binding code of the dynamic
linker.

Each procedure that is defined in a shared object and called by main2.o gets
an entry in the GOT, starting with entry GOT[3]. For the example program, we
have shown the GOT entries for printf, which is defined in libc.so, and addvec,
which is defined in libvector.so.

Figure 7.18 shows the PLT for our example program p2. The PLT is an array
of 16-byte entries. The first entry, PLT[0], is a special entry that jumps into the
dynamic linker. Each called procedure has an entry in the PLT, starting at PLT[1].
In the figure, PLT[1] corresponds to printf and PLT[2] corresponds to addvec.

PLT[0]

08048444: ff 35 78 96 04 08 pushl 0x8049678 push &GOT[1]

804844a: ff 25 7c 96 04 08 jmp *0x804967c jmp to *GOT[2](linker)

8048450: 00 00 padding

8048452: 00 00 padding

PLT[1] <printf>

8048454: ff 25 80 96 04 08 jmp *0x8049680 jmp to *GOT[3]

804845a: 68 00 00 00 00 pushl $0x0 ID for printf

804845f: e9 e0 ff ff ff jmp 8048444 jmp to PLT[0]

PLT[2] <addvec>

8048464: ff 25 84 96 04 08 jmp *0x8049684 jump to *GOT[4]

804846a: 68 08 00 00 00 pushl $0x8 ID for addvec

804846f: e9 d0 ff ff ff jmp 8048444 jmp to PLT[0]

<other PLT entries>

Figure 7.18 The procedure linkage table (PLT) for executable p2. The original code
is in Figures 7.5 and 7.6.

690 Chapter 7 Linking

Initially, after the program has been dynamically linked and begins executing,
procedures printf and addvec are bound to the first instruction in their respective
PLT entries. For example, the call to addvec has the form

80485bb: e8 a4 fe ff ff call 8048464 <addvec>

When addvec is called the first time, control passes to the first instruction in
PLT[2], which does an indirect jump through GOT[4]. Initially, each GOT entry
contains the address of the pushl entry in the corresponding PLT entry. So the
indirect jump in the PLT simply transfers control back to the next instruction
in PLT[2]. This instruction pushes an ID for the addvec symbol onto the stack.
The last instruction jumps to PLT[0], which pushes another word of identifying
information on the stack from GOT[1], and then jumps into the dynamic linker
indirectly through GOT[2]. The dynamic linker uses the two stack entries to
determine the location of addvec, overwrites GOT[4] with this address, and passes
control to addvec.

The next time addvec is called in the program, control passes to PLT[2] as
before. However, this time the indirect jump through GOT[4] transfers control to
addvec. The only additional overhead from this point on is the memory reference
for the indirect jump.

7.13 Tools for Manipulating Object Files

There are a number of tools available on Unix systems to help you understand
and manipulate object files. In particular, the GNU binutils package is especially
helpful and runs on every Unix platform.

ar: Creates static libraries, and inserts, deletes, lists, and extracts members.

strings: Lists all of the printable strings contained in an object file.

strip: Deletes symbol table information from an object file.

nm: Lists the symbols defined in the symbol table of an object file.

size: Lists the names and sizes of the sections in an object file.

readelf: Displays the complete structure of an object file, including all of the
information encoded in the ELF header; subsumes the functionality of
size and nm.

objdump: The mother of all binary tools. Can display all of the information in an
object file. Its most useful function is disassembling the binary instructions
in the .text section.

Unix systems also provide the ldd program for manipulating shared libraries:

ldd: Lists the shared libraries that an executable needs at run time.

Bibliographic Notes 691

7.14 Summary

Linking can be performed at compile time by static linkers, and at load time
and run time by dynamic linkers. Linkers manipulate binary files called object
files, which come in three different forms: relocatable, executable, and shared.
Relocatable object files are combined by static linkers into an executable object
file that can be loaded into memory and executed. Shared object files (shared
libraries) are linked and loaded by dynamic linkers at run time, either implicitly
when the calling program is loaded and begins executing, or on demand, when the
program calls functions from the dlopen library.

The two main tasks of linkers are symbol resolution, where each global symbol
in an object file is bound to a unique definition, and relocation, where the ultimate
memory address for each symbol is determined and where references to those
objects are modified.

Static linkers are invoked by compiler drivers such as gcc. They combine
multiple relocatable object files into a single executable object file. Multiple object
files can define the same symbol, and the rules that linkers use for silently resolving
these multiple definitions can introduce subtle bugs in user programs.

Multiple object files can be concatenated in a single static library. Linkers
use libraries to resolve symbol references in other object modules. The left-to-
right sequential scan that many linkers use to resolve symbol references is another
source of confusing link-time errors.

Loaders map the contents of executable files into memory and run the pro-
gram. Linkers can also produce partially linked executable object files with un-
resolved references to the routines and data defined in a shared library. At load
time, the loader maps the partially linked executable into memory and then calls
a dynamic linker, which completes the linking task by loading the shared library
and relocating the references in the program.

Shared libraries that are compiled as position-independent code can be loaded
anywhere and shared at run time by multiple processes. Applications can also use
the dynamic linker at run time in order to load, link, and access the functions and
data in shared libraries.

Bibliographic Notes

Linking is not well documented in the computer systems literature. Since it lies
at the intersection of compilers, computer architecture, and operating systems,
linking requires understanding of code generation, machine-language program-
ming, program instantiation, and virtual memory. It does not fit neatly into any of
the usual computer systems specialties and thus is not well covered by the clas-
sic texts in these areas. However, Levine’s monograph provides a good general
reference on the subject [66]. The original specifications for ELF and DWARF
(a specification for the contents of the .debug and .line sections) are described
in [52].

Some interesting research and commercial activity centers around the notion
of binary translation, where the contents of an object file are parsed, analyzed,

692 Chapter 7 Linking

and modified. Binary translation can be used for three different purposes [64]:
to emulate one system on another system, to observe program behavior, or to
perform system-dependent optimizations that are not possible at compile time.
Commercial products such as VTune, Purify, and BoundsChecker use binary
translation to provide programmers with detailed observations of their programs.
Valgrind is a popular open-source alternative.

The Atom system provides a flexible mechanism for instrumenting Alpha
executable object files and shared libraries with arbitrary C functions [103]. Atom
has been used to build a myriad of analysis tools that trace procedure calls, profile
instruction counts and memory referencing patterns, simulate memory system
behavior, and isolate memory referencing errors. Etch [90] and EEL [64] provide
roughly similar capabilities on different platforms. The Shade system uses binary
translation for instruction profiling [23]. Dynamo [5] and Dyninst [15] provide
mechanisms for instrumenting and optimizing executables in memory at run time.
Smith and his colleagues have investigated binary translation for program profiling
and optimization [121].

Homework Problems

7.6 ◆
Consider the following version of the swap.c function that counts the number of
times it has been called:

1 extern int buf[];

2

3 int *bufp0 = &buf[0];

4 static int *bufp1;

5

6 static void incr()

7 {

8 static int count=0;

9

10 count++;

11 }

12

13 void swap()

14 {

15 int temp;

16

17 incr();

18 bufp1 = &buf[1];

19 temp = *bufp0;

20 *bufp0 = *bufp1;

21 *bufp1 = temp;

22 }

Homework Problems 693

For each symbol that is defined and referenced in swap.o, indicate if it will
have a symbol table entry in the .symtab section in module swap.o. If so, indicate
the module that defines the symbol (swap.o or main.o), the symbol type (local,
global, or extern), and the section (.text, .data, or .bss) it occupies in that
module.

Symbol swap.o .symtab entry? Symbol type Module where defined Section

buf

bufp0

bufp1

swap

temp

incr

count

7.7 ◆
Without changing any variable names, modify bar5.c on page 666 so that foo5.c
prints the correct values of x and y (i.e., the hex representations of integers 15213
and 15212).

7.8 ◆
In this problem, let REF(x.i) --> DEF(x.k) denote that the linker will associate
an arbitrary reference to symbol x in module i to the definition of x in module k.
For each example below, use this notation to indicate how the linker would resolve
references to the multiply defined symbol in each module. If there is a link-
time error (rule 1), write “ERROR.” If the linker arbitrarily chooses one of the
definitions (rule 3), write “UNKNOWN.”

A. /* Module 1 */
int main()

{

}

/* Module 2 */

static int main=1;

int p2()

{

}

(a) REF(main.1) --> DEF(.)

(b) REF(main.2) --> DEF(.)

B. /* Module 1 */
int x;

void main()

{

}

/* Module 2 */

double x;

int p2()

{

}

(a) REF(x.1) --> DEF(.)

(b) REF(x.2) --> DEF(.)

694 Chapter 7 Linking

C. /* Module 1 */
int x=1;

void main()

{

}

/* Module 2 */

double x=1.0;

int p2()

{

}

(a) REF(x.1) --> DEF(.)

(b) REF(x.2) --> DEF(.)

7.9 ◆
Consider the following program, which consists of two object modules:

1 /* foo6.c */

2 void p2(void);

3

4 int main()

5 {

6 p2();

7 return 0;

8 }

1 /* bar6.c */

2 #include <stdio.h>

3

4 char main;

5

6 void p2()

7 {

8 printf("0x%x\n", main);

9 }

When this program is compiled and executed on a Linux system, it prints the string
“0x55\n” and terminates normally, even though p2 never initializes variable main.
Can you explain this?

7.10 ◆
Let a and b denote object modules or static libraries in the current directory, and
let a→b denote that a depends on b, in the sense that b defines a symbol that is
referenced by a. For each of the following scenarios, show the minimal command
line (i.e., one with the least number of object file and library arguments) that will
allow the static linker to resolve all symbol references:

A. p.o→ libx.a→ p.o

B. p.o→ libx.a→ liby.a and liby.a→ libx.a

C. p.o→ libx.a→ liby.a→ libz.a and liby.a→ libx.a→ libz.a

7.11 ◆
The segment header in Figure 7.12 indicates that the data segment occupies 0x104
bytes in memory. However, only the first 0xe8 bytes of these come from the
sections of the executable file. What causes this discrepancy?

7.12 ◆◆
The swap routine in Figure 7.10 contains five relocated references. For each relo-
cated reference, give its line number in Figure 7.10, its run-time memory address,
and its value. The original code and relocation entries in the swap.o module are
shown in Figure 7.19.

Homework Problems 695

1 00000000 <swap>:

2 0: 55 push %ebp

3 1: 8b 15 00 00 00 00 mov 0x0,%edx Get *bufp0=&buf[0]

4 3: R_386_32 bufp0 Relocation entry

5 7: a1 04 00 00 00 mov 0x4,%eax Get buf[1]

6 8: R_386_32 buf Relocation entry

7 c: 89 e5 mov %esp,%ebp

8 e: c7 05 00 00 00 00 04 movl $0x4,0x0 bufp1 = &buf[1];

9 15: 00 00 00

10 10: R_386_32 bufp1 Relocation entry

11 14: R_386_32 buf Relocation entry

12 18: 89 ec mov %ebp,%esp

13 1a: 8b 0a mov (%edx),%ecx temp = buf[0];

14 1c: 89 02 mov %eax,(%edx) buf[0]=buf[1];

15 1e: a1 00 00 00 00 mov 0x0,%eax Get *bufp1=&buf[1]

16 1f: R_386_32 bufp1 Relocation entry

17 23: 89 08 mov %ecx,(%eax) buf[1]=temp;

18 25: 5d pop %ebp

19 26: c3 ret

Figure 7.19 Code and relocation entries for Problem 7.12.

Line # in Fig. 7.10 Address Value

7.13 ◆◆◆
Consider the C code and corresponding relocatable object module in Figure 7.20.

A. Determine which instructions in .textwill need to be modified by the linker
when the module is relocated. For each such instruction, list the information
in its relocation entry: section offset, relocation type, and symbol name.

B. Determine which data objects in .datawill need to be modified by the linker
when the module is relocated. For each such instruction, list the information
in its relocation entry: section offset, relocation type, and symbol name.

Feel free to use tools such as objdump to help you solve this problem.

7.14 ◆◆◆
Consider the C code and corresponding relocatable object module in Figure 7.21.

A. Determine which instructions in .textwill need to be modified by the linker
when the module is relocated. For each such instruction, list the information
in its relocation entry: section offset, relocation type, and symbol name.

696 Chapter 7 Linking

(a) C code

1 extern int p3(void);

2 int x = 1;

3 int *xp = &x;

4

5 void p2(int y) {

6 }

7

8 void p1() {

9 p2(*xp + p3());

10 }

(b) .text section of relocatable object file

1 00000000 <p2>:

2 0: 55 push %ebp

3 1: 89 e5 mov %esp,%ebp

4 3: 89 ec mov %ebp,%esp

5 5: 5d pop %ebp

6 6: c3 ret

7 00000008 <p1>:

8 8: 55 push %ebp

9 9: 89 e5 mov %esp,%ebp

10 b: 83 ec 08 sub $0x8,%esp

11 e: 83 c4 f4 add $0xfffffff4,%esp

12 11: e8 fc ff ff ff call 12 <p1+0xa>

13 16: 89 c2 mov %eax,%edx

14 18: a1 00 00 00 00 mov 0x0,%eax

15 1d: 03 10 add (%eax),%edx

16 1f: 52 push %edx

17 20: e8 fc ff ff ff call 21 <p1+0x19>

18 25: 89 ec mov %ebp,%esp

19 27: 5d pop %ebp

20 28: c3 ret

(c) .data section of relocatable object file

1 00000000 <x>:

2 0: 01 00 00 00

3 00000004 <xp>:

4 4: 00 00 00 00

Figure 7.20 Example code for Problem 7.13.

Homework Problems 697

(a) C code

1 int relo3(int val) {

2 switch (val) {

3 case 100:

4 return(val);

5 case 101:

6 return(val+1);

7 case 103: case 104:

8 return(val+3);

9 case 105:

10 return(val+5);

11 default:

12 return(val+6);

13 }

14 }

(b) .text section of relocatable object file

1 00000000 <relo3>:

2 0: 55 push %ebp

3 1: 89 e5 mov %esp,%ebp

4 3: 8b 45 08 mov 0x8(%ebp),%eax

5 6: 8d 50 9c lea 0xffffff9c(%eax),%edx

6 9: 83 fa 05 cmp $0x5,%edx

7 c: 77 17 ja 25 <relo3+0x25>

8 e: ff 24 95 00 00 00 00 jmp *0x0(,%edx,4)

9 15: 40 inc %eax

10 16: eb 10 jmp 28 <relo3+0x28>

11 18: 83 c0 03 add $0x3,%eax

12 1b: eb 0b jmp 28 <relo3+0x28>

13 1d: 8d 76 00 lea 0x0(%esi),%esi

14 20: 83 c0 05 add $0x5,%eax

15 23: eb 03 jmp 28 <relo3+0x28>

16 25: 83 c0 06 add $0x6,%eax

17 28: 89 ec mov %ebp,%esp

18 2a: 5d pop %ebp

19 2b: c3 ret

(c) .rodata section of relocatable object file

This is the jump table for the switch statement

1 0000 28000000 15000000 25000000 18000000 4 words at offsets 0x0,0x4,0x8, and 0xc

2 0010 18000000 20000000 2 words at offsets 0x10 and 0x14

Figure 7.21 Example code for Problem 7.14.

698 Chapter 7 Linking

B. Determine which data objects in .rodata will need to be modified by the
linker when the module is relocated. For each such instruction, list the in-
formation in its relocation entry: section offset, relocation type, and symbol
name.

Feel free to use tools such as objdump to help you solve this problem.

7.15 ◆◆◆
Performing the following tasks will help you become more familiar with the
various tools for manipulating object files.

A. How many object files are contained in the versions of libc.a and libm.a
on your system?

B. Does gcc -O2 produce different executable code than gcc -O2 -g?

C. What shared libraries does the gcc driver on your system use?

Solutions to Practice Problems

Solution to Problem 7.1 (page 662)
The purpose of this problem is to help you understand the relationship between
linker symbols and C variables and functions. Notice that the C local variable temp
does not have a symbol table entry.

Symbol swap.o .symtab entry? Symbol type Module where defined Section

buf yes extern main.o .data

bufp0 yes global swap.o .data

bufp1 yes global swap.o .bss

swap yes global swap.o .text

temp no — — —

Solution to Problem 7.2 (page 666)
This is a simple drill that checks your understanding of the rules that a Unix linker
uses when it resolves global symbols that are defined in more than one module.
Understanding these rules can help you avoid some nasty programming bugs.

A. The linker chooses the strong symbol defined in module 1 over the weak
symbol defined in module 2 (rule 2):

(a) REF(main.1) --> DEF(main.1)
(b) REF(main.2) --> DEF(main.1)

B. This is an ERROR, because each module defines a strong symbol main
(rule 1).

Solutions to Practice Problems 699

C. The linker chooses the strong symbol defined in module 2 over the weak
symbol defined in module 1 (rule 2):

(a) REF(x.1) --> DEF(x.2)
(b) REF(x.2) --> DEF(x.2)

Solution to Problem 7.3 (page 672)
Placing static libraries in the wrong order on the command line is a common source
of linker errors that confuses many programmers. However, once you understand
how linkers use static libraries to resolve references, it’s pretty straightforward.
This little drill checks your understanding of this idea:

A. gcc p.o libx.a

B. gcc p.o libx.a liby.a

C. gcc p.o libx.a liby.a libx.a

Solution to Problem 7.4 (page 676)
This problem concerns the disassembly listing in Figure 7.10. Our purpose here is
to give you some practice reading disassembly listings and to check your under-
standing of PC-relative addressing.

A. The hex address of the relocated reference in line 5 is 0x80483bb.

B. The hex value of the relocated reference in line 5 is 0x9. Remember that
the disassembly listing shows the value of the reference in little-endian byte
order.

C. The key observation here is that no matter where the linker locates the .text
section, the distance between the reference and the swap function is always
the same. Thus, because the reference is a PC-relative address, its value will
be 0x9, regardless of where the linker locates the .text section.

Solution to Problem 7.5 (page 681)
How C programs actually start up is a mystery to most programmers. These
questions check your understanding of this startup process. You can answer them
by referring to the C startup code in Figure 7.14.

A. Every program needs a main function, because the C startup code, which is
common to every C program, jumps to a function called main.

B. If main terminates with a return statement, then control passes back to
the startup routine, which returns control to the operating system by calling
_exit. The same behavior occurs if the user omits the return statement. If
main terminates with a call to exit, then exit eventually returns control to
the operating system by calling _exit. The net effect is the same in all three
cases: when main has finished, control passes back to the operating system.

This page intentionally left blank

C H A P T E R 8
Exceptional Control Flow

8.1 Exceptions 703

8.2 Processes 712

8.3 System Call Error Handling 717

8.4 Process Control 718

8.5 Signals 736

8.6 Nonlocal Jumps 759

8.7 Tools for Manipulating Processes 762

8.8 Summary 763

Bibliographic Notes 763

Homework Problems 764

Solutions to Practice Problems 771

701

702 Chapter 8 Exceptional Control Flow

From the time you first apply power to a processor until the time you shut it off,
the program counter assumes a sequence of values

a0, a1, . . . , an−1

where each ak is the address of some corresponding instruction Ik. Each transition
from ak to ak+1 is called a control transfer. A sequence of such control transfers is
called the flow of control, or control flow of the processor.

The simplest kind of control flow is a “smooth” sequence where each Ik and
Ik+1 are adjacent in memory. Typically, abrupt changes to this smooth flow, where
Ik+1 is not adjacent to Ik, are caused by familiar program instructions such as jumps,
calls, and returns. Such instructions are necessary mechanisms that allow programs
to react to changes in internal program state represented by program variables.

But systems must also be able to react to changes in system state that are
not captured by internal program variables and are not necessarily related to
the execution of the program. For example, a hardware timer goes off at regular
intervals and must be dealt with. Packets arrive at the network adapter and must
be stored in memory. Programs request data from a disk and then sleep until they
are notified that the data are ready. Parent processes that create child processes
must be notified when their children terminate.

Modern systems react to these situations by making abrupt changes in the
control flow. In general, we refer to these abrupt changes as exceptional control
flow (ECF). Exceptional control flow occurs at all levels of a computer system. For
example, at the hardware level, events detected by the hardware trigger abrupt
control transfers to exception handlers. At the operating systems level, the kernel
transfers control from one user process to another via context switches. At the
application level, a process can send a signal to another process that abruptly
transfers control to a signal handler in the recipient. An individual program can
react to errors by sidestepping the usual stack discipline and making nonlocal
jumps to arbitrary locations in other functions.

As programmers, there are a number of reasons why it is important for you
to understand ECF:

. Understanding ECF will help you understand important systems concepts.ECF
is the basic mechanism that operating systems use to implement I/O, processes,
and virtual memory. Before you can really understand these important ideas,
you need to understand ECF.

. Understanding ECF will help you understand how applications interact with the
operating system. Applications request services from the operating system by
using a form of ECF known as a trap or system call. For example, writing data
to a disk, reading data from a network, creating a new process, and terminating
the current process are all accomplished by application programs invoking
system calls. Understanding the basic system call mechanism will help you
understand how these services are provided to applications.

. Understanding ECF will help you write interesting new application programs.
The operating system provides application programs with powerful ECF

Section 8.1 Exceptions 703

mechanisms for creating new processes, waiting for processes to terminate,
notifying other processes of exceptional events in the system, and detecting
and responding to these events. If you understand these ECF mechanisms,
then you can use them to write interesting programs such as Unix shells and
Web servers.

. Understanding ECF will help you understand concurrency. ECF is a basic
mechanism for implementing concurrency in computer systems. An exception
handler that interrupts the execution of an application program, processes and
threads whose execution overlap in time, and a signal handler that interrupts
the execution of an application program are all examples of concurrency in
action. Understanding ECF is a first step to understanding concurrency. We
will return to study it in more detail in Chapter 12.

. Understanding ECF will help you understand how software exceptions work.
Languages such as C++ and Java provide software exception mechanisms via
try, catch, and throw statements. Software exceptions allow the program
to make nonlocal jumps (i.e., jumps that violate the usual call/return stack
discipline) in response to error conditions. Nonlocal jumps are a form of
application-level ECF, and are provided in C via the setjmp and longjmp
functions. Understanding these low-level functions will help you understand
how higher-level software exceptions can be implemented.

Up to this point in your study of systems, you have learned how applications
interact with the hardware. This chapter is pivotal in the sense that you will begin
to learn how your applications interact with the operating system. Interestingly,
these interactions all revolve around ECF. We describe the various forms of ECF
that exist at all levels of a computer system. We start with exceptions, which lie at
the intersection of the hardware and the operating system. We also discuss system
calls, which are exceptions that provide applications with entry points into the
operating system. We then move up a level of abstraction and describe processes
and signals, which lie at the intersection of applications and the operating system.
Finally, we discuss nonlocal jumps, which are an application-level form of ECF.

8.1 Exceptions

Exceptions are a form of exceptional control flow that are implemented partly
by the hardware and partly by the operating system. Because they are partly
implemented in hardware, the details vary from system to system. However, the
basic ideas are the same for every system. Our aim in this section is to give
you a general understanding of exceptions and exception handling, and to help
demystify what is often a confusing aspect of modern computer systems.

An exception is an abrupt change in the control flow in response to some
change in the processor’s state. Figure 8.1 shows the basic idea. In the figure, the
processor is executing some current instruction Icurr when a significant change in
the processor’s state occurs. The state is encoded in various bits and signals inside
the processor. The change in state is known as an event. The event might be directly

704 Chapter 8 Exceptional Control Flow

Figure 8.1
Anatomy of an exception.
A change in the processor’s
state (event) triggers an
abrupt control transfer
(an exception) from the
application program to an
exception handler. After
it finishes processing, the
handler either returns
control to the interrupted
program or aborts.

Application
program

Exception
handler

Exception
Exception
processing

Exception
return

(optional)

Event
occurs

here

Icurr
Inext

related to the execution of the current instruction. For example, a virtual memory
page fault occurs, an arithmetic overflow occurs, or an instruction attempts a divide
by zero. On the other hand, the event might be unrelated to the execution of
the current instruction. For example, a system timer goes off or an I/O request
completes.

In any case, when the processor detects that the event has occurred, it makes
an indirect procedure call (the exception), through a jump table called an exception
table, to an operating system subroutine (the exception handler) that is specifically
designed to process this particular kind of event.

When the exception handler finishes processing, one of three things happens,
depending on the type of event that caused the exception:

1. The handler returns control to the current instruction Icurr , the instruction
that was executing when the event occurred.

2. The handler returns control to Inext , the instruction that would have executed
next had the exception not occurred.

3. The handler aborts the interrupted program.

Section 8.1.2 says more about these possibilities.

Aside Hardware vs. software exceptions

C++ and Java programmers will have noticed that the term “exception” is also used to describe the
application-level ECF mechanism provided by C++ and Java in the form of catch, throw, and try
statements. If we wanted to be perfectly clear, we might distinguish between “hardware” and “software”
exceptions, but this is usually unnecessary because the meaning is clear from the context.

8.1.1 Exception Handling

Exceptions can be difficult to understand because handling them involves close
cooperation between hardware and software. It is easy to get confused about
which component performs which task. Let’s look at the division of labor between
hardware and software in more detail.

Section 8.1 Exceptions 705

Figure 8.2
Exception table. The
exception table is a
jump table where entry
k contains the address
of the handler code for
exception k.

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n � 1

. . .

. . .

0
1
2

n � 1

Exception
table

Each type of possible exception in a system is assigned a unique nonnegative
integer exception number. Some of these numbers are assigned by the designers
of the processor. Other numbers are assigned by the designers of the operating
system kernel (the memory-resident part of the operating system). Examples of
the former include divide by zero, page faults, memory access violations, break-
points, and arithmetic overflows. Examples of the latter include system calls and
signals from external I/O devices.

At system boot time (when the computer is reset or powered on), the operat-
ing system allocates and initializes a jump table called an exception table, so that
entry k contains the address of the handler for exception k. Figure 8.2 shows the
format of an exception table.

At run time (when the system is executing some program), the processor
detects that an event has occurred and determines the corresponding exception
number k. The processor then triggers the exception by making an indirect pro-
cedure call, through entry k of the exception table, to the corresponding handler.
Figure 8.3 shows how the processor uses the exception table to form the address of
the appropriate exception handler. The exception number is an index into the ex-
ception table, whose starting address is contained in a special CPU register called
the exception table base register.

An exception is akin to a procedure call, but with some important differences.

. As with a procedure call, the processor pushes a return address on the stack
before branching to the handler. However, depending on the class of excep-
tion, the return address is either the current instruction (the instruction that

Figure 8.3
Generating the address
of an exception handler.
The exception number is
an index into the exception
table.

. . .

0
1
2

n � 1

Exception table

Address of entry
for exception # k

Exception number
(x 4)

Exception table
base register

�

706 Chapter 8 Exceptional Control Flow

was executing when the event occurred) or the next instruction (the instruc-
tion that would have executed after the current instruction had the event not
occurred).

. The processor also pushes some additional processor state onto the stack that
will be necessary to restart the interrupted program when the handler returns.
For example, an IA32 system pushes the EFLAGS register containing, among
other things, the current condition codes, onto the stack.

. If control is being transferred from a user program to the kernel, all of these
items are pushed onto the kernel’s stack rather than onto the user’s stack.

. Exception handlers run in kernel mode (Section 8.2.4), which means they have
complete access to all system resources.

Once the hardware triggers the exception, the rest of the work is done in software
by the exception handler. After the handler has processed the event, it optionally
returns to the interrupted program by executing a special “return from interrupt”
instruction, which pops the appropriate state back into the processor’s control
and data registers, restores the state to user mode (Section 8.2.4) if the exception
interrupted a user program, and then returns control to the interrupted program.

8.1.2 Classes of Exceptions

Exceptions can be divided into four classes: interrupts, traps, faults, and aborts.
The table in Figure 8.4 summarizes the attributes of these classes.

Interrupts

Interrupts occur asynchronously as a result of signals from I/O devices that are
external to the processor. Hardware interrupts are asynchronous in the sense
that they are not caused by the execution of any particular instruction. Exception
handlers for hardware interrupts are often called interrupt handlers.

Figure 8.5 summarizes the processing for an interrupt. I/O devices such as
network adapters, disk controllers, and timer chips trigger interrupts by signaling
a pin on the processor chip and placing onto the system bus the exception number
that identifies the device that caused the interrupt.

Class Cause Async/Sync Return behavior

Interrupt Signal from I/O device Async Always returns to next instruction
Trap Intentional exception Sync Always returns to next instruction
Fault Potentially recoverable error Sync Might return to current instruction
Abort Nonrecoverable error Sync Never returns

Figure 8.4 Classes of exceptions. Asynchronous exceptions occur as a result of events in I/O
devices that are external to the processor. Synchronous exceptions occur as a direct result of
executing an instruction.

Section 8.1 Exceptions 707

Figure 8.5
Interrupt handling.
The interrupt handler
returns control to the
next instruction in the
application program’s
control flow.

(2) Control passes
to handler after current

instruction finishes

(3) Interrupt
handler runs

(4) Handler
returns to

next instruction

(1) Interrupt pin
goes high during

execution of
current instruction

Icurr
Inext

After the current instruction finishes executing, the processor notices that the
interrupt pin has gone high, reads the exception number from the system bus, and
then calls the appropriate interrupt handler. When the handler returns, it returns
control to the next instruction (i.e., the instruction that would have followed the
current instruction in the control flow had the interrupt not occurred). The effect is
that the program continues executing as though the interrupt had never happened.

The remaining classes of exceptions (traps, faults, and aborts) occur syn-
chronously as a result of executing the current instruction. We refer to this in-
struction as the faulting instruction.

Traps and System Calls

Traps are intentional exceptions that occur as a result of executing an instruction.
Like interrupt handlers, trap handlers return control to the next instruction. The
most important use of traps is to provide a procedure-like interface between user
programs and the kernel known as a system call.

User programs often need to request services from the kernel such as reading
a file (read), creating a new process (fork), loading a new program (execve),
or terminating the current process (exit). To allow controlled access to such
kernel services, processors provide a special “syscall n” instruction that user
programs can execute when they want to request service n. Executing the syscall
instruction causes a trap to an exception handler that decodes the argument and
calls the appropriate kernel routine. Figure 8.6 summarizes the processing for
a system call. From a programmer’s perspective, a system call is identical to a

Figure 8.6
Trap handling. The trap
handler returns control
to the next instruction in
the application program’s
control flow.

(2) Control passes
to handler

(3) Trap
handler runs

(4) Handler returns
to instruction

following the syscall

(1) Application
makes a

system call

syscall
Inext

708 Chapter 8 Exceptional Control Flow

Figure 8.7
Fault handling. Depend-
ing on whether the fault
can be repaired or not,
the fault handler either
reexecutes the faulting
instruction or aborts.

(2) Control passes
to handler

(3) Fault
handler runs

(4) Handler either reexecutes
current instruction or aborts

(1) Current
instruction

causes a fault
Icurr

abort

regular function call. However, their implementations are quite different. Regular
functions run in user mode, which restricts the types of instructions they can
execute, and they access the same stack as the calling function. A system call runs
in kernel mode, which allows it to execute instructions, and accesses a stack defined
in the kernel. Section 8.2.4 discusses user and kernel modes in more detail.

Faults

Faults result from error conditions that a handler might be able to correct. When
a fault occurs, the processor transfers control to the fault handler. If the handler
is able to correct the error condition, it returns control to the faulting instruction,
thereby reexecuting it. Otherwise, the handler returns to an abort routine in the
kernel that terminates the application program that caused the fault. Figure 8.7
summarizes the processing for a fault.

A classic example of a fault is the page fault exception, which occurs when an
instruction references a virtual address whose corresponding physical page is not
resident in memory and must therefore be retrieved from disk. As we will see in
Chapter 9, a page is a contiguous block (typically 4 KB) of virtual memory. The
page fault handler loads the appropriate page from disk and then returns control
to the instruction that caused the fault. When the instruction executes again, the
appropriate physical page is resident in memory and the instruction is able to run
to completion without faulting.

Aborts

Aborts result from unrecoverable fatal errors, typically hardware errors such
as parity errors that occur when DRAM or SRAM bits are corrupted. Abort
handlers never return control to the application program. As shown in Figure 8.8,
the handler returns control to an abort routine that terminates the application
program.

8.1.3 Exceptions in Linux/IA32 Systems

To help make things more concrete, let’s look at some of the exceptions defined
for IA32 systems. There are up to 256 different exception types [27]. Numbers
in the range from 0 to 31 correspond to exceptions that are defined by the Intel
architects, and thus are identical for any IA32 system. Numbers in the range from

Section 8.1 Exceptions 709

Figure 8.8
Abort handling. The abort
handler passes control to a
kernel abort routine that
terminates the application
program.

(2) Control passes
to handler

(3) Abort
handler runs

(4) Handler returns
to abort routine

(1) Fatal hardware
error occurs

Icurr

abort

Exception number Description Exception class

0 Divide error Fault
13 General protection fault Fault
14 Page fault Fault
18 Machine check Abort

32–127 OS-defined exceptions Interrupt or trap
128 (0x80) System call Trap

129–255 OS-defined exceptions Interrupt or trap

Figure 8.9 Examples of exceptions in IA32 systems.

32 to 255 correspond to interrupts and traps that are defined by the operating
system. Figure 8.9 shows a few examples.

Linux/IA32 Faults and Aborts

Divide error. A divide error (exception 0) occurs when an application attempts to
divide by zero, or when the result of a divide instruction is too big for the destina-
tion operand. Unix does not attempt to recover from divide errors, opting instead
to abort the program. Linux shells typically report divide errors as “Floating ex-
ceptions.”

General protection fault.The infamous general protection fault (exception 13)
occurs for many reasons, usually because a program references an undefined area
of virtual memory, or because the program attempts to write to a read-only text
segment. Linux does not attempt to recover from this fault. Linux shells typically
report general protection faults as “Segmentation faults.”

Page fault. A page fault (exception 14) is an example of an exception where
the faulting instruction is restarted. The handler maps the appropriate page of
physical memory on disk into a page of virtual memory, and then restarts the
faulting instruction. We will see how page faults work in detail in Chapter 9.

Machine check. A machine check (exception 18) occurs as a result of a fatal
hardware error that is detected during the execution of the faulting instruction.
Machine check handlers never return control to the application program.

710 Chapter 8 Exceptional Control Flow

Number Name Description Number Name Description

1 exit Terminate process 27 alarm Set signal delivery alarm clock
2 fork Create new process 29 pause Suspend process until signal arrives
3 read Read file 37 kill Send signal to another process
4 write Write file 48 signal Install signal handler
5 open Open file 63 dup2 Copy file descriptor
6 close Close file 64 getppid Get parent’s process ID
7 waitpid Wait for child to terminate 65 getpgrp Get process group

11 execve Load and run program 67 sigaction Install portable signal handler
19 lseek Go to file offset 90 mmap Map memory page to file
20 getpid Get process ID 106 stat Get information about file

Figure 8.10 Examples of popular system calls in Linux/IA32 systems. Linux provides hundreds of system
calls. Source: /usr/include/sys/syscall.h.

Linux/IA32 System Calls

Linux provides hundreds of system calls that application programs use when they
want to request services from the kernel, such as reading a file, writing a file, or
creating a new process. Figure 8.10 shows some of the more popular Linux system
calls. Each system call has a unique integer number that corresponds to an offset
in a jump table in the kernel.

System calls are provided on IA32 systems via a trapping instruction called
int n, where n can be the index of any of the 256 entries in the IA32 exception
table. Historically, system calls are provided through exception 128 (0x80).

C programs can invoke any system call directly by using the syscall function.
However, this is rarely necessary in practice. The standard C library provides a
set of convenient wrapper functions for most system calls. The wrapper functions
package up the arguments, trap to the kernel with the appropriate system call
number, and then pass the return status of the system call back to the calling
program. Throughout this text, we will refer to system calls and their associated
wrapper functions interchangeably as system-level functions.

It is quite interesting to study how programs can use the int instruction
to invoke Linux system calls directly. All parameters to Linux system calls are
passed through general purpose registers rather than the stack. By convention,
register %eax contains the syscall number, and registers %ebx, %ecx, %edx, %esi,
%edi, and %ebp contain up to six arbitrary arguments. The stack pointer %esp
cannot be used because it is overwritten by the kernel when it enters kernel mode.

For example, consider the following version of the familiar hello program,
written using the write system-level function:

1 int main()

2 {

3 write(1, "hello, world\n", 13);

4 exit(0);

5 }

Section 8.1 Exceptions 711

code/ecf/hello-asm.sa

1 .section .data

2 string:

3 .ascii "hello, world\n"

4 string_end:

5 .equ len, string_end - string

6 .section .text

7 .globl main

8 main:

First, call write(1, "hello, world\n", 13)

9 movl $4, %eax System call number 4

10 movl $1, %ebx stdout has descriptor 1

11 movl $string, %ecx Hello world string

12 movl $len, %edx String length

13 int $0x80 System call code

Next, call exit(0)

14 movl $1, %eax System call number 0

15 movl $0, %ebx Argument is 0

16 int $0x80 System call code

code/ecf/hello-asm.sa

Figure 8.11 Implementing the hello program directly with Linux system calls.

The first argument to write sends the output to stdout. The second argument
is the sequence of bytes to write, and the third argument gives the number of bytes
to write.

Figure 8.11 shows an assembly language version of hello that uses the int
instruction to invoke the write and exit system calls directly. Lines 9–13 invoke
thewrite function. First, line 9 stores the number for thewrite system call in%eax,
and lines 10–12 set up the argument list. Then line 13 uses the int instruction to
invoke the system call. Similarly, lines 14–16 invoke the exit system call.

Aside A note on terminology

The terminology for the various classes of exceptions varies from system to system. Processor macroar-
chitecture specifications often distinguish between asynchronous “interrupts” and synchronous “excep-
tions,” yet provide no umbrella term to refer to these very similar concepts. To avoid having to constantly
refer to “exceptions and interrupts” and “exceptions or interrupts,” we use the word “exception” as
the general term and distinguish between asynchronous exceptions (interrupts) and synchronous ex-
ceptions (traps, faults, and aborts) only when it is appropriate. As we have noted, the basic ideas are
the same for every system, but you should be aware that some manufacturers’ manuals use the word
“exception” to refer only to those changes in control flow caused by synchronous events.

712 Chapter 8 Exceptional Control Flow

8.2 Processes

Exceptions are the basic building blocks that allow the operating system to provide
the notion of a process, one of the most profound and successful ideas in computer
science.

When we run a program on a modern system, we are presented with the
illusion that our program is the only one currently running in the system. Our
program appears to have exclusive use of both the processor and the memory.
The processor appears to execute the instructions in our program, one after the
other, without interruption. Finally, the code and data of our program appear to
be the only objects in the system’s memory. These illusions are provided to us by
the notion of a process.

The classic definition of a process is an instance of a program in execution.
Each program in the system runs in the context of some process. The context
consists of the state that the program needs to run correctly. This state includes the
program’s code and data stored in memory, its stack, the contents of its general-
purpose registers, its program counter, environment variables, and the set of open
file descriptors.

Each time a user runs a program by typing the name of an executable object
file to the shell, the shell creates a new process and then runs the executable object
file in the context of this new process. Application programs can also create new
processes and run either their own code or other applications in the context of the
new process.

A detailed discussion of how operating systems implement processes is be-
yond our scope. Instead, we will focus on the key abstractions that a process
provides to the application:

. An independent logical control flow that provides the illusion that our pro-
gram has exclusive use of the processor.

. A private address space that provides the illusion that our program has exclu-
sive use of the memory system.

Let’s look more closely at these abstractions.

8.2.1 Logical Control Flow

A process provides each program with the illusion that it has exclusive use of the
processor, even though many other programs are typically running concurrently
on the system. If we were to use a debugger to single step the execution of
our program, we would observe a series of program counter (PC) values that
corresponded exclusively to instructions contained in our program’s executable
object file or in shared objects linked into our program dynamically at run time.
This sequence of PC values is known as a logical control flow, or simply logical
flow.

Consider a system that runs three processes, as shown in Figure 8.12. The
single physical control flow of the processor is partitioned into three logical flows,
one for each process. Each vertical line represents a portion of the logical flow for

Section 8.2 Processes 713

Figure 8.12
Logical control flows.
Processes provide each
program with the illusion
that it has exclusive use of
the processor. Each vertical
bar represents a portion of
the logical control flow for
a process.

Process A Process B Process C

Time

a process. In the example, the execution of the three logical flows is interleaved.
Process A runs for a while, followed by B, which runs to completion. Process C
then runs for awhile, followed by A, which runs to completion. Finally, C is able
to run to completion.

The key point in Figure 8.12 is that processes take turns using the processor.
Each process executes a portion of its flow and then is preempted (temporarily
suspended) while other processes take their turns. To a program running in the
context of one of these processes, it appears to have exclusive use of the proces-
sor. The only evidence to the contrary is that if we were to precisely measure the
elapsed time of each instruction, we would notice that the CPU appears to peri-
odically stall between the execution of some of the instructions in our program.
However, each time the processor stalls, it subsequently resumes execution of our
program without any change to the contents of the program’s memory locations
or registers.

8.2.2 Concurrent Flows

Logical flows take many different forms in computer systems. Exception handlers,
processes, signal handlers, threads, and Java processes are all examples of logical
flows.

A logical flow whose execution overlaps in time with another flow is called
a concurrent flow, and the two flows are said to run concurrently. More precisely,
flows X and Y are concurrent with respect to each other if and only if X begins
after Y begins and before Y finishes, or Y begins after X begins and before X
finishes. For example, in Figure 8.12, processes A and B run concurrently, as do
A and C. On the other hand, B and C do not run concurrently, because the last
instruction of B executes before the first instruction of C.

The general phenomenon of multiple flows executing concurrently is known
as concurrency. The notion of a process taking turns with other processes is also
known as multitasking. Each time period that a process executes a portion of its
flow is called a time slice. Thus, multitasking is also referred to as time slicing. For
example, in Figure 8.12, the flow for Process A consists of two time slices.

Notice that the idea of concurrent flows is independent of the number of
processor cores or computers that the flows are running on. If two flows overlap
in time, then they are concurrent, even if they are running on the same processor.
However, we will sometimes find it useful to identify a proper subset of concurrent

714 Chapter 8 Exceptional Control Flow

flows known as parallel flows. If two flows are running concurrently on different
processor cores or computers, then we say that they are parallel flows, that they
are running in parallel, and have parallel execution.

Practice Problem 8.1
Consider three processes with the following starting and ending times:

Process Start time End time

A 0 2
B 1 4
C 3 5

For each pair of processes, indicate whether they run concurrently (y) or not
(n):

Process pair Concurrent?

AB
AC
BC

8.2.3 Private Address Space

A process provides each program with the illusion that it has exclusive use of the
system’s address space. On a machine with n-bit addresses, the address space is the
set of 2n possible addresses, 0, 1, . . . , 2n − 1. A process provides each program
with its own private address space. This space is private in the sense that a byte
of memory associated with a particular address in the space cannot in general be
read or written by any other process.

Although the contents of the memory associated with each private address
space is different in general, each such space has the same general organization.
For example, Figure 8.13 shows the organization of the address space for an x86
Linux process. The bottom portion of the address space is reserved for the user
program, with the usual text, data, heap, and stack segments. Code segments begin
at address 0x08048000 for 32-bit processes, and at address 0x00400000 for 64-bit
processes. The top portion of the address space is reserved for the kernel. This
part of the address space contains the code, data, and stack that the kernel uses
when it executes instructions on behalf of the process (e.g., when the application
program executes a system call).

8.2.4 User and Kernel Modes

In order for the operating system kernel to provide an airtight process abstraction,
the processor must provide a mechanism that restricts the instructions that an
application can execute, as well as the portions of the address space that it can
access.

Section 8.2 Processes 715

Figure 8.13
Process address space.

0x08048000 (32)
0x00400000 (64)

0

Memory
invisible to
user code

%esp (stack pointer)

brk

Loaded from the
executable file

User stack
(created at run time)

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

Read/write segment
(.data,.bss)

Read-only segment
(.init,.text,.rodata)

Kernel virtual memory
(code, data, heap, stack)

Processors typically provide this capability with a mode bit in some control
register that characterizes the privileges that the process currently enjoys. When
the mode bit is set, the process is running in kernel mode (sometimes called
supervisor mode). A process running in kernel mode can execute any instruction
in the instruction set and access any memory location in the system.

When the mode bit is not set, the process is running in user mode. A process
in user mode is not allowed to execute privileged instructions that do things such
as halt the processor, change the mode bit, or initiate an I/O operation. Nor is it
allowed to directly reference code or data in the kernel area of the address space.
Any such attempt results in a fatal protection fault. User programs must instead
access kernel code and data indirectly via the system call interface.

A process running application code is initially in user mode. The only way for
the process to change from user mode to kernel mode is via an exception such
as an interrupt, a fault, or a trapping system call. When the exception occurs, and
control passes to the exception handler, the processor changes the mode from user
mode to kernel mode. The handler runs in kernel mode. When it returns to the
application code, the processor changes the mode from kernel mode back to user
mode.

Linux provides a clever mechanism, called the /proc filesystem, that allows
user mode processes to access the contents of kernel data structures. The /proc
filesystem exports the contents of many kernel data structures as a hierarchy of text
files that can be read by user programs. For example, you can use the /proc filesys-
tem to find out general system attributes such as CPU type (/proc/cpuinfo), or
the memory segments used by a particular process (/proc/<process id>/maps).

716 Chapter 8 Exceptional Control Flow

The 2.6 version of the Linux kernel introduced a /sys filesystem, which exports
additional low-level information about system buses and devices.

8.2.5 Context Switches

The operating system kernel implements multitasking using a higher-level form
of exceptional control flow known as a context switch. The context switch mecha-
nism is built on top of the lower-level exception mechanism that we discussed in
Section 8.1.

The kernel maintains a context for each process. The context is the state
that the kernel needs to restart a preempted process. It consists of the values
of objects such as the general purpose registers, the floating-point registers, the
program counter, user’s stack, status registers, kernel’s stack, and various kernel
data structures such as a page table that characterizes the address space, a process
table that contains information about the current process, and a file table that
contains information about the files that the process has opened.

At certain points during the execution of a process, the kernel can decide
to preempt the current process and restart a previously preempted process. This
decision is known as scheduling, and is handled by code in the kernel called the
scheduler. When the kernel selects a new process to run, we say that the kernel
has scheduled that process. After the kernel has scheduled a new process to run,
it preempts the current process and transfers control to the new process using
a mechanism called a context switch that (1) saves the context of the current
process, (2) restores the saved context of some previously preempted process, and
(3) passes control to this newly restored process.

A context switch can occur while the kernel is executing a system call on behalf
of the user. If the system call blocks because it is waiting for some event to occur,
then the kernel can put the current process to sleep and switch to another process.
For example, if a read system call requires a disk access, the kernel can opt to
perform a context switch and run another process instead of waiting for the data
to arrive from the disk. Another example is the sleep system call, which is an
explicit request to put the calling process to sleep. In general, even if a system
call does not block, the kernel can decide to perform a context switch rather than
return control to the calling process.

A context switch can also occur as a result of an interrupt. For example, all
systems have some mechanism for generating periodic timer interrupts, typically
every 1 ms or 10 ms. Each time a timer interrupt occurs, the kernel can decide that
the current process has run long enough and switch to a new process.

Figure 8.14 shows an example of context switching between a pair of processes
A and B. In this example, initially process A is running in user mode until it traps to
the kernel by executing a read system call. The trap handler in the kernel requests
a DMA transfer from the disk controller and arranges for the disk to interrupt the
processor after the disk controller has finished transferring the data from disk to
memory.

The disk will take a relatively long time to fetch the data (on the order of
tens of milliseconds), so instead of waiting and doing nothing in the interim, the
kernel performs a context switch from process A to B. Note that before the switch,

Section 8.3 System Call Error Handling 717

Figure 8.14
Anatomy of a process
context switch.

Process A Process B

User code

Kernel code

Kernel code

User code

User code

Context
switch

Context
switch

Time

read

Disk interrupt

Return
from read

the kernel is executing instructions in user mode on behalf of process A. During
the first part of the switch, the kernel is executing instructions in kernel mode on
behalf of process A. Then at some point it begins executing instructions (still in
kernel mode) on behalf of process B. And after the switch, the kernel is executing
instructions in user mode on behalf of process B.

Process B then runs for a while in user mode until the disk sends an interrupt
to signal that data has been transferred from disk to memory. The kernel decides
that process B has run long enough and performs a context switch from process B
to A, returning control in process A to the instruction immediately following the
read system call. Process A continues to run until the next exception occurs, and
so on.

Aside Cache pollution and exceptional control flow

In general, hardware cache memories do not interact well with exceptional control flows such as
interrupts and context switches. If the current process is interrupted briefly by an interrupt, then the
cache is cold for the interrupt handler. If the handler accesses enough items from main memory, then
the cache will also be cold for the interrupted process when it resumes. In this case, we say that the
handler has polluted the cache. A similar phenomenon occurs with context switches. When a process
resumes after a context switch, the cache is cold for the application program and must be warmed up
again.

8.3 System Call Error Handling

When Unix system-level functions encounter an error, they typically return −1
and set the global integer variable errno to indicate what went wrong. Program-
mers should always check for errors, but unfortunately, many skip error checking
because it bloats the code and makes it harder to read. For example, here is how
we might check for errors when we call the Linux fork function:

1 if ((pid = fork()) < 0) {

2 fprintf(stderr, "fork error: %s\n", strerror(errno));

3 exit(0);

4 }

718 Chapter 8 Exceptional Control Flow

The strerror function returns a text string that describes the error associated
with a particular value of errno. We can simplify this code somewhat by defining
the following error-reporting function:

1 void unix_error(char *msg) /* Unix-style error */

2 {

3 fprintf(stderr, "%s: %s\n", msg, strerror(errno));

4 exit(0);

5 }

Given this function, our call to fork reduces from four lines to two lines:

1 if ((pid = fork()) < 0)

2 unix_error("fork error");

We can simplify our code even further by using error-handling wrappers.
For a given base function foo, we define a wrapper function Foo with identical
arguments, but with the first letter of the name capitalized. The wrapper calls the
base function, checks for errors, and terminates if there are any problems. For
example, here is the error-handling wrapper for the fork function:

1 pid_t Fork(void)

2 {

3 pid_t pid;

4

5 if ((pid = fork()) < 0)

6 unix_error("Fork error");

7 return pid;

8 }

Given this wrapper, our call to fork shrinks to a single compact line:

1 pid = Fork();

We will use error-handling wrappers throughout the remainder of this book.
They allow us to keep our code examples concise, without giving you the mistaken
impression that it is permissible to ignore error checking. Note that when we
discuss system-level functions in the text, we will always refer to them by their
lowercase base names, rather than by their uppercase wrapper names.

See Appendix A for a discussion of Unix error handling and the error-
handling wrappers used throughout this book. The wrappers are defined in a file
called csapp.c, and their prototypes are defined in a header file called csapp.h;
these are available online from the CS:APP Web site.

8.4 Process Control

Unix provides a number of system calls for manipulating processes from C pro-
grams. This section describes the important functions and gives examples of how
they are used.

Section 8.4 Process Control 719

8.4.1 Obtaining Process IDs

Each process has a unique positive (nonzero) process ID (PID). The getpid
function returns the PID of the calling process. The getppid function returns the
PID of its parent (i.e., the process that created the calling process).

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

pid_t getppid(void);

Returns: PID of either the caller or the parent

The getpid and getppid routines return an integer value of type pid_t, which on
Linux systems is defined in types.h as an int.

8.4.2 Creating and Terminating Processes

From a programmer’s perspective, we can think of a process as being in one of
three states:

. Running. The process is either executing on the CPU or is waiting to be
executed and will eventually be scheduled by the kernel.

. Stopped.The execution of the process is suspended and will not be scheduled.
A process stops as a result of receiving a SIGSTOP, SIGTSTP, SIGTTIN, or
SIGTTOU signal, and it remains stopped until it receives a SIGCONT signal,
at which point it can begin running again. (A signal is a form of software
interrupt that is described in detail in Section 8.5.)

. Terminated. The process is stopped permanently. A process becomes termi-
nated for one of three reasons: (1) receiving a signal whose default action is
to terminate the process, (2) returning from the main routine, or (3) calling
the exit function:

#include <stdlib.h>

void exit(int status);

This function does not return

The exit function terminates the process with an exit status of status. (The other
way to set the exit status is to return an integer value from the main routine.)

720 Chapter 8 Exceptional Control Flow

A parent process creates a new running child process by calling the fork
function.

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

Returns: 0 to child, PID of child to parent, −1 on error

The newly created child process is almost, but not quite, identical to the par-
ent. The child gets an identical (but separate) copy of the parent’s user-level virtual
address space, including the text, data, and bss segments, heap, and user stack. The
child also gets identical copies of any of the parent’s open file descriptors, which
means the child can read and write any files that were open in the parent when
it called fork. The most significant difference between the parent and the newly
created child is that they have different PIDs.

The fork function is interesting (and often confusing) because it is called once
but it returns twice: once in the calling process (the parent), and once in the newly
created child process. In the parent, fork returns the PID of the child. In the child,
fork returns a value of 0. Since the PID of the child is always nonzero, the return
value provides an unambiguous way to tell whether the program is executing in
the parent or the child.

Figure 8.15 shows a simple example of a parent process that usesfork to create
a child process. When the fork call returns in line 8, x has a value of 1 in both the
parent and child. The child increments and prints its copy of x in line 10. Similarly,
the parent decrements and prints its copy of x in line 15.

When we run the program on our Unix system, we get the following result:

unix> ./fork

parent: x=0

child : x=2

There are some subtle aspects to this simple example.

. Call once, return twice. The fork function is called once by the parent, but it
returns twice: once to the parent and once to the newly created child. This is
fairly straightforward for programs that create a single child. But programs
with multiple instances of fork can be confusing and need to be reasoned
about carefully.

. Concurrent execution. The parent and the child are separate processes that
run concurrently. The instructions in their logical control flows can be inter-
leaved by the kernel in an arbitrary way. When we run the program on our
system, the parent process completes its printf statement first, followed by
the child. However, on another system the reverse might be true. In general,
as programmers we can never make assumptions about the interleaving of the
instructions in different processes.

Section 8.4 Process Control 721

code/ecf/fork.c

1 #include "csapp.h"

2

3 int main()

4 {

5 pid_t pid;

6 int x = 1;

7

8 pid = Fork();

9 if (pid == 0) { /* Child */

10 printf("child : x=%d\n", ++x);

11 exit(0);

12 }

13

14 /* Parent */

15 printf("parent: x=%d\n", --x);

16 exit(0);

17 }

code/ecf/fork.c

Figure 8.15 Using fork to create a new process.

. Duplicate but separate address spaces. If we could halt both the parent and
the child immediately after the fork function returned in each process, we
would see that the address space of each process is identical. Each process
has the same user stack, the same local variable values, the same heap, the
same global variable values, and the same code. Thus, in our example program,
local variable x has a value of 1 in both the parent and the child when the fork
function returns in line 8. However, since the parent and the child are separate
processes, they each have their own private address spaces. Any subsequent
changes that a parent or child makes to x are private and are not reflected in
the memory of the other process. This is why the variable xhas different values
in the parent and child when they call their respective printf statements.

. Shared files. When we run the example program, we notice that both parent
and child print their output on the screen. The reason is that the child inherits
all of the parent’s open files. When the parent calls fork, the stdout file is
open and directed to the screen. The child inherits this file and thus its output
is also directed to the screen.

When you are first learning about the fork function, it is often helpful to
sketch the process graph, where each horizontal arrow corresponds to a process
that executes instructions from left to right, and each vertical arrow corresponds
to the execution of a fork function.

For example, how many lines of output would the program in Figure 8.16(a)
generate? Figure 8.16(b) shows the corresponding process graph. The parent

722 Chapter 8 Exceptional Control Flow

(a) Calls fork once

1 #include "csapp.h"

2

3 int main()

4 {

5 Fork();

6 printf("hello\n");

7 exit(0);

8 }

(b) Prints two output lines

hello

hello

forkfork

(c) Calls fork twice

1 #include "csapp.h"

2

3 int main()

4 {

5 Fork();

6 Fork();

7 printf("hello\n");

8 exit(0);

9 }

(d) Prints four output lines

hello

hello

forkforkforkfork

hello

hello

(e) Calls fork three times

1 #include "csapp.h"

2

3 int main()

4 {

5 Fork();

6 Fork();

7 Fork();

8 printf("hello\n");

9 exit(0);

10 }

(f) Prints eight output lines

hello

hello

forkforkforkforkforkfork

hello

hello

hello

hello

hello

hello

Figure 8.16 Examples of fork programs and their process graphs.

creates a child when it executes the first (and only) fork in the program. Each
of these calls printf once, so the program prints two output lines.

Now what if we were to call fork twice, as shown in Figure 8.16(c)? As we see
from Figure 8.16(d), the parent calls fork to create a child, and then the parent
and child each call fork, which results in two more processes. Thus, there are four
processes, each of which calls printf, so the program generates four output lines.

Section 8.4 Process Control 723

Continuing this line of thought, what would happen if we were to call fork
three times, as in Figure 8.16(e)? As we see from the process graph in Fig-
ure 8.16(f), there are a total of eight processes. Each process calls printf, so
the program produces eight output lines.

Practice Problem 8.2
Consider the following program:

code/ecf/forkprob0.c

1 #include "csapp.h"

2

3 int main()

4 {

5 int x = 1;

6

7 if (Fork() == 0)

8 printf("printf1: x=%d\n", ++x);

9 printf("printf2: x=%d\n", --x);

10 exit(0);

11 }

code/ecf/forkprob0.c

A. What is the output of the child process?

B. What is the output of the parent process?

8.4.3 Reaping Child Processes

When a process terminates for any reason, the kernel does not remove it from
the system immediately. Instead, the process is kept around in a terminated state
until it is reaped by its parent. When the parent reaps the terminated child, the
kernel passes the child’s exit status to the parent, and then discards the terminated
process, at which point it ceases to exist. A terminated process that has not yet been
reaped is called a zombie.

Aside Why are terminated children called zombies?

In folklore, a zombie is a living corpse, an entity that is half alive and half dead. A zombie process is
similar in the sense that while it has already terminated, the kernel maintains some of its state until it
can be reaped by the parent.

If the parent process terminates without reaping its zombie children, the
kernel arranges for the init process to reap them. The init process has a PID of
1 and is created by the kernel during system initialization. Long-running programs

724 Chapter 8 Exceptional Control Flow

such as shells or servers should always reap their zombie children. Even though
zombies are not running, they still consume system memory resources.

A process waits for its children to terminate or stop by calling the waitpid
function.

#include <sys/types.h>

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *status, int options);

Returns: PID of child if OK, 0 (if WNOHANG) or −1 on error

The waitpid function is complicated. By default (when options = 0), waitpid
suspends execution of the calling process until a child process in its wait set
terminates. If a process in the wait set has already terminated at the time of the
call, then waitpid returns immediately. In either case, waitpid returns the PID
of the terminated child that caused waitpid to return, and the terminated child is
removed from the system.

Determining the Members of the Wait Set

The members of the wait set are determined by the pid argument:

. If pid > 0, then the wait set is the singleton child process whose process ID is
equal to pid.

. If pid = -1, then the wait set consists of all of the parent’s child processes.

The waitpid function also supports other kinds of wait sets, involving Unix
process groups, that we will not discuss.

Modifying the Default Behavior

The default behavior can be modified by setting options to various combinations
of the WNOHANG and WUNTRACED constants:

. WNOHANG: Return immediately (with a return value of 0) if none of the
child processes in the wait set has terminated yet. The default behavior sus-
pends the calling process until a child terminates. This option is useful in those
cases where you want to continue doing useful work while waiting for a child
to terminate.

. WUNTRACED: Suspend execution of the calling process until a process in
the wait set becomes either terminated or stopped. Return the PID of the
terminated or stopped child that caused the return. The default behavior
returns only for terminated children. This option is useful when you want to
check for both terminated and stopped children.

. WNOHANG|WUNTRACED: Return immediately, with a return value of
0, if none of the children in the wait set has stopped or terminated, or with a
return value equal to the PID of one of the stopped or terminated children.

Section 8.4 Process Control 725

Checking the Exit Status of a Reaped Child

If the status argument is non-NULL, then waitpid encodes status information
about the child that caused the return in the status argument. The wait.h include
file defines several macros for interpreting the status argument:

. WIFEXITED(status): Returns true if the child terminated normally, via a
call to exit or a return.

. WEXITSTATUS(status): Returns the exit status of a normally terminated
child. This status is only defined if WIFEXITED returned true.

. WIFSIGNALED(status): Returns true if the child process terminated be-
cause of a signal that was not caught. (Signals are explained in Section 8.5.)

. WTERMSIG(status): Returns the number of the signal that caused the child
process to terminate. This status is only defined if WIFSIGNALED(status)
returned true.

. WIFSTOPPED(status): Returns true if the child that caused the return is
currently stopped.

. WSTOPSIG(status): Returns the number of the signal that caused the child
to stop. This status is only defined if WIFSTOPPED(status) returned true.

Error Conditions

If the calling process has no children, then waitpid returns −1 and sets errno to
ECHILD. If the waitpid function was interrupted by a signal, then it returns −1
and sets errno to EINTR.

Aside Constants associated with Unix functions

Constants such as WNOHANG and WUNTRACED are defined by system header files. For example,
WNOHANG and WUNTRACED are defined (indirectly) by the wait.h header file:

/* Bits in the third argument to ‘waitpid’. */

#define WNOHANG 1 /* Don’t block waiting. */

#define WUNTRACED 2 /* Report status of stopped children. */

In order to use these constants, you must include the wait.h header file in your code:

#include <sys/wait.h>

The man page for each Unix function lists the header files to include whenever you use that function
in your code. Also, in order to check return codes such as ECHILD and EINTR, you must include
errno.h. To simplify our code examples, we include a single header file called csapp.h that includes
the header files for all of the functions used in the book. The csapp.h header file is available online
from the CS:APP Web site.

726 Chapter 8 Exceptional Control Flow

Practice Problem 8.3
List all of the possible output sequences for the following program:

code/ecf/waitprob0.c

1 int main()

2 {

3 if (Fork() == 0) {

4 printf("a");

5 }

6 else {

7 printf("b");

8 waitpid(-1, NULL, 0);

9 }

10 printf("c");

11 exit(0);

12 }

code/ecf/waitprob0.c

The wait Function

The wait function is a simpler version of waitpid:

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

Returns: PID of child if OK or −1 on error

Calling wait(&status) is equivalent to calling waitpid(-1, &status, 0).

Examples of Using waitpid

Because the waitpid function is somewhat complicated, it is helpful to look at
a few examples. Figure 8.17 shows a program that uses waitpid to wait, in no
particular order, for all of its N children to terminate.

In line 11, the parent creates each of the N children, and in line 12, each child
exits with a unique exit status. Before moving on, make sure you understand why
line 12 is executed by each of the children, but not the parent.

In line 15, the parent waits for all of its children to terminate by using waitpid
as the test condition of a while loop. Because the first argument is −1, the call to
waitpid blocks until an arbitrary child has terminated. As each child terminates,
the call to waitpid returns with the nonzero PID of that child. Line 16 checks the
exit status of the child. If the child terminated normally, in this case by calling the
exit function, then the parent extracts the exit status and prints it on stdout.

Section 8.4 Process Control 727

code/ecf/waitpid1.c

1 #include "csapp.h"

2 #define N 2

3

4 int main()

5 {

6 int status, i;

7 pid_t pid;

8

9 /* Parent creates N children */

10 for (i = 0; i < N; i++)

11 if ((pid = Fork()) == 0) /* Child */

12 exit(100+i);

13

14 /* Parent reaps N children in no particular order */

15 while ((pid = waitpid(-1, &status, 0)) > 0) {

16 if (WIFEXITED(status))

17 printf("child %d terminated normally with exit status=%d\n",

18 pid, WEXITSTATUS(status));

19 else

20 printf("child %d terminated abnormally\n", pid);

21 }

22

23 /* The only normal termination is if there are no more children */

24 if (errno != ECHILD)

25 unix_error("waitpid error");

26

27 exit(0);

28 }

code/ecf/waitpid1.c

Figure 8.17 Using the waitpid function to reap zombie children in no particular order.

When all of the children have been reaped, the next call to waitpid returns −1
and sets errno to ECHILD. Line 24 checks that the waitpid function terminated
normally, and prints an error message otherwise. When we run the program on
our Unix system, it produces the following output:

unix> ./waitpid1

child 22966 terminated normally with exit status=100

child 22967 terminated normally with exit status=101

Notice that the program reaps its children in no particular order. The order
that they were reaped is a property of this specific computer system. On another

728 Chapter 8 Exceptional Control Flow

code/ecf/waitpid2.c

1 #include "csapp.h"

2 #define N 2

3

4 int main()

5 {

6 int status, i;

7 pid_t pid[N], retpid;

8

9 /* Parent creates N children */

10 for (i = 0; i < N; i++)

11 if ((pid[i] = Fork()) == 0) /* Child */

12 exit(100+i);

13

14 /* Parent reaps N children in order */

15 i = 0;

16 while ((retpid = waitpid(pid[i++], &status, 0)) > 0) {

17 if (WIFEXITED(status))

18 printf("child %d terminated normally with exit status=%d\n",

19 retpid, WEXITSTATUS(status));

20 else

21 printf("child %d terminated abnormally\n", retpid);

22 }

23

24 /* The only normal termination is if there are no more children */

25 if (errno != ECHILD)

26 unix_error("waitpid error");

27

28 exit(0);

29 }

code/ecf/waitpid2.c

Figure 8.18 Using waitpid to reap zombie children in the order they were created.

system, or even another execution on the same system, the two children might
have been reaped in the opposite order. This is an example of the nondeterministic
behavior that can make reasoning about concurrency so difficult. Either of the two
possible outcomes is equally correct, and as a programmer you may never assume
that one outcome will always occur, no matter how unlikely the other outcome
appears to be. The only correct assumption is that each possible outcome is equally
likely.

Figure 8.18 shows a simple change that eliminates this nondeterminism in the
output order by reaping the children in the same order that they were created by
the parent. In line 11, the parent stores the PIDs of its children in order, and then
waits for each child in this same order by calling waitpid with the appropriate
PID in the first argument.

Section 8.4 Process Control 729

Practice Problem 8.4
Consider the following program:

code/ecf/waitprob1.c

1 int main()

2 {

3 int status;

4 pid_t pid;

5

6 printf("Hello\n");

7 pid = Fork();

8 printf("%d\n", !pid);

9 if (pid != 0) {

10 if (waitpid(-1, &status, 0) > 0) {

11 if (WIFEXITED(status) != 0)

12 printf("%d\n", WEXITSTATUS(status));

13 }

14 }

15 printf("Bye\n");

16 exit(2);

17 }

code/ecf/waitprob1.c

A. How many output lines does this program generate?

B. What is one possible ordering of these output lines?

8.4.4 Putting Processes to Sleep

The sleep function suspends a process for a specified period of time.

#include <unistd.h>

unsigned int sleep(unsigned int secs);

Returns: seconds left to sleep

Sleep returns zero if the requested amount of time has elapsed, and the number of
seconds still left to sleep otherwise. The latter case is possible if the sleep function
returns prematurely because it was interrupted by a signal. We will discuss signals
in detail in Section 8.5.

730 Chapter 8 Exceptional Control Flow

Another function that we will find useful is the pause function, which puts the
calling function to sleep until a signal is received by the process.

#include <unistd.h>

int pause(void);

Always returns −1

Practice Problem 8.5
Write a wrapper function for sleep, called snooze, with the following interface:

unsigned int snooze(unsigned int secs);

The snooze function behaves exactly as the sleep function, except that it prints
a message describing how long the process actually slept:

Slept for 4 of 5 secs.

8.4.5 Loading and Running Programs

The execve function loads and runs a new program in the context of the current
process.

#include <unistd.h>

int execve(const char *filename, const char *argv[],

const char *envp[]);

Does not return if OK, returns −1 on error

The execve function loads and runs the executable object file filename with the
argument list argv and the environment variable list envp. Execve returns to the
calling program only if there is an error such as not being able to find filename.
So unlike fork, which is called once but returns twice, execve is called once and
never returns.

The argument list is represented by the data structure shown in Figure 8.19.
The argv variable points to a null-terminated array of pointers, each of which

Figure 8.19
Organization of an
argument list.

…

argv[]argv[]

argv[0] "ls"

"-lt"

"/user/include"

argv

argv[1]

argv[argc � 1]

NULL

Section 8.4 Process Control 731

Figure 8.20
Organization of an
environment variable
list. …

envp[]envp[]

envp[0] "PWD�/usr/droh"

"PRINTER�iron"

"USER�droh"

envp

envp[1]

envp[n � 1]

NULL

points to an argument string. By convention, argv[0] is the name of the executable
object file. The list of environment variables is represented by a similar data
structure, shown in Figure 8.20. Theenvp variable points to a null-terminated array
of pointers to environment variable strings, each of which is a name-value pair of
the form “NAME=VALUE”.

After execve loads filename, it calls the startup code described in Section 7.9.
The startup code sets up the stack and passes control to the main routine of the
new program, which has a prototype of the form

int main(int argc, char **argv, char **envp);

or equivalently,

int main(int argc, char *argv[], char *envp[]);

When main begins executing in a 32-bit Linux process, the user stack has the
organization shown in Figure 8.21. Let’s work our way from the bottom of the
stack (the highest address) to the top (the lowest address). First are the argument

Figure 8.21
Typical organization of
the user stack when a
new program starts.

0xbffffa7c

0xbfffffff Bottom of stack

Top of stack

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

Stack frame for
main

Unused
envp[n]��NULL

envp[n�1]

envp[0]

argv[argc]��NULL

argv[argc�1]

argv[0]

(Dynamic linker variables)
envp

argv

environ

argc

…
…

732 Chapter 8 Exceptional Control Flow

and environment strings, which are stored contiguously on the stack, one after
the other without any gaps. These are followed further up the stack by a null-
terminated array of pointers, each of which points to an environment variable
string on the stack. The global variable environpoints to the first of these pointers,
envp[0]. The environment array is followed immediately by the null-terminated
argv[] array, with each element pointing to an argument string on the stack. At
the top of the stack are the three arguments to the main routine: (1) envp, which
points to the envp[] array, (2) argv, which points to the argv[] array, and (3)
argc, which gives the number of non-null pointers in the argv[] array.

Unix provides several functions for manipulating the environment array:

#include <stdlib.h>

char *getenv(const char *name);

Returns: ptr to name if exists, NULL if no match

The getenv function searches the environment array for a string
“name=value”. If found, it returns a pointer to value, otherwise it returns
NULL.

#include <stdlib.h>

int setenv(const char *name, const char *newvalue, int overwrite);

Returns: 0 on success, −1 on error

void unsetenv(const char *name);

Returns: nothing

If the environment array contains a string of the form “name=oldvalue”, then
unsetenv deletes it and setenv replaces oldvalue with newvalue, but only if
overwrite is nonzero. If name does not exist, then setenv adds “name=newvalue”
to the array.

Aside Programs vs. processes

This is a good place to pause and make sure you understand the distinction between a program and a
process. A program is a collection of code and data; programs can exist as object modules on disk or
as segments in an address space. A process is a specific instance of a program in execution; a program
always runs in the context of some process. Understanding this distinction is important if you want to
understand the fork and execve functions. The fork function runs the same program in a new child
process that is a duplicate of the parent. The execve function loads and runs a new program in the

Section 8.4 Process Control 733

context of the current process. While it overwrites the address space of the current process, it does not
create a new process. The new program still has the same PID, and it inherits all of the file descriptors
that were open at the time of the call to the execve function.

Practice Problem 8.6
Write a program called myecho that prints its command line arguments and envi-
ronment variables. For example:

unix> ./myecho arg1 arg2

Command line arguments:

argv[0]: myecho

argv[1]: arg1

argv[2]: arg2

Environment variables:

envp[0]: PWD=/usr0/droh/ics/code/ecf

envp[1]: TERM=emacs

...

envp[25]: USER=droh

envp[26]: SHELL=/usr/local/bin/tcsh

envp[27]: HOME=/usr0/droh

8.4.6 Using fork and execve to Run Programs

Programs such as Unix shells and Web servers (Chapter 11) make heavy use of
the fork and execve functions. A shell is an interactive application-level program
that runs other programs on behalf of the user. The original shell was the sh
program, which was followed by variants such as csh, tcsh, ksh, and bash. A
shell performs a sequence of read/evaluate steps, and then terminates. The read
step reads a command line from the user. The evaluate step parses the command
line and runs programs on behalf of the user.

Figure 8.22 shows the main routine of a simple shell. The shell prints a
command-line prompt, waits for the user to type a command line on stdin, and
then evaluates the command line.

Figure 8.23 shows the code that evaluates the command line. Its first task is
to call the parseline function (Figure 8.24), which parses the space-separated
command-line arguments and builds the argv vector that will eventually be passed
to execve. The first argument is assumed to be either the name of a built-in shell
command that is interpreted immediately, or an executable object file that will be
loaded and run in the context of a new child process.

If the last argument is an “&” character, then parseline returns 1, indicating
that the program should be executed in the background (the shell does not wait

734 Chapter 8 Exceptional Control Flow

code/ecf/shellex.c

1 #include "csapp.h"

2 #define MAXARGS 128

3

4 /* Function prototypes */

5 void eval(char *cmdline);

6 int parseline(char *buf, char **argv);

7 int builtin_command(char **argv);

8

9 int main()

10 {

11 char cmdline[MAXLINE]; /* Command line */

12

13 while (1) {

14 /* Read */

15 printf("> ");

16 Fgets(cmdline, MAXLINE, stdin);

17 if (feof(stdin))

18 exit(0);

19

20 /* Evaluate */

21 eval(cmdline);

22 }

23 }

code/ecf/shellex.c

Figure 8.22 The main routine for a simple shell program.

for it to complete). Otherwise it returns 0, indicating that the program should be
run in the foreground (the shell waits for it to complete).

After parsing the command line, the eval function calls the builtin_command
function, which checks whether the first command line argument is a built-in shell
command. If so, it interprets the command immediately and returns 1. Otherwise,
it returns 0. Our simple shell has just one built-in command, the quit command,
which terminates the shell. Real shells have numerous commands, such as pwd,
jobs, and fg.

If builtin_command returns 0, then the shell creates a child process and
executes the requested program inside the child. If the user has asked for the
program to run in the background, then the shell returns to the top of the loop and
waits for the next command line. Otherwise the shell uses the waitpid function
to wait for the job to terminate. When the job terminates, the shell goes on to the
next iteration.

Notice that this simple shell is flawed because it does not reap any of its
background children. Correcting this flaw requires the use of signals, which we
describe in the next section.

Section 8.4 Process Control 735

code/ecf/shellex.c

1 /* eval - Evaluate a command line */

2 void eval(char *cmdline)

3 {

4 char *argv[MAXARGS]; /* Argument list execve() */

5 char buf[MAXLINE]; /* Holds modified command line */

6 int bg; /* Should the job run in bg or fg? */

7 pid_t pid; /* Process id */

8

9 strcpy(buf, cmdline);

10 bg = parseline(buf, argv);

11 if (argv[0] == NULL)

12 return; /* Ignore empty lines */

13

14 if (!builtin_command(argv)) {

15 if ((pid = Fork()) == 0) { /* Child runs user job */

16 if (execve(argv[0], argv, environ) < 0) {

17 printf("%s: Command not found.\n", argv[0]);

18 exit(0);

19 }

20 }

21

22 /* Parent waits for foreground job to terminate */

23 if (!bg) {

24 int status;

25 if (waitpid(pid, &status, 0) < 0)

26 unix_error("waitfg: waitpid error");

27 }

28 else

29 printf("%d %s", pid, cmdline);

30 }

31 return;

32 }

33

34 /* If first arg is a builtin command, run it and return true */

35 int builtin_command(char **argv)

36 {

37 if (!strcmp(argv[0], "quit")) /* quit command */

38 exit(0);

39 if (!strcmp(argv[0], "&")) /* Ignore singleton & */

40 return 1;

41 return 0; /* Not a builtin command */

42 }

code/ecf/shellex.c

Figure 8.23 eval: Evaluates the shell command line.

736 Chapter 8 Exceptional Control Flow

code/ecf/shellex.c

1 /* parseline - Parse the command line and build the argv array */

2 int parseline(char *buf, char **argv)

3 {

4 char *delim; /* Points to first space delimiter */

5 int argc; /* Number of args */

6 int bg; /* Background job? */

7

8 buf[strlen(buf)-1] = ’ ’; /* Replace trailing ’\n’ with space */

9 while (*buf && (*buf == ’ ’)) /* Ignore leading spaces */

10 buf++;

11

12 /* Build the argv list */

13 argc = 0;

14 while ((delim = strchr(buf, ’ ’))) {

15 argv[argc++] = buf;

16 *delim = ’\0’;

17 buf = delim + 1;

18 while (*buf && (*buf == ’ ’)) /* Ignore spaces */

19 buf++;

20 }

21 argv[argc] = NULL;

22

23 if (argc == 0) /* Ignore blank line */

24 return 1;

25

26 /* Should the job run in the background? */

27 if ((bg = (*argv[argc-1] == ’&’)) != 0)

28 argv[--argc] = NULL;

29

30 return bg;

31 }

code/ecf/shellex.c

Figure 8.24 parseline: Parses a line of input for the shell.

8.5 Signals

To this point in our study of exceptional control flow, we have seen how hardware
and software cooperate to provide the fundamental low-level exception mecha-
nism. We have also seen how the operating system uses exceptions to support a
form of exceptional control flow known as the process context switch. In this sec-
tion, we will study a higher-level software form of exceptional control flow, known
as a Unix signal, that allows processes and the kernel to interrupt other processes.

Section 8.5 Signals 737

Number Name Default action Corresponding event

1 SIGHUP Terminate Terminal line hangup
2 SIGINT Terminate Interrupt from keyboard
3 SIGQUIT Terminate Quit from keyboard
4 SIGILL Terminate Illegal instruction
5 SIGTRAP Terminate and dump core (1) Trace trap
6 SIGABRT Terminate and dump core (1) Abort signal from abort function
7 SIGBUS Terminate Bus error
8 SIGFPE Terminate and dump core (1) Floating point exception
9 SIGKILL Terminate (2) Kill program

10 SIGUSR1 Terminate User-defined signal 1
11 SIGSEGV Terminate and dump core (1) Invalid memory reference (seg fault)
12 SIGUSR2 Terminate User-defined signal 2
13 SIGPIPE Terminate Wrote to a pipe with no reader
14 SIGALRM Terminate Timer signal from alarm function
15 SIGTERM Terminate Software termination signal
16 SIGSTKFLT Terminate Stack fault on coprocessor
17 SIGCHLD Ignore A child process has stopped or terminated
18 SIGCONT Ignore Continue process if stopped
19 SIGSTOP Stop until next SIGCONT (2) Stop signal not from terminal
20 SIGTSTP Stop until next SIGCONT Stop signal from terminal
21 SIGTTIN Stop until next SIGCONT Background process read from terminal
22 SIGTTOU Stop until next SIGCONT Background process wrote to terminal
23 SIGURG Ignore Urgent condition on socket
24 SIGXCPU Terminate CPU time limit exceeded
25 SIGXFSZ Terminate File size limit exceeded
26 SIGVTALRM Terminate Virtual timer expired
27 SIGPROF Terminate Profiling timer expired
28 SIGWINCH Ignore Window size changed
29 SIGIO Terminate I/O now possible on a descriptor
30 SIGPWR Terminate Power failure

Figure 8.25 Linux signals. Notes: (1) Years ago, main memory was implemented with a technology known
as core memory . “Dumping core” is a historical term that means writing an image of the code and data
memory segments to disk. (2) This signal can neither be caught nor ignored.

A signal is a small message that notifies a process that an event of some type
has occurred in the system. For example, Figure 8.25 shows the 30 different types
of signals that are supported on Linux systems. Typing “man 7 signal” on the shell
command line gives the list.

Each signal type corresponds to some kind of system event. Low-level hard-
ware exceptions are processed by the kernel’s exception handlers and would not

738 Chapter 8 Exceptional Control Flow

normally be visible to user processes. Signals provide a mechanism for exposing
the occurrence of such exceptions to user processes. For example, if a process at-
tempts to divide by zero, then the kernel sends it a SIGFPE signal (number 8).
If a process executes an illegal instruction, the kernel sends it a SIGILL signal
(number 4). If a process makes an illegal memory reference, the kernel sends it
a SIGSEGV signal (number 11). Other signals correspond to higher-level soft-
ware events in the kernel or in other user processes. For example, if you type a
ctrl-c (i.e., press the ctrl key and the c key at the same time) while a process
is running in the foreground, then the kernel sends a SIGINT (number 2) to the
foreground process. A process can forcibly terminate another process by sending
it a SIGKILL signal (number 9). When a child process terminates or stops, the
kernel sends a SIGCHLD signal (number 17) to the parent.

8.5.1 Signal Terminology

The transfer of a signal to a destination process occurs in two distinct steps:

. Sending a signal. The kernel sends (delivers) a signal to a destination process
by updating some state in the context of the destination process. The signal
is delivered for one of two reasons: (1) The kernel has detected a system
event such as a divide-by-zero error or the termination of a child process.
(2) A process has invoked the kill function (discussed in the next section)
to explicitly request the kernel to send a signal to the destination process. A
process can send a signal to itself.

. Receiving a signal. A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal. The process can
either ignore the signal, terminate, or catch the signal by executing a user-level
function called a signal handler. Figure 8.26 shows the basic idea of a handler
catching a signal.

A signal that has been sent but not yet received is called a pending signal. At
any point in time, there can be at most one pending signal of a particular type. If a
process has a pending signal of type k, then any subsequent signals of type k sent to
that process are not queued; they are simply discarded. A process can selectively
block the receipt of certain signals. When a signal is blocked, it can be delivered,
but the resulting pending signal will not be received until the process unblocks the
signal.

Figure 8.26
Signal handling. Receipt
of a signal triggers a control
transfer to a signal handler.
After it finishes processing,
the handler returns control
to the interrupted program.

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to

next instruction

(1) Signal received
by process Icurr

Inext

Section 8.5 Signals 739

A pending signal is received at most once. For each process, the kernel main-
tains the set of pending signals in the pending bit vector, and the set of blocked
signals in the blocked bit vector. The kernel sets bit k in pending whenever a sig-
nal of type k is delivered and clears bit k in pending whenever a signal of type k

is received.

8.5.2 Sending Signals

Unix systems provide a number of mechanisms for sending signals to processes.
All of the mechanisms rely on the notion of a process group.

Process Groups

Every process belongs to exactly one process group, which is identified by a
positive integer process group ID. The getpgrp function returns the process group
ID of the current process.

#include <unistd.h>

pid_t getpgrp(void);

Returns: process group ID of calling process

By default, a child process belongs to the same process group as its parent.
A process can change the process group of itself or another process by using the
setpgid function:

#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

Returns: 0 on success, −1 on error

The setpgid function changes the process group of process pid to pgid. If pid is
zero, the PID of the current process is used. If pgid is zero, the PID of the process
specified by pid is used for the process group ID. For example, if process 15213 is
the calling process, then

setpgid(0, 0);

creates a new process group whose process group ID is 15213, and adds process
15213 to this new group.

Sending Signals with the /bin/kill Program

The /bin/killprogram sends an arbitrary signal to another process. For example,
the command

unix> /bin/kill -9 15213

740 Chapter 8 Exceptional Control Flow

Figure 8.27
Foreground and back-
ground process groups.

Back-
ground
job #1

Fore-
ground

job

Background
process group 32

Foreground
process group 20

Shell

ChildChild

Back-
ground
job #2

Background
process group 40

pid�20
pgid�20

pid�10
pgid�10

pid�21
pgid�20

pid�22
pgid�20

pid�32
pgid�32

pid�40
pgid�40

sends signal 9 (SIGKILL) to process 15213. A negative PID causes the signal to
be sent to every process in process group PID. For example, the command

unix> /bin/kill -9 -15213

sends a SIGKILL signal to every process in process group 15213. Note that we
use the complete path /bin/kill here because some Unix shells have their own
built-in kill command.

Sending Signals from the Keyboard

Unix shells use the abstraction of a job to represent the processes that are created
as a result of evaluating a single command line. At any point in time, there is at
most one foreground job and zero or more background jobs. For example, typing

unix> ls | sort

creates a foreground job consisting of two processes connected by a Unix pipe:
one running the ls program, the other running the sort program.

The shell creates a separate process group for each job. Typically, the process
group ID is taken from one of the parent processes in the job. For example,
Figure 8.27 shows a shell with one foreground job and two background jobs. The
parent process in the foreground job has a PID of 20 and a process group ID of
20. The parent process has created two children, each of which are also members
of process group 20.

Typing ctrl-c at the keyboard causes a SIGINT signal to be sent to the
shell. The shell catches the signal (see Section 8.5.3) and then sends a SIGINT
to every process in the foreground process group. In the default case, the result is

Section 8.5 Signals 741

to terminate the foreground job. Similarly, typing crtl-z sends a SIGTSTP signal
to the shell, which catches it and sends a SIGTSTP signal to every process in the
foreground process group. In the default case, the result is to stop (suspend) the
foreground job.

Sending Signals with the kill Function

Processes send signals to other processes (including themselves) by calling the
kill function.

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

Returns: 0 if OK, −1 on error

If pid is greater than zero, then the kill function sends signal number sig to
process pid. If pid is less than zero, then kill sends signal sig to every process
in process group abs(pid). Figure 8.28 shows an example of a parent that uses the
kill function to send a SIGKILL signal to its child.

code/ecf/kill.c

1 #include "csapp.h"

2

3 int main()

4 {

5 pid_t pid;

6

7 /* Child sleeps until SIGKILL signal received, then dies */

8 if ((pid = Fork()) == 0) {

9 Pause(); /* Wait for a signal to arrive */

10 printf("control should never reach here!\n");

11 exit(0);

12 }

13

14 /* Parent sends a SIGKILL signal to a child */

15 Kill(pid, SIGKILL);

16 exit(0);

17 }

code/ecf/kill.c

Figure 8.28 Using the kill function to send a signal to a child.

742 Chapter 8 Exceptional Control Flow

Sending Signals with the alarm Function

A process can send SIGALRM signals to itself by calling the alarm function.

#include <unistd.h>

unsigned int alarm(unsigned int secs);

Returns: remaining secs of previous alarm, or 0 if no previous alarm

The alarm function arranges for the kernel to send a SIGALRM signal to the
calling process in secs seconds. If secs is zero, then no new alarm is scheduled. In
any event, the call to alarm cancels any pending alarms, and returns the number
of seconds remaining until any pending alarm was due to be delivered (had not
this call to alarm canceled it), or 0 if there were no pending alarms.

Figure 8.29 shows a program called alarm that arranges to be interrupted by
a SIGALRM signal every second for five seconds. When the sixth SIGALRM
is delivered it terminates. When we run the program in Figure 8.29, we get the
following output: a “BEEP” every second for five seconds, followed by a “BOOM”
when the program terminates.

unix> ./alarm

BEEP

BEEP

BEEP

BEEP

BEEP

BOOM!

Notice that the program in Figure 8.29 uses the signal function to install a
signal handler function (handler) that is called asynchronously, interrupting the
infinite while loop in main, whenever the process receives a SIGALRM signal.
When the handler function returns, control passes back to main, which picks up
where it was interrupted by the arrival of the signal. Installing and using signal
handlers can be quite subtle, and is the topic of the next few sections.

8.5.3 Receiving Signals

When the kernel is returning from an exception handler and is ready to pass
control to process p, it checks the set of unblocked pending signals (pending &
~blocked) for process p. If this set is empty (the usual case), then the kernel passes
control to the next instruction (Inext) in the logical control flow of p.

However, if the set is nonempty, then the kernel chooses some signal k in the
set (typically the smallest k) and forces p to receive signal k. The receipt of the
signal triggers some action by the process. Once the process completes the action,
then control passes back to the next instruction (Inext) in the logical control flow of
p. Each signal type has a predefined default action, which is one of the following:

. The process terminates.

. The process terminates and dumps core.

Section 8.5 Signals 743

code/ecf/alarm.c

1 #include "csapp.h"

2

3 void handler(int sig)

4 {

5 static int beeps = 0;

6

7 printf("BEEP\n");

8 if (++beeps < 5)

9 Alarm(1); /* Next SIGALRM will be delivered in 1 second */

10 else {

11 printf("BOOM!\n");

12 exit(0);

13 }

14 }

15

16 int main()

17 {

18 Signal(SIGALRM, handler); /* Install SIGALRM handler */

19 Alarm(1); /* Next SIGALRM will be delivered in 1s */

20

21 while (1) {

22 ; /* Signal handler returns control here each time */

23 }

24 exit(0);

25 }

code/ecf/alarm.c

Figure 8.29 Using the alarm function to schedule periodic events.

. The process stops until restarted by a SIGCONT signal.

. The process ignores the signal.

Figure 8.25 shows the default actions associated with each type of signal. For ex-
ample, the default action for the receipt of a SIGKILL is to terminate the receiving
process. On the other hand, the default action for the receipt of a SIGCHLD is to
ignore the signal. A process can modify the default action associated with a signal
by using the signal function. The only exceptions are SIGSTOP and SIGKILL,
whose default actions cannot be changed.

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

Returns: ptr to previous handler if OK, SIG_ERR on error (does not set errno)

744 Chapter 8 Exceptional Control Flow

The signal function can change the action associated with a signal signum in
one of three ways:

. If handler is SIG_IGN, then signals of type signum are ignored.

. If handler is SIG_DFL, then the action for signals of type signum reverts to
the default action.

. Otherwise, handler is the address of a user-defined function, called a signal
handler, that will be called whenever the process receives a signal of type
signum. Changing the default action by passing the address of a handler to
the signal function is known as installing the handler. The invocation of the
handler is called catching the signal. The execution of the handler is referred
to as handling the signal.

When a process catches a signal of type k, the handler installed for signal k is
invoked with a single integer argument set to k. This argument allows the same
handler function to catch different types of signals.

When the handler executes itsreturn statement, control (usually) passes back
to the instruction in the control flow where the process was interrupted by the
receipt of the signal. We say “usually” because in some systems, interrupted system
calls return immediately with an error.

Figure 8.30 shows a program that catches the SIGINT signal sent by the shell
whenever the user types ctrl-c at the keyboard. The default action for SIGINT
is to immediately terminate the process. In this example, we modify the default
behavior to catch the signal, print a message, and then terminate the process.

The handler function is defined in lines 3–7. The main routine installs the
handler in lines 12– 13, and then goes to sleep until a signal is received (line 15).
When the SIGINT signal is received, the handler runs, prints a message (line 5),
and then terminates the process (line 6).

Signal handlers are yet another example of concurrency in a computer system.
The execution of the signal handler interrupts the execution of the main C routine,
akin to the way that a low-level exception handler interrupts the control flow of the
current application program. Since the logical control flow of the signal handler
overlaps the logical control flow of the main routine, the signal handler and the
main routine run concurrently.

Practice Problem 8.7
Write a program, called snooze, that takes a single command line argument, calls
the snooze function from Problem 8.5 with this argument, and then terminates.
Write your program so that the user can interrupt the snooze function by typing
ctrl-c at the keyboard. For example:

unix> ./snooze 5

Slept for 3 of 5 secs. User hits crtl-c after 3 seconds

unix>

Section 8.5 Signals 745

code/ecf/sigint1.c

1 #include "csapp.h"

2

3 void handler(int sig) /* SIGINT handler */

4 {

5 printf("Caught SIGINT\n");

6 exit(0);

7 }

8

9 int main()

10 {

11 /* Install the SIGINT handler */

12 if (signal(SIGINT, handler) == SIG_ERR)

13 unix_error("signal error");

14

15 pause(); /* Wait for the receipt of a signal */

16

17 exit(0);

18 }

code/ecf/sigint1.c

Figure 8.30 A program that uses a signal handler to catch a SIGINT signal.

8.5.4 Signal Handling Issues

Signal handling is straightforward for programs that catch a single signal and then
terminate. However, subtle issues arise when a program catches multiple signals.

. Pending signals are blocked. Unix signal handlers typically block pending
signals of the type currently being processed by the handler. For example,
suppose a process has caught a SIGINT signal and is currently running its
SIGINT handler. If another SIGINT signal is sent to the process, then the
SIGINT will become pending, but will not be received until after the handler
returns.

. Pending signals are not queued. There can be at most one pending signal of
any particular type. Thus, if two signals of type k are sent to a destination
process while signal k is blocked because the destination process is currently
executing a handler for signal k, then the second signal is simply discarded; it
is not queued. The key idea is that the existence of a pending signal merely
indicates that at least one signal has arrived.

. System calls can be interrupted. System calls such as read, wait, and accept
that can potentially block the process for a long period of time are called slow
system calls. On some systems, slow system calls that are interrupted when a
handler catches a signal do not resume when the signal handler returns, but
instead return immediately to the user with an error condition and errno set
to EINTR.

746 Chapter 8 Exceptional Control Flow

Let’s look more closely at the subtleties of signal handling, using a simple
application that is similar in nature to real programs such as shells and Web
servers. The basic structure is that a parent process creates some children that run
independently for a while and then terminate. The parent must reap the children
to avoid leaving zombies in the system. But we also want the parent to be free to do
other work while the children are running. So we decide to reap the children with
a SIGCHLD handler, instead of explicitly waiting for the children to terminate.
(Recall that the kernel sends a SIGCHLD signal to the parent whenever one of
its children terminates or stops.)

Figure 8.31 shows our first attempt. The parent installs a SIGCHLD handler,
and then creates three children, each of which runs for 1 second and then ter-
minates. In the meantime, the parent waits for a line of input from the terminal
and then processes it. This processing is modeled by an infinite loop. When each
child terminates, the kernel notifies the parent by sending it a SIGCHLD signal.
The parent catches the SIGCHLD, reaps one child, does some additional cleanup
work (modeled by the sleep(2) statement), and then returns.

The signal1 program in Figure 8.31 seems fairly straightforward. When we
run it on our Linux system, however, we get the following output:

linux> ./signal1

Hello from child 10320

Hello from child 10321

Hello from child 10322

Handler reaped child 10320

Handler reaped child 10322

<cr>

Parent processing input

From the output, we note that although three SIGCHLD signals were sent to the
parent, only two of these signals were received, and thus the parent only reaped
two children. If we suspend the parent process, we see that, indeed, child process
10321 was never reaped and remains a zombie (indicated by the string “defunct”
in the output of the ps command):

<ctrl-z>

Suspended

linux> ps

PID TTY STAT TIME COMMAND

...

10319 p5 T 0:03 signal1

10321 p5 Z 0:00 signal1 <defunct>

10323 p5 R 0:00 ps

What went wrong? The problem is that our code failed to account for the facts that
signals can block and that signals are not queued. Here’s what happened: The first
signal is received and caught by the parent. While the handler is still processing
the first signal, the second signal is delivered and added to the set of pending
signals. However, since SIGCHLD signals are blocked by the SIGCHLD handler,

Section 8.5 Signals 747

code/ecf/signal1.c

1 #include "csapp.h"

2

3 void handler1(int sig)

4 {

5 pid_t pid;

6

7 if ((pid = waitpid(-1, NULL, 0)) < 0)

8 unix_error("waitpid error");

9 printf("Handler reaped child %d\n", (int)pid);

10 Sleep(2);

11 return;

12 }

13

14 int main()

15 {

16 int i, n;

17 char buf[MAXBUF];

18

19 if (signal(SIGCHLD, handler1) == SIG_ERR)

20 unix_error("signal error");

21

22 /* Parent creates children */

23 for (i = 0; i < 3; i++) {

24 if (Fork() == 0) {

25 printf("Hello from child %d\n", (int)getpid());

26 Sleep(1);

27 exit(0);

28 }

29 }

30

31 /* Parent waits for terminal input and then processes it */

32 if ((n = read(STDIN_FILENO, buf, sizeof(buf))) < 0)

33 unix_error("read");

34

35 printf("Parent processing input\n");

36 while (1)

37 ;

38

39 exit(0);

40 }

code/ecf/signal1.c

Figure 8.31 signal1: This program is flawed because it fails to deal with the facts that
signals can block, signals are not queued, and system calls can be interrupted.

748 Chapter 8 Exceptional Control Flow

the second signal is not received. Shortly thereafter, while the handler is still
processing the first signal, the third signal arrives. Since there is already a pending
SIGCHLD, this third SIGCHLD signal is discarded. Sometime later, after the
handler has returned, the kernel notices that there is a pending SIGCHLD signal
and forces the parent to receive the signal. The parent catches the signal and
executes the handler a second time. After the handler finishes processing the
second signal, there are no more pending SIGCHLD signals, and there never
will be, because all knowledge of the third SIGCHLD has been lost. The crucial
lesson is that signals cannot be used to count the occurrence of events in other
processes.

To fix the problem, we must recall that the existence of a pending signal only
implies that at least one signal has been delivered since the last time the process
received a signal of that type. So we must modify the SIGCHLD handler to reap
as many zombie children as possible each time it is invoked. Figure 8.32 shows the
modified SIGCHLD handler. When we run signal2 on our Linux system, it now
correctly reaps all of the zombie children:

linux> ./signal2

Hello from child 10378

Hello from child 10379

Hello from child 10380

Handler reaped child 10379

Handler reaped child 10378

Handler reaped child 10380

<cr>

Parent processing input

However, we are not finished yet. If we run the signal2 program on an
older version of the Solaris operating system, it correctly reaps all of the zombie
children. However, now the blocked read system call returns prematurely with an
error, before we are able to type in our input on the keyboard:

solaris> ./signal2

Hello from child 18906

Hello from child 18907

Hello from child 18908

Handler reaped child 18906

Handler reaped child 18908

Handler reaped child 18907

read: Interrupted system call

What went wrong? The problem arises because on this particular Solaris
system, slow system calls such as read are not restarted automatically after they
are interrupted by the delivery of a signal. Instead, they return prematurely to the
calling application with an error condition, unlike Linux systems, which restart
interrupted system calls automatically.

In order to write portable signal handling code, we must allow for the pos-
sibility that system calls will return prematurely and then restart them manually

Section 8.5 Signals 749

code/ecf/signal2.c

1 #include "csapp.h"

2

3 void handler2(int sig)

4 {

5 pid_t pid;

6

7 while ((pid = waitpid(-1, NULL, 0)) > 0)

8 printf("Handler reaped child %d\n", (int)pid);

9 if (errno != ECHILD)

10 unix_error("waitpid error");

11 Sleep(2);

12 return;

13 }

14

15 int main()

16 {

17 int i, n;

18 char buf[MAXBUF];

19

20 if (signal(SIGCHLD, handler2) == SIG_ERR)

21 unix_error("signal error");

22

23 /* Parent creates children */

24 for (i = 0; i < 3; i++) {

25 if (Fork() == 0) {

26 printf("Hello from child %d\n", (int)getpid());

27 Sleep(1);

28 exit(0);

29 }

30 }

31

32 /* Parent waits for terminal input and then processes it */

33 if ((n = read(STDIN_FILENO, buf, sizeof(buf))) < 0)

34 unix_error("read error");

35

36 printf("Parent processing input\n");

37 while (1)

38 ;

39

40 exit(0);

41 }

code/ecf/signal2.c

Figure 8.32 signal2: An improved version of Figure 8.31 that correctly accounts for
the facts that signals can block and are not queued. However, it does not allow for the
possibility that system calls can be interrupted.

750 Chapter 8 Exceptional Control Flow

when this occurs. Figure 8.33 shows the modification to signal2 that manually
restarts aborted read calls. The EINTR return code in errno indicates that the
read system call returned prematurely after it was interrupted.

When we run our new signal3 program on a Solaris system, the program
runs correctly:

solaris> ./signal3

Hello from child 19571

Hello from child 19572

Hello from child 19573

Handler reaped child 19571

Handler reaped child 19572

Handler reaped child 19573

<cr>

Parent processing input

Practice Problem 8.8
What is the output of the following program?

code/ecf/signalprob0.c

1 pid_t pid;

2 int counter = 2;

3

4 void handler1(int sig) {

5 counter = counter - 1;

6 printf("%d", counter);

7 fflush(stdout);

8 exit(0);

9 }

10

11 int main() {

12 signal(SIGUSR1, handler1);

13

14 printf("%d", counter);

15 fflush(stdout);

16

17 if ((pid = fork()) == 0) {

18 while(1) {};

19 }

20 kill(pid, SIGUSR1);

21 waitpid(-1, NULL, 0);

22 counter = counter + 1;

23 printf("%d", counter);

24 exit(0);

25 }

code/ecf/signalprob0.c

code/ecf/signal3.c

1 #include "csapp.h"

2

3 void handler2(int sig)

4 {

5 pid_t pid;

6

7 while ((pid = waitpid(-1, NULL, 0)) > 0)

8 printf("Handler reaped child %d\n", (int)pid);

9 if (errno != ECHILD)

10 unix_error("waitpid error");

11 Sleep(2);

12 return;

13 }

14

15 int main() {

16 int i, n;

17 char buf[MAXBUF];

18 pid_t pid;

19

20 if (signal(SIGCHLD, handler2) == SIG_ERR)

21 unix_error("signal error");

22

23 /* Parent creates children */

24 for (i = 0; i < 3; i++) {

25 pid = Fork();

26 if (pid == 0) {

27 printf("Hello from child %d\n", (int)getpid());

28 Sleep(1);

29 exit(0);

30 }

31 }

32

33 /* Manually restart the read call if it is interrupted */

34 while ((n = read(STDIN_FILENO, buf, sizeof(buf))) < 0)

35 if (errno != EINTR)

36 unix_error("read error");

37

38 printf("Parent processing input\n");

39 while (1)

40 ;

41

42 exit(0);

43 }

code/ecf/signal3.c

Figure 8.33 signal3: An improved version of Figure 8.32 that correctly accounts for
the fact that system calls can be interrupted.

752 Chapter 8 Exceptional Control Flow

8.5.5 Portable Signal Handling

The differences in signal handling semantics from system to system—such
as whether or not an interrupted slow system call is restarted or aborted pre-
maturely—is an ugly aspect of Unix signal handling. To deal with this problem,
the Posix standard defines the sigaction function, which allows users on Posix-
compliant systems such as Linux and Solaris to clearly specify the signal handling
semantics they want.

#include <signal.h>

int sigaction(int signum, struct sigaction *act,

struct sigaction *oldact);

Returns: 0 if OK, −1 on error

The sigaction function is unwieldy because it requires the user to set the
entries of a structure. A cleaner approach, originally proposed by W. Richard
Stevens [109], is to define a wrapper function, called Signal, that calls sigaction
for us. Figure 8.34 shows the definition of Signal, which is invoked in the same
way as the signal function. The Signalwrapper installs a signal handler with the
following signal handling semantics:

. Only signals of the type currently being processed by the handler are blocked.

. As with all signal implementations, signals are not queued.

. Interrupted system calls are automatically restarted whenever possible.

code/src/csapp.c

1 handler_t *Signal(int signum, handler_t *handler)

2 {

3 struct sigaction action, old_action;

4

5 action.sa_handler = handler;

6 sigemptyset(&action.sa_mask); /* Block sigs of type being handled */

7 action.sa_flags = SA_RESTART; /* Restart syscalls if possible */

8

9 if (sigaction(signum, &action, &old_action) < 0)

10 unix_error("Signal error");

11 return (old_action.sa_handler);

12 }

code/src/csapp.c

Figure 8.34 Signal: A wrapper for sigaction that provides portable signal handling on Posix-compliant
systems.

Section 8.5 Signals 753

. Once the signal handler is installed, it remains installed until Signal is called
with a handler argument of either SIG_IGN or SIG_DFL. (Some older Unix
systems restore the signal action to its default action after a signal has been
processed by a handler.)

Figure 8.35 shows a version of the signal2 program from Figure 8.32 that
uses our Signalwrapper to get predictable signal handling semantics on different
computer systems. The only difference is that we have installed the handler with
a call to Signal rather than a call to signal. The program now runs correctly on
both our Solaris and Linux systems, and we no longer need to manually restart
interrupted read system calls.

8.5.6 Explicitly Blocking and Unblocking Signals

Applications can explicitly block and unblock selected signals using the sigproc-
mask function:

#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signum);

int sigdelset(sigset_t *set, int signum);

Returns: 0 if OK, −1 on error

int sigismember(const sigset_t *set, int signum);

Returns: 1 if member, 0 if not, −1 on error

The sigprocmask function changes the set of currently blocked signals (the
blocked bit vector described in Section 8.5.1). The specific behavior depends on
the value of how:

. SIG_BLOCK: Add the signals in set to blocked (blocked = blocked | set).

. SIG_UNBLOCK: Remove the signals in set from blocked (blocked =
blocked & ~set).

. SIG_SETMASK: blocked = set.

If oldset is non-NULL, the previous value of the blocked bit vector is stored in
oldset.

Signal sets such as set are manipulated using the following functions. The
sigemptyset initializes set to the empty set. The sigfillset function adds every
signal to set. The sigaddset function adds signum to set, sigdelset deletes
signum from set, and sigismember returns 1 if signum is a member of set, and
0 if not.

754 Chapter 8 Exceptional Control Flow

code/ecf/signal4.c

1 #include "csapp.h"

2

3 void handler2(int sig)

4 {

5 pid_t pid;

6

7 while ((pid = waitpid(-1, NULL, 0)) > 0)

8 printf("Handler reaped child %d\n", (int)pid);

9 if (errno != ECHILD)

10 unix_error("waitpid error");

11 Sleep(2);

12 return;

13 }

14

15 int main()

16 {

17 int i, n;

18 char buf[MAXBUF];

19 pid_t pid;

20

21 Signal(SIGCHLD, handler2); /* sigaction error-handling wrapper */

22

23 /* Parent creates children */

24 for (i = 0; i < 3; i++) {

25 pid = Fork();

26 if (pid == 0) {

27 printf("Hello from child %d\n", (int)getpid());

28 Sleep(1);

29 exit(0);

30 }

31 }

32

33 /* Parent waits for terminal input and then processes it */

34 if ((n = read(STDIN_FILENO, buf, sizeof(buf))) < 0)

35 unix_error("read error");

36

37 printf("Parent processing input\n");

38 while (1)

39 ;

40 exit(0);

41 }

code/ecf/signal4.c

Figure 8.35 signal4: A version of Figure 8.32 that uses our Signal wrapper to get portable signal handling
semantics.

Section 8.5 Signals 755

8.5.7 Synchronizing Flows to Avoid Nasty Concurrency Bugs

The problem of how to program concurrent flows that read and write the same
storage locations has challenged generations of computer scientists. In general,
the number of potential interleavings of the flows is exponential in the number of
instructions. Some of those interleavings will produce correct answers, and others
will not. The fundamental problem is to somehow synchronize the concurrent
flows so as to allow the largest set of feasible interleavings such that each of the
feasible interleavings produces a correct answer.

Concurrent programming is a deep and important problem that we will discuss
in more detail in Chapter 12. However, we can use what you’ve learned about
exceptional control flow in this chapter to give you a sense of the interesting
intellectual challenges associated with concurrency. For example, consider the
program in Figure 8.36, which captures the structure of a typical Unix shell. The
parent keeps track of its current children using entries in a job list, with one entry
per job. The addjob and deletejob functions add and remove entries from the
job list, respectively.

After the parent creates a new child process, it adds the child to the job
list. When the parent reaps a terminated (zombie) child in the SIGCHLD signal
handler, it deletes the child from the job list. At first glance, this code appears to
be correct. Unfortunately, the following sequence of events is possible:

1. The parent executes the fork function and the kernel schedules the newly
created child to run instead of the parent.

2. Before the parent is able to run again, the child terminates and becomes a
zombie, causing the kernel to deliver a SIGCHLD signal to the parent.

3. Later, when the parent becomes runnable again but before it is executed, the
kernel notices the pending SIGCHLD and causes it to be received by running
the signal handler in the parent.

4. The signal handler reaps the terminated child and calls deletejob, which does
nothing because the parent has not added the child to the list yet.

5. After the handler completes, the kernel then runs the parent, which returns
from fork and incorrectly adds the (nonexistent) child to the job list by calling
addjob.

Thus, for some interleavings of the parent’s main routine and signal handling flows,
it is possible for deletejob to be called before addjob. This results in an incorrect
entry on the job list, for a job that no longer exists and that will never be removed.
On the other hand, there are also interleavings where events occur in the correct
order. For example, if the kernel happens to schedule the parent to run when the
fork call returns instead of the child, then the parent will correctly add the child
to the job list before the child terminates and the signal handler removes the job
from the list.

This is an example of a classic synchronization error known as a race. In this
case, the race is between the call to addjob in the main routine and the call to
deletejob in the handler. If addjob wins the race, then the answer is correct. If

756 Chapter 8 Exceptional Control Flow

code/ecf/procmask1.c

1 void handler(int sig)

2 {

3 pid_t pid;

4 while ((pid = waitpid(-1, NULL, 0)) > 0) /* Reap a zombie child */

5 deletejob(pid); /* Delete the child from the job list */

6 if (errno != ECHILD)

7 unix_error("waitpid error");

8 }

9

10 int main(int argc, char **argv)

11 {

12 int pid;

13

14 Signal(SIGCHLD, handler);

15 initjobs(); /* Initialize the job list */

16

17 while (1) {

18 /* Child process */

19 if ((pid = Fork()) == 0) {

20 Execve("/bin/date", argv, NULL);

21 }

22

23 /* Parent process */

24 addjob(pid); /* Add the child to the job list */

25 }

26 exit(0);

27 }

code/ecf/procmask1.c

Figure 8.36 A shell program with a subtle synchronization error. If the child
terminates before the parent is able to run, then addjob and deletejob will be called
in the wrong order.

not, the answer is incorrect. Such errors are enormously difficult to debug because
it is often impossible to test every interleaving. You may run the code a billion
times without a problem, but then the next test results in an interleaving that
triggers the race.

Figure 8.37 shows one way to eliminate the race in Figure 8.36. By blocking
SIGCHLD signals before the call to fork and then unblocking them only after we
have called addjob, we guarantee that the child will be reaped after it is added to
the job list. Notice that children inherit the blocked set of their parents, so we must
be careful to unblock the SIGCHLD signal in the child before calling execve.

Section 8.5 Signals 757

code/ecf/procmask2.c

1 void handler(int sig)

2 {

3 pid_t pid;

4 while ((pid = waitpid(-1, NULL, 0)) > 0) /* Reap a zombie child */

5 deletejob(pid); /* Delete the child from the job list */

6 if (errno != ECHILD)

7 unix_error("waitpid error");

8 }

9

10 int main(int argc, char **argv)

11 {

12 int pid;

13 sigset_t mask;

14

15 Signal(SIGCHLD, handler);

16 initjobs(); /* Initialize the job list */

17

18 while (1) {

19 Sigemptyset(&mask);

20 Sigaddset(&mask, SIGCHLD);

21 Sigprocmask(SIG_BLOCK, &mask, NULL); /* Block SIGCHLD */

22

23 /* Child process */

24 if ((pid = Fork()) == 0) {

25 Sigprocmask(SIG_UNBLOCK, &mask, NULL); /* Unblock SIGCHLD */

26 Execve("/bin/date", argv, NULL);

27 }

28

29 /* Parent process */

30 addjob(pid); /* Add the child to the job list */

31 Sigprocmask(SIG_UNBLOCK, &mask, NULL); /* Unblock SIGCHLD */

32 }

33 exit(0);

34 }

code/ecf/procmask2.c

Figure 8.37 Using sigprocmask to synchronize processes. In this example, the parent
ensures that addjob executes before the corresponding deletejob.

code/ecf/rfork.c

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4 #include <sys/time.h>

5 #include <sys/types.h>

6

7 /* Sleep for a random period between [0, MAX_SLEEP] us. */

8 #define MAX_SLEEP 100000

9

10 /* Macro that maps val into the range [0, RAND_MAX] */

11 #define CONVERT(val) (((double)val)/(double)RAND_MAX)

12

13 pid_t Fork(void)

14 {

15 static struct timeval time;

16 unsigned bool, secs;

17 pid_t pid;

18

19 /* Generate a different seed each time the function is called */

20 gettimeofday(&time, NULL);

21 srand(time.tv_usec);

22

23 /* Determine whether to sleep in parent of child and for how long */

24 bool = (unsigned)(CONVERT(rand()) + 0.5);

25 secs = (unsigned)(CONVERT(rand()) * MAX_SLEEP);

26

27 /* Call the real fork function */

28 if ((pid = fork()) < 0)

29 return pid;

30

31 /* Randomly decide to sleep in the parent or the child */

32 if (pid == 0) { /* Child */

33 if(bool) {

34 usleep(secs);

35 }

36 }

37 else { /* Parent */

38 if (!bool) {

39 usleep(secs);

40 }

41 }

42

43 /* Return the PID like a normal fork call */

44 return pid;

45 }

code/ecf/rfork.c

Figure 8.38 A wrapper for fork that randomly determines the order in which the
parent and child execute. The parent and child flip a coin to determine which will sleep,
thus giving the other process a chance to be scheduled.

Section 8.6 Nonlocal Jumps 759

Aside A handy trick for exposing races in your code

Races such as those in Figure 8.36 are difficult to detect because they depend on kernel-specific
scheduling decisions. After a call to fork, some kernels schedule the child to run first, while other
kernels schedule the parent to run first. If you were to run the code in Figure 8.36 on one of the latter
systems, it would never fail, no matter how many times you tested it. But as soon as you ran it on
one of the former systems, then the race would be exposed and the code would fail. Figure 8.38 shows
a wrapper function that can help expose such hidden assumptions about the execution ordering of
parent and child processes. The basic idea is that after each call to fork, the parent and child flip a
coin to determine which of them will sleep for a bit, thus giving the other process the opportunity to
run first. If we were to run the code multiple times, then with high probability we would exercise both
orderings of child and parent executions, regardless of the particular kernel’s scheduling policy.

8.6 Nonlocal Jumps

C provides a form of user-level exceptional control flow, called a nonlocal jump,
that transfers control directly from one function to another currently executing
function without having to go through the normal call-and-return sequence. Non-
local jumps are provided by the setjmp and longjmp functions.

#include <setjmp.h>

int setjmp(jmp_buf env);

int sigsetjmp(sigjmp_buf env, int savesigs);

Returns: 0 from setjmp, nonzero from longjmps

The setjmp function saves the current calling environment in the env buffer,
for later use by longjmp, and returns a 0. The calling environment includes the
program counter, stack pointer, and general purpose registers.

#include <setjmp.h>

void longjmp(jmp_buf env, int retval);

void siglongjmp(sigjmp_buf env, int retval);

Never returns

The longjmp function restores the calling environment from the env buffer
and then triggers a return from the most recent setjmp call that initialized env.
The setjmp then returns with the nonzero return value retval.

The interactions between setjmp and longjmp can be confusing at first glance.
The setjmp function is called once, but returns multiple times: once when the
setjmp is first called and the calling environment is stored in the env buffer,

760 Chapter 8 Exceptional Control Flow

and once for each corresponding longjmp call. On the other hand, the longjmp
function is called once, but never returns.

An important application of nonlocal jumps is to permit an immediate return
from a deeply nested function call, usually as a result of detecting some error
condition. If an error condition is detected deep in a nested function call, we can
use a nonlocal jump to return directly to a common localized error handler instead
of laboriously unwinding the call stack.

Figure 8.39 shows an example of how this might work. The main routine first
calls setjmp to save the current calling environment, and then calls function foo,
which in turn calls function bar. If foo or bar encounter an error, they return
immediately from the setjmp via a longjmp call. The nonzero return value of the
setjmp indicates the error type, which can then be decoded and handled in one
place in the code.

Another important application of nonlocal jumps is to branch out of a signal
handler to a specific code location, rather than returning to the instruction that was
interrupted by the arrival of the signal. Figure 8.40 shows a simple program that
illustrates this basic technique. The program uses signals and nonlocal jumps to
do a soft restart whenever the user types ctrl-c at the keyboard. The sigsetjmp
and siglongjmp functions are versions of setjmp and longjmp that can be used
by signal handlers.

The initial call to the sigsetjmp function saves the calling environment and
signal context (including the pending and blocked signal vectors) when the pro-
gram first starts. The main routine then enters an infinite processing loop. When
the user types ctrl-c, the shell sends a SIGINT signal to the process, which
catches it. Instead of returning from the signal handler, which would pass control
back to the interrupted processing loop, the handler performs a nonlocal jump
back to the beginning of the main program. When we ran the program on our
system, we got the following output:

unix> ./restart

starting

processing...

processing...

restarting User hits ctrl-c

processing...

restarting User hits ctrl-c

processing...

Aside Software exceptions in C++ and Java

The exception mechanisms provided by C++ and Java are higher-level, more-structured versions of the
C setjmp and longjmp functions. You can think of a catch clause inside a try statement as being akin
to a setjmp function. Similarly, a throw statement is similar to a longjmp function.

Section 8.6 Nonlocal Jumps 761

code/ecf/setjmp.c

1 #include "csapp.h"

2

3 jmp_buf buf;

4

5 int error1 = 0;

6 int error2 = 1;

7

8 void foo(void), bar(void);

9

10 int main()

11 {

12 int rc;

13

14 rc = setjmp(buf);

15 if (rc == 0)

16 foo();

17 else if (rc == 1)

18 printf("Detected an error1 condition in foo\n");

19 else if (rc == 2)

20 printf("Detected an error2 condition in foo\n");

21 else

22 printf("Unknown error condition in foo\n");

23 exit(0);

24 }

25

26 /* Deeply nested function foo */

27 void foo(void)

28 {

29 if (error1)

30 longjmp(buf, 1);

31 bar();

32 }

33

34 void bar(void)

35 {

36 if (error2)

37 longjmp(buf, 2);

38 }

code/ecf/setjmp.c

Figure 8.39 Nonlocal jump example. This example shows the framework for using
nonlocal jumps to recover from error conditions in deeply nested functions without
having to unwind the entire stack.

762 Chapter 8 Exceptional Control Flow

code/ecf/restart.c

1 #include "csapp.h"

2

3 sigjmp_buf buf;

4

5 void handler(int sig)

6 {

7 siglongjmp(buf, 1);

8 }

9

10 int main()

11 {

12 Signal(SIGINT, handler);

13

14 if (!sigsetjmp(buf, 1))

15 printf("starting\n");

16 else

17 printf("restarting\n");

18

19 while(1) {

20 Sleep(1);

21 printf("processing...\n");

22 }

23 exit(0);

24 }

code/ecf/restart.c

Figure 8.40 A program that uses nonlocal jumps to restart itself when the user
types ctrl-c.

8.7 Tools for Manipulating Processes

Linux systems provide a number of useful tools for monitoring and manipulating
processes:

strace: Prints a trace of each system call invoked by a running program and
its children. A fascinating tool for the curious student. Compile your
program with-static to get a cleaner trace without a lot of output related
to shared libraries.

ps: Lists processes (including zombies) currently in the system.

top: Prints information about the resource usage of current processes.

pmap: Displays the memory map of a process.

/proc: A virtual filesystem that exports the contents of numerous kernel data
structures in an ASCII text form that can be read by user programs. For

Bibliographic Notes 763

example, type “cat /proc/loadavg” to see the current load average on
your Linux system.

8.8 Summary

Exceptional control flow (ECF) occurs at all levels of a computer system and is a
basic mechanism for providing concurrency in a computer system.

At the hardware level, exceptions are abrupt changes in the control flow that
are triggered by events in the processor. The control flow passes to a software
handler, which does some processing and then returns control to the interrupted
control flow.

There are four different types of exceptions: interrupts, faults, aborts, and
traps. Interrupts occur asynchronously (with respect to any instructions) when an
external I/O device such as a timer chip or a disk controller sets the interrupt pin
on the processor chip. Control returns to the instruction following the faulting
instruction. Faults and aborts occur synchronously as the result of the execution
of an instruction. Fault handlers restart the faulting instruction, while abort han-
dlers never return control to the interrupted flow. Finally, traps are like function
calls that are used to implement the system calls that provide applications with
controlled entry points into the operating system code.

At the operating system level, the kernel uses ECF to provide the funda-
mental notion of a process. A process provides applications with two important
abstractions: (1) logical control flows that give each program the illusion that it
has exclusive use of the processor, and (2) private address spaces that provide the
illusion that each program has exclusive use of the main memory.

At the interface between the operating system and applications, applications
can create child processes, wait for their child processes to stop or terminate, run
new programs, and catch signals from other processes. The semantics of signal
handling is subtle and can vary from system to system. However, mechanisms exist
on Posix-compliant systems that allow programs to clearly specify the expected
signal handling semantics.

Finally, at the application level, C programs can use nonlocal jumps to bypass
the normal call/return stack discipline and branch directly from one function to
another.

Bibliographic Notes

The Intel macroarchitecture specification contains a detailed discussion of excep-
tions and interrupts on Intel processors [27]. Operating systems texts [98, 104, 112]
contain additional information on exceptions, processes, and signals. The classic
work by W. Richard Stevens [110] is a valuable and highly readable description
of how to work with processes and signals from application programs. Bovet and
Cesati [11] give a wonderfully clear description of the Linux kernel, including de-
tails of the process and signal implementations. Blum [9] is an excellent reference
for x86 assembly language, and describes in detail the x86 syscall interface.

764 Chapter 8 Exceptional Control Flow

Homework Problems

8.9 ◆
Consider four processes with the following starting and ending times:

Process Start time End time

A 5 7
B 2 4
C 3 6
D 1 8

For each pair of processes, indicate whether they run concurrently (y) or not
(n):

Process pair Concurrent?

AB
AC
AD
BC
BD
CD

8.10 ◆
In this chapter, we have introduced some functions with unusual call and return
behaviors: setjmp, longjmp, execve, and fork. Match each function with one of
the following behaviors:

A. Called once, returns twice.

B. Called once, never returns.

C. Called once, returns one or more times.

8.11 ◆
How many “hello” output lines does this program print?

code/ecf/forkprob1.c

1 #include "csapp.h"

2

3 int main()

4 {

5 int i;

6

7 for (i = 0; i < 2; i++)

8 Fork();

9 printf("hello\n");

10 exit(0);

11 }

code/ecf/forkprob1.c

Homework Problems 765

8.12 ◆
How many “hello” output lines does this program print?

code/ecf/forkprob4.c

1 #include "csapp.h"

2

3 void doit()

4 {

5 Fork();

6 Fork();

7 printf("hello\n");

8 return;

9 }

10

11 int main()

12 {

13 doit();

14 printf("hello\n");

15 exit(0);

16 }

code/ecf/forkprob4.c

8.13 ◆
What is one possible output of the following program?

code/ecf/forkprob3.c

1 #include "csapp.h"

2

3 int main()

4 {

5 int x = 3;

6

7 if (Fork() != 0)

8 printf("x=%d\n", ++x);

9

10 printf("x=%d\n", --x);

11 exit(0);

12 }

code/ecf/forkprob3.c

8.14 ◆
How many “hello” output lines does this program print?

code/ecf/forkprob5.c

1 #include "csapp.h"

2

3 void doit()

766 Chapter 8 Exceptional Control Flow

4 {

5 if (Fork() == 0) {

6 Fork();

7 printf("hello\n");

8 exit(0);

9 }

10 return;

11 }

12

13 int main()

14 {

15 doit();

16 printf("hello\n");

17 exit(0);

18 }

code/ecf/forkprob5.c

8.15 ◆
How many “hello” lines does this program print?

code/ecf/forkprob6.c

1 #include "csapp.h"

2

3 void doit()

4 {

5 if (Fork() == 0) {

6 Fork();

7 printf("hello\n");

8 return;

9 }

10 return;

11 }

12

13 int main()

14 {

15 doit();

16 printf("hello\n");

17 exit(0);

18 }

code/ecf/forkprob6.c

8.16 ◆
What is the output of the following program?

code/ecf/forkprob7.c

1 #include "csapp.h"

2 int counter = 1;

Homework Problems 767

3

4 int main()

5 {

6 if (fork() == 0) {

7 counter--;

8 exit(0);

9 }

10 else {

11 Wait(NULL);

12 printf("counter = %d\n", ++counter);

13 }

14 exit(0);

15 }

code/ecf/forkprob7.c

8.17 ◆
Enumerate all of the possible outputs of the program in Problem 8.4.

8.18 ◆◆
Consider the following program:

code/ecf/forkprob2.c

1 #include "csapp.h"

2

3 void end(void)

4 {

5 printf("2");

6 }

7

8 int main()

9 {

10 if (Fork() == 0)

11 atexit(end);

12 if (Fork() == 0)

13 printf("0");

14 else

15 printf("1");

16 exit(0);

17 }

code/ecf/forkprob2.c

Determine which of the following outputs are possible. Note: The atexit
function takes a pointer to a function and adds it to a list of functions (initially
empty) that will be called when the exit function is called.

A. 112002

B. 211020

768 Chapter 8 Exceptional Control Flow

C. 102120

D. 122001

E. 100212

8.19 ◆◆
How many lines of output does the following function print? Give your answer as
a function of n. Assume n ≥ 1.

code/ecf/forkprob8.c

1 void foo(int n)

2 {

3 int i;

4

5 for (i = 0; i < n; i++)

6 Fork();

7 printf("hello\n");

8 exit(0);

9 }

code/ecf/forkprob8.c

8.20 ◆◆
Use execve to write a program called myls whose behavior is identical to the
/bin/ls program. Your program should accept the same command line argu-
ments, interpret the identical environment variables, and produce the identical
output.

The ls program gets the width of the screen from the COLUMNS environ-
ment variable. If COLUMNS is unset, then ls assumes that the screen is 80
columns wide. Thus, you can check your handling of the environment variables
by setting the COLUMNS environment to something smaller than 80:

unix> setenv COLUMNS 40

unix> ./myls

...output is 40 columns wide

unix> unsetenv COLUMNS

unix> ./myls

...output is now 80 columns wide

8.21 ◆◆
What are the possible output sequences from the following program?

code/ecf/waitprob3.c

1 int main()

2 {

3 if (fork() == 0) {

4 printf("a");

5 exit(0);

6 }

Homework Problems 769

7 else {

8 printf("b");

9 waitpid(-1, NULL, 0);

10 }

11 printf("c");

12 exit(0);

13 }

code/ecf/waitprob3.c

8.22 ◆◆◆
Write your own version of the Unix system function

int mysystem(char *command);

The mysystem function executes command by calling “/bin/sh -c command”, and
then returns after command has completed. If command exits normally (by calling
the exit function or executing a return statement), then mysystem returns the
command exit status. For example, if command terminates by calling exit(8), then
system returns the value 8. Otherwise, if command terminates abnormally, then
mysystem returns the status returned by the shell.

8.23 ◆◆
One of your colleagues is thinking of using signals to allow a parent process to
count events that occur in a child process. The idea is to notify the parent each
time an event occurs by sending it a signal, and letting the parent’s signal handler
increment a global counter variable, which the parent can then inspect after the
child has terminated. However, when he runs the test program in Figure 8.41 on
his system, he discovers that when the parent calls printf, counter always has a
value of 2, even though the child has sent five signals to the parent. Perplexed, he
comes to you for help. Can you explain the bug?

8.24 ◆◆◆
Modify the program in Figure 8.17 so that the following two conditions are met:

1. Each child terminates abnormally after attempting to write to a location in
the read-only text segment.

2. The parent prints output that is identical (except for the PIDs) to the follow-
ing:

child 12255 terminated by signal 11: Segmentation fault

child 12254 terminated by signal 11: Segmentation fault

Hint: Read the man page for psignal(3).

8.25 ◆◆◆
Write a version of the fgets function, called tfgets, that times out after 5 seconds.
The tfgets function accepts the same inputs as fgets. If the user doesn’t type an
input line within 5 seconds, tfgets returns NULL. Otherwise, it returns a pointer
to the input line.

770 Chapter 8 Exceptional Control Flow

code/ecf/counterprob.c

1 #include "csapp.h"

2

3 int counter = 0;

4

5 void handler(int sig)

6 {

7 counter++;

8 sleep(1); /* Do some work in the handler */

9 return;

10 }

11

12 int main()

13 {

14 int i;

15

16 Signal(SIGUSR2, handler);

17

18 if (Fork() == 0) { /* Child */

19 for (i = 0; i < 5; i++) {

20 Kill(getppid(), SIGUSR2);

21 printf("sent SIGUSR2 to parent\n");

22 }

23 exit(0);

24 }

25

26 Wait(NULL);

27 printf("counter=%d\n", counter);

28 exit(0);

29 }

code/ecf/counterprob.c

Figure 8.41 Counter program referenced in Problem 8.23.

8.26 ◆◆◆◆
Using the example in Figure 8.22 as a starting point, write a shell program that
supports job control. Your shell should have the following features:

. The command line typed by the user consists of a name and zero or more argu-
ments, all separated by one or more spaces. If name is a built-in command, the
shell handles it immediately and waits for the next command line. Otherwise,
the shell assumes that name is an executable file, which it loads and runs in the
context of an initial child process (job). The process group ID for the job is
identical to the PID of the child.

. Each job is identified by either a process ID (PID) or a job ID (JID), which
is a small arbitrary positive integer assigned by the shell. JIDs are denoted on

Solutions to Practice Problems 771

the command line by the prefix ‘%’. For example, “%5” denotes JID 5, and “5”
denotes PID 5.

. If the command line ends with an ampersand, then the shell runs the job in
the background. Otherwise, the shell runs the job in the foreground.

. Typing ctrl-c (ctrl-z) causes the shell to send a SIGINT (SIGTSTP) signal
to every process in the foreground process group.

. The jobs built-in command lists all background jobs.

. The bg <job> built-in command restarts <job> by sending it a SIGCONT
signal, and then runs it in the background. The <job> argument can be either
a PID or a JID.

. The fg <job> built-in command restarts <job> by sending it a SIGCONT
signal, and then runs it in the foreground.

. The shell reaps all of its zombie children. If any job terminates because it
receives a signal that was not caught, then the shell prints a message to the
terminal with the job’s PID and a description of the offending signal.

Figure 8.42 shows an example shell session.

Solutions to Practice Problems

Solution to Problem 8.1 (page 714)
Processes A and B are concurrent with respect to each other, as are B and C,
because their respective executions overlap, that is, one process starts before the
other finishes. Processes A and C are not concurrent, because their executions do
not overlap; A finishes before C begins.

Solution to Problem 8.2 (page 723)
In our example program in Figure 8.15, the parent and child execute disjoint sets of
instructions. However, in this program, the parent and child execute non-disjoint
sets of instructions, which is possible because the parent and child have identical
code segments. This can be a difficult conceptual hurdle, so be sure you understand
the solution to this problem.

A. The key idea here is that the child executes both printf statements. After
the fork returns, it executes the printf in line 8. Then it falls out of the if
statement and executes the printf in line 9. Here is the output produced by
the child:

printf1: x=2

printf2: x=1

B. The parent executes only the printf in line 9:

printf2: x=0

772 Chapter 8 Exceptional Control Flow

unix> ./shell Run your shell program

> bogus

bogus: Command not found. Execve can’t find executable

> foo 10

Job 5035 terminated by signal: Interrupt User types ctrl-c

> foo 100 &

[1] 5036 foo 100 &

> foo 200 &

[2] 5037 foo 200 &

> jobs

[1] 5036 Running foo 100 &

[2] 5037 Running foo 200 &

> fg %1

Job [1] 5036 stopped by signal: Stopped User types ctrl-z

> jobs

[1] 5036 Stopped foo 100 &

[2] 5037 Running foo 200 &

> bg 5035

5035: No such process

> bg 5036

[1] 5036 foo 100 &

> /bin/kill 5036

Job 5036 terminated by signal: Terminated

> fg %2 Wait for fg job to finish.

> quit

unix> Back to the Unix shell

Figure 8.42 Sample shell session for Problem 8.26.

Solution to Problem 8.3 (page 726)
The parent prints b and then c. The child prints a and then c. It’s very important
to realize that you cannot make any assumption about how the execution of the
parent and child are interleaved. Thus, any topological sort of b → c and a → c is
a possible output sequence. There are four such sequences: acbc, bcac, abcc, and
bacc.

Solution to Problem 8.4 (page 729)

A. Each time we run this program, it generates six output lines.

B. The ordering of the output lines will vary from system to system, depending
on the how the kernel interleaves the instructions of the parent and the child.
In general, any topological sort of the following graph is a valid ordering:

--> ‘‘0’’ --> ‘‘2’’ --> ‘‘Bye’’ Parent process

/

‘‘Hello’’

\

--> ‘‘1’’ --> ‘‘Bye’’ Child process

Solutions to Practice Problems 773

For example, when we run the program on our system, we get the following
output:

unix> ./waitprob1

Hello

0

1

Bye

2

Bye

In this case, the parent runs first, printing “Hello” in line 6 and “0” in line 8.
The call towaitblocks because the child has not yet terminated, so the kernel
does a context switch and passes control to the child, which prints “1” in line 8
and “Bye” in line 15, and then terminates with an exit status of 2 in line 16.
After the child terminates, the parent resumes, printing the child’s exit status
in line 12 and “Bye” in line 15.

Solution to Problem 8.5 (page 730)

code/ecf/snooze.c

1 unsigned int snooze(unsigned int secs) {

2 unsigned int rc = sleep(secs);

3 printf("Slept for %u of %u secs.\n", secs - rc, secs);

4 return rc;

5 }

code/ecf/snooze.c

Solution to Problem 8.6 (page 733)

code/ecf/myecho.c

1 #include "csapp.h"

2

3 int main(int argc, char *argv[], char *envp[])

4 {

5 int i;

6

7 printf("Command line arguments:\n");

8 for (i=0; argv[i] != NULL; i++)

9 printf(" argv[%2d]: %s\n", i, argv[i]);

10

11 printf("\n");

12 printf("Environment variables:\n");

13 for (i=0; envp[i] != NULL; i++)

14 printf(" envp[%2d]: %s\n", i, envp[i]);

15

16 exit(0);

17 }

code/ecf/myecho.c

774 Chapter 8 Exceptional Control Flow

Solution to Problem 8.7 (page 744)
The sleep function returns prematurely whenever the sleeping process receives a
signal that is not ignored. But since the default action upon receipt of a SIGINT is
to terminate the process (Figure 8.25), we must install a SIGINT handler to allow
the sleep function to return. The handler simply catches the SIGNAL and returns
control to the sleep function, which returns immediately.

code/ecf/snooze.c

1 #include "csapp.h"

2

3 /* SIGINT handler */

4 void handler(int sig)

5 {

6 return; /* Catch the signal and return */

7 }

8

9 unsigned int snooze(unsigned int secs) {

10 unsigned int rc = sleep(secs);

11 printf("Slept for %u of %u secs.\n", secs - rc, secs);

12 return rc;

13 }

14

15 int main(int argc, char **argv) {

16

17 if (argc != 2) {

18 fprintf(stderr, "usage: %s <secs>\n", argv[0]);

19 exit(0);

20 }

21

22 if (signal(SIGINT, handler) == SIG_ERR) /* Install SIGINT handler */

23 unix_error("signal error\n");

24 (void)snooze(atoi(argv[1]));

25 exit(0);

26 }

code/ecf/snooze.c

Solution to Problem 8.8 (page 750)
This program prints the string “213”, which is the shorthand name of the CS:APP
course at Carnegie Mellon. The parent starts by printing “2”, then forks the child,
which spins in an infinite loop. The parent then sends a signal to the child, and
waits for it to terminate. The child catches the signal (interrupting the infinite
loop), decrements the counter (from an initial value of 2), prints “1”, and then
terminates. After the parent reaps the child, it increments the counter (from an
initial value of 2), prints “3”, and terminates.

C H A P T E R 9
Virtual Memory

9.1 Physical and Virtual Addressing 777

9.2 Address Spaces 778

9.3 VM as a Tool for Caching 779

9.4 VM as a Tool for Memory Management 785

9.5 VM as a Tool for Memory Protection 786

9.6 Address Translation 787

9.7 Case Study: The Intel Core i7/Linux Memory System 799

9.8 Memory Mapping 807

9.9 Dynamic Memory Allocation 812

9.10 Garbage Collection 838

9.11 Common Memory-Related Bugs in C Programs 843

9.12 Summary 848

Bibliographic Notes 848

Homework Problems 849

Solutions to Practice Problems 853

775

776 Chapter 9 Virtual Memory

Processes in a system share the CPU and main memory with other processes.
However, sharing the main memory poses some special challenges. As demand
on the CPU increases, processes slow down in some reasonably smooth way. But
if too many processes need too much memory, then some of them will simply
not be able to run. When a program is out of space, it is out of luck. Memory is
also vulnerable to corruption. If some process inadvertently writes to the memory
used by another process, that process might fail in some bewildering fashion totally
unrelated to the program logic.

In order to manage memory more efficiently and with fewer errors, modern
systems provide an abstraction of main memory known as virtual memory (VM).
Virtual memory is an elegant interaction of hardware exceptions, hardware ad-
dress translation, main memory, disk files, and kernel software that provides each
process with a large, uniform, and private address space. With one clean mech-
anism, virtual memory provides three important capabilities. (1) It uses main
memory efficiently by treating it as a cache for an address space stored on disk,
keeping only the active areas in main memory, and transferring data back and
forth between disk and memory as needed. (2) It simplifies memory management
by providing each process with a uniform address space. (3) It protects the address
space of each process from corruption by other processes.

Virtual memory is one of the great ideas in computer systems. A major reason
for its success is that it works silently and automatically, without any intervention
from the application programmer. Since virtual memory works so well behind the
scenes, why would a programmer need to understand it? There are several reasons.

. Virtual memory is central. Virtual memory pervades all levels of computer
systems, playing key roles in the design of hardware exceptions, assemblers,
linkers, loaders, shared objects, files, and processes. Understanding virtual
memory will help you better understand how systems work in general.

. Virtual memory is powerful. Virtual memory gives applications powerful ca-
pabilities to create and destroy chunks of memory, map chunks of memory to
portions of disk files, and share memory with other processes. For example,
did you know that you can read or modify the contents of a disk file by reading
and writing memory locations? Or that you can load the contents of a file into
memory without doing any explicit copying? Understanding virtual memory
will help you harness its powerful capabilities in your applications.

. Virtual memory is dangerous. Applications interact with virtual memory ev-
ery time they reference a variable, dereference a pointer, or make a call to a
dynamic allocation package such as malloc. If virtual memory is used improp-
erly, applications can suffer from perplexing and insidious memory-related
bugs. For example, a program with a bad pointer can crash immediately with
a “Segmentation fault” or a “Protection fault,” run silently for hours before
crashing, or scariest of all, run to completion with incorrect results. Under-
standing virtual memory, and the allocation packages such as malloc that
manage it, can help you avoid these errors.

This chapter looks at virtual memory from two angles. The first half of the
chapter describes how virtual memory works. The second half describes how

Section 9.1 Physical and Virtual Addressing 777

virtual memory is used and managed by applications. There is no avoiding the
fact that VM is complicated, and the discussion reflects this in places. The good
news is that if you work through the details, you will be able to simulate the virtual
memory mechanism of a small system by hand, and the virtual memory idea will
be forever demystified.

The second half builds on this understanding, showing you how to use and
manage virtual memory in your programs. You will learn how to manage virtual
memory via explicit memory mapping and calls to dynamic storage allocators such
as the malloc package. You will also learn about a host of common memory-
related errors in C programs and how to avoid them.

9.1 Physical and Virtual Addressing

The main memory of a computer system is organized as an array of M contiguous
byte-sized cells. Each byte has a unique physical address (PA). The first byte has
an address of 0, the next byte an address of 1, the next byte an address of 2,
and so on. Given this simple organization, the most natural way for a CPU to
access memory would be to use physical addresses. We call this approach physical
addressing. Figure 9.1 shows an example of physical addressing in the context of
a load instruction that reads the word starting at physical address 4.

When the CPU executes the load instruction, it generates an effective physical
address and passes it to main memory over the memory bus. The main memory
fetches the 4-byte word starting at physical address 4 and returns it to the CPU,
which stores it in a register.

Early PCs used physical addressing, and systems such as digital signal pro-
cessors, embedded microcontrollers, and Cray supercomputers continue to do so.
However, modern processors use a form of addressing known as virtual address-
ing, as shown in Figure 9.2.

With virtual addressing, the CPU accesses main memory by generating a vir-
tual address (VA), which is converted to the appropriate physical address before
being sent to the memory. The task of converting a virtual address to a physical
one is known as address translation. Like exception handling, address translation

Figure 9.1
A system that uses
physical addressing.

. . .

Main memory
0:
1:
2:
3:
4:
5:
6:
7:
8:

Physical
address

(PA)
CPU

4

M�1:

Data word

778 Chapter 9 Virtual Memory

Figure 9.2
A system that uses virtual
addressing.

Main memory
0:
1:
2:
3:
4:
5:
6:
7:

Physical
address

(PA)

Virtual
address

(VA)

Address
translation

CPU

CPU chip

MMU
4100 4

M�1:

Data word

. . .

requires close cooperation between the CPU hardware and the operating sys-
tem. Dedicated hardware on the CPU chip called the memory management unit
(MMU) translates virtual addresses on the fly, using a look-up table stored in main
memory whose contents are managed by the operating system.

9.2 Address Spaces

An address space is an ordered set of nonnegative integer addresses

{0, 1, 2, . . .}
If the integers in the address space are consecutive, then we say that it is a linear
address space. To simplify our discussion, we will always assume linear address
spaces. In a system with virtual memory, the CPU generates virtual addresses from
an address space of N = 2n addresses called the virtual address space:

{0, 1, 2, . . . , N − 1}
The size of an address space is characterized by the number of bits that are needed
to represent the largest address. For example, a virtual address space with N = 2n

addresses is called an n-bit address space. Modern systems typically support either
32-bit or 64-bit virtual address spaces.

A system also has a physical address space that corresponds to the M bytes of
physical memory in the system:

{0, 1, 2, . . . , M − 1}
M is not required to be a power of two, but to simplify the discussion we will
assume that M = 2m.

The concept of an address space is important because it makes a clean dis-
tinction between data objects (bytes) and their attributes (addresses). Once we
recognize this distinction, then we can generalize and allow each data object to
have multiple independent addresses, each chosen from a different address space.

Section 9.3 VM as a Tool for Caching 779

Figure 9.3
How a VM system uses
main memory as a cache.

VP 0
VP 1 PP 0

PP 1

PP 2m�p � 1
VP 2n�p � 1

Unallocated

Virtual memory Physical memory

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

Cached
Uncached

Unallocated
Cached

Uncached

Empty

Empty

Empty

N � 1
M � 1

0

0

Cached
Uncached

This is the basic idea of virtual memory. Each byte of main memory has a virtual
address chosen from the virtual address space, and a physical address chosen from
the physical address space.

Practice Problem 9.1
Complete the following table, filling in the missing entries and replacing each
question mark with the appropriate integer. Use the following units: K = 210

(Kilo), M = 220 (Mega), G = 230 (Giga), T = 240 (Tera), P = 250 (Peta), or E = 260

(Exa).

No. virtual address bits (n) No. virtual addresses (N) Largest possible virtual address

8
2? = 64K

232 − 1 =?G − 1
2? = 256T

64

9.3 VM as a Tool for Caching

Conceptually, a virtual memory is organized as an array of N contiguous byte-sized
cells stored on disk. Each byte has a unique virtual address that serves as an index
into the array. The contents of the array on disk are cached in main memory. As
with any other cache in the memory hierarchy, the data on disk (the lower level)
is partitioned into blocks that serve as the transfer units between the disk and the
main memory (the upper level). VM systems handle this by partitioning the virtual
memory into fixed-sized blocks called virtual pages (VPs). Each virtual page is
P = 2p bytes in size. Similarly, physical memory is partitioned into physical pages
(PPs), also P bytes in size. (Physical pages are also referred to as page frames.)

At any point in time, the set of virtual pages is partitioned into three disjoint
subsets:

. Unallocated: Pages that have not yet been allocated (or created) by the VM
system. Unallocated blocks do not have any data associated with them, and
thus do not occupy any space on disk.

780 Chapter 9 Virtual Memory

. Cached: Allocated pages that are currently cached in physical memory.

. Uncached: Allocated pages that are not cached in physical memory.

The example in Figure 9.3 shows a small virtual memory with eight virtual
pages. Virtual pages 0 and 3 have not been allocated yet, and thus do not yet exist
on disk. Virtual pages 1, 4, and 6 are cached in physical memory. Pages 2, 5, and 7
are allocated, but are not currently cached in main memory.

9.3.1 DRAM Cache Organization

To help us keep the different caches in the memory hierarchy straight, we will use
the term SRAM cache to denote the L1, L2, and L3 cache memories between the
CPU and main memory, and the term DRAM cache to denote the VM system’s
cache that caches virtual pages in main memory.

The position of the DRAM cache in the memory hierarchy has a big impact
on the way that it is organized. Recall that a DRAM is at least 10 times slower
than an SRAM and that disk is about 100,000 times slower than a DRAM. Thus,
misses in DRAM caches are very expensive compared to misses in SRAM caches
because DRAM cache misses are served from disk, while SRAM cache misses are
usually served from DRAM-based main memory. Further, the cost of reading the
first byte from a disk sector is about 100,000 times slower than reading successive
bytes in the sector. The bottom line is that the organization of the DRAM cache
is driven entirely by the enormous cost of misses.

Because of the large miss penalty and the expense of accessing the first byte,
virtual pages tend to be large, typically 4 KB to 2 MB. Due to the large miss penalty,
DRAM caches are fully associative, that is, any virtual page can be placed in any
physical page. The replacement policy on misses also assumes greater importance,
because the penalty associated with replacing the wrong virtual page is so high.
Thus, operating systems use much more sophisticated replacement algorithms for
DRAM caches than the hardware does for SRAM caches. (These replacement
algorithms are beyond our scope here.) Finally, because of the large access time
of disk, DRAM caches always use write-back instead of write-through.

9.3.2 Page Tables

As with any cache, the VM system must have some way to determine if a virtual
page is cached somewhere in DRAM. If so, the system must determine which
physical page it is cached in. If there is a miss, the system must determine where
the virtual page is stored on disk, select a victim page in physical memory, and
copy the virtual page from disk to DRAM, replacing the victim page.

These capabilities are provided by a combination of operating system soft-
ware, address translation hardware in the MMU (memory management unit), and
a data structure stored in physical memory known as a page table that maps vir-
tual pages to physical pages. The address translation hardware reads the page table
each time it converts a virtual address to a physical address. The operating system

Section 9.3 VM as a Tool for Caching 781

Figure 9.4
Page table.

PTE 0

PP 0

PP 3
1
1
0
1
0
0
1

0

PTE 7

null

VP 1

VP 4
VP 7
VP 2
VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

null

Physical page
number or

disk address

Memory resident
page table
(DRAM)

Virtual memory
(disk)

Physical memory
(DRAM)

Valid

is responsible for maintaining the contents of the page table and transferring pages
back and forth between disk and DRAM.

Figure 9.4 shows the basic organization of a page table. A page table is an array
of page table entries (PTEs). Each page in the virtual address space has a PTE at
a fixed offset in the page table. For our purposes, we will assume that each PTE
consists of a valid bit and an n-bit address field. The valid bit indicates whether
the virtual page is currently cached in DRAM. If the valid bit is set, the address
field indicates the start of the corresponding physical page in DRAM where the
virtual page is cached. If the valid bit is not set, then a null address indicates that
the virtual page has not yet been allocated. Otherwise, the address points to the
start of the virtual page on disk.

The example in Figure 9.4 shows a page table for a system with eight virtual
pages and four physical pages. Four virtual pages (VP 1, VP 2, VP 4, and VP 7)
are currently cached in DRAM. Two pages (VP 0 and VP 5) have not yet been
allocated, and the rest (VP 3 and VP 6) have been allocated, but are not currently
cached. An important point to notice about Figure 9.4 is that because the DRAM
cache is fully associative, any physical page can contain any virtual page.

Practice Problem 9.2
Determine the number of page table entries (PTEs) that are needed for the
following combinations of virtual address size (n) and page size (P):

n P = 2p No. PTEs

16 4K
16 8K
32 4K
32 8K

782 Chapter 9 Virtual Memory

Figure 9.5
VM page hit. The reference
to a word in VP 2 is a hit.

PTE 0

PP 0

PP 3
1
1
0
1
0
0
1

0

PTE 7

null

VP 1

VP 4
VP 7
VP 2
VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

null

Physical page
number or

disk address

Memory resident
page table
(DRAM)

Virtual memory
(disk)

Physical memory
(DRAM)Virtual address

Valid

9.3.3 Page Hits

Consider what happens when the CPU reads a word of virtual memory contained
in VP 2, which is cached in DRAM (Figure 9.5). Using a technique we will describe
in detail in Section 9.6, the address translation hardware uses the virtual address
as an index to locate PTE 2 and read it from memory. Since the valid bit is set, the
address translation hardware knows that VP 2 is cached in memory. So it uses the
physical memory address in the PTE (which points to the start of the cached page
in PP 1) to construct the physical address of the word.

9.3.4 Page Faults

In virtual memory parlance, a DRAM cache miss is known as a page fault. Fig-
ure 9.6 shows the state of our example page table before the fault. The CPU has
referenced a word in VP 3, which is not cached in DRAM. The address transla-
tion hardware reads PTE 3 from memory, infers from the valid bit that VP 3 is not
cached, and triggers a page fault exception.

The page fault exception invokes a page fault exception handler in the kernel,
which selects a victim page, in this case VP 4 stored in PP 3. If VP 4 has been
modified, then the kernel copies it back to disk. In either case, the kernel modifies
the page table entry for VP 4 to reflect the fact that VP 4 is no longer cached in
main memory.

Next, the kernel copies VP 3 from disk to PP 3 in memory, updates PTE 3,
and then returns. When the handler returns, it restarts the faulting instruction,
which resends the faulting virtual address to the address translation hardware.
But now, VP 3 is cached in main memory, and the page hit is handled normally by
the address translation hardware. Figure 9.7 shows the state of our example page
table after the page fault.

Virtual memory was invented in the early 1960s, long before the widening
CPU-memory gap spawned SRAM caches. As a result, virtual memory systems

Section 9.3 VM as a Tool for Caching 783

Figure 9.6
VM page fault (before).
The reference to a word in
VP 3 is a miss and triggers
a page fault.

PTE 0

PP 0

PP 3
1
1
0
1
0
0
1

0

PTE 7

null

VP 1

VP 4
VP 7
VP 2
VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

null

Physical page
number or

disk address

Memory resident
page table
(DRAM)

Virtual memory
(disk)

Physical memory
(DRAM)Virtual address

Valid

Figure 9.7
VM page fault (after). The
page fault handler selects
VP 4 as the victim and
replaces it with a copy of
VP 3 from disk. After the
page fault handler restarts
the faulting instruction, it
will read the word from
memory normally, without
generating an exception.

PTE 0

PP 0

PP 3
1
1
1
0
0
0
1

0

PTE 7

null

VP 1

VP 3
VP 7
VP 2
VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

null

Physical page
number or

disk address

Memory resident
page table
(DRAM)

Virtual memory
(disk)

Physical memory
(DRAM)

Valid

Virtual address

use a different terminology from SRAM caches, even though many of the ideas
are similar. In virtual memory parlance, blocks are known as pages. The activity
of transferring a page between disk and memory is known as swapping or paging.
Pages are swapped in (paged in) from disk to DRAM, and swapped out (paged
out) from DRAM to disk. The strategy of waiting until the last moment to swap in
a page, when a miss occurs, is known as demand paging. Other approaches, such
as trying to predict misses and swap pages in before they are actually referenced,
are possible. However, all modern systems use demand paging.

9.3.5 Allocating Pages

Figure 9.8 shows the effect on our example page table when the operating system
allocates a new page of virtual memory, for example, as a result of calling malloc.

784 Chapter 9 Virtual Memory

Figure 9.8
Allocating a new virtual
page. The kernel allocates
VP 5 on disk and points
PTE 5 to this new location.

PTE 0

PP 0

PP 3
1
1
1
0
0
0
1

0

PTE 7

null

VP 1

VP 3
VP 7
VP 2
VP 1

VP 2

VP 3

VP 4

VP 5

VP 6

VP 7

Physical page
number or

disk address

Memory resident
page table
(DRAM)

Virtual memory
(disk)

Physical memory
(DRAM)

Valid

In the example, VP 5 is allocated by creating room on disk and updating PTE 5
to point to the newly created page on disk.

9.3.6 Locality to the Rescue Again

When many of us learn about the idea of virtual memory, our first impression is
often that it must be terribly inefficient. Given the large miss penalties, we worry
that paging will destroy program performance. In practice, virtual memory works
well, mainly because of our old friend locality.

Although the total number of distinct pages that programs reference during an
entire run might exceed the total size of physical memory, the principle of locality
promises that at any point in time they will tend to work on a smaller set of active
pages known as the working set or resident set. After an initial overhead where
the working set is paged into memory, subsequent references to the working set
result in hits, with no additional disk traffic.

As long as our programs have good temporal locality, virtual memory systems
work quite well. But of course, not all programs exhibit good temporal locality. If
the working set size exceeds the size of physical memory, then the program can
produce an unfortunate situation known as thrashing, where pages are swapped in
and out continuously. Although virtual memory is usually efficient, if a program’s
performance slows to a crawl, the wise programmer will consider the possibility
that it is thrashing.

Aside Counting page faults

You can monitor the number of page faults (and lots of other information) with the Unix getrusage
function.

Section 9.4 VM as a Tool for Memory Management 785

9.4 VM as a Tool for Memory Management

In the last section, we saw how virtual memory provides a mechanism for using the
DRAM to cache pages from a typically larger virtual address space. Interestingly,
some early systems such as the DEC PDP-11/70 supported a virtual address space
that was smaller than the available physical memory. Yet virtual memory was
still a useful mechanism because it greatly simplified memory management and
provided a natural way to protect memory.

Thus far, we have assumed a single page table that maps a single virtual
address space to the physical address space. In fact, operating systems provide
a separate page table, and thus a separate virtual address space, for each process.
Figure 9.9 shows the basic idea. In the example, the page table for process i maps
VP 1 to PP 2 and VP 2 to PP 7. Similarly, the page table for process j maps VP 1
to PP 7 and VP 2 to PP 10. Notice that multiple virtual pages can be mapped to
the same shared physical page.

The combination of demand paging and separate virtual address spaces has
a profound impact on the way that memory is used and managed in a system. In
particular, VM simplifies linking and loading, the sharing of code and data, and
allocating memory to applications.

. Simplifying linking. A separate address space allows each process to use the
same basic format for its memory image, regardless of where the code and
data actually reside in physical memory. For example, as we saw in Figure 8.13,
every process on a given Linux system has a similar memory format. The text
section always starts at virtual address 0x08048000 (for 32-bit address spaces),
or at address 0x400000 (for 64-bit address spaces). The data and bss sections
follow immediately after the text section. The stack occupies the highest
portion of the process address space and grows downward. Such uniformity
greatly simplifies the design and implementation of linkers, allowing them to
produce fully linked executables that are independent of the ultimate location
of the code and data in physical memory.

. Simplifying loading. Virtual memory also makes it easy to load executable
and shared object files into memory. Recall from Chapter 7 that the .text

Figure 9.9
How VM provides
processes with separate
address spaces. The
operating system maintains
a separate page table for
each process in the system.

Virtual address spaces
Physical memory

Shared page

Address translation
Process i :

Process j :

0

N�1

0

VP 1
VP 2

VP 1
VP 2

N�1

0

M�1

786 Chapter 9 Virtual Memory

and .data sections in ELF executables are contiguous. To load these sections
into a newly created process, the Linux loader allocates a contiguous chunk
of virtual pages starting at address 0x08048000 (32-bit address spaces) or
0x400000 (64-bit address spaces), marks them as invalid (i.e., not cached),
and points their page table entries to the appropriate locations in the object
file. The interesting point is that the loader never actually copies any data from
disk into memory. The data is paged in automatically and on demand by the
virtual memory system the first time each page is referenced, either by the
CPU when it fetches an instruction, or by an executing instruction when it
references a memory location.

This notion of mapping a set of contiguous virtual pages to an arbitrary
location in an arbitrary file is known as memory mapping. Unix provides
a system call called mmap that allows application programs to do their own
memory mapping. We will describe application-level memory mapping in
more detail in Section 9.8.

. Simplifying sharing. Separate address spaces provide the operating system
with a consistent mechanism for managing sharing between user processes
and the operating system itself. In general, each process has its own private
code, data, heap, and stack areas that are not shared with any other process. In
this case, the operating system creates page tables that map the corresponding
virtual pages to disjoint physical pages.

However, in some instances it is desirable for processes to share code
and data. For example, every process must call the same operating system
kernel code, and every C program makes calls to routines in the standard C
library such as printf. Rather than including separate copies of the kernel
and standard C library in each process, the operating system can arrange
for multiple processes to share a single copy of this code by mapping the
appropriate virtual pages in different processes to the same physical pages,
as we saw in Figure 9.9.

. Simplifying memory allocation.Virtual memory provides a simple mechanism
for allocating additional memory to user processes. When a program running
in a user process requests additional heap space (e.g., as a result of calling
malloc), the operating system allocates an appropriate number, say, k, of
contiguous virtual memory pages, and maps them to k arbitrary physical pages
located anywhere in physical memory. Because of the way page tables work,
there is no need for the operating system to locate k contiguous pages of
physical memory. The pages can be scattered randomly in physical memory.

9.5 VM as a Tool for Memory Protection

Any modern computer system must provide the means for the operating system
to control access to the memory system. A user process should not be allowed
to modify its read-only text section. Nor should it be allowed to read or modify
any of the code and data structures in the kernel. It should not be allowed to read
or write the private memory of other processes, and it should not be allowed to

Section 9.6 Address Translation 787

Physical memory

PP 0

PP 2

PP 4

PP 6

PP 9

PP 11

Process i:

Process j:

Page tables with permission bits

SUP READ WRITE Address

VP 0:

VP 1:

VP 2:

No

No
Yes

Yes

Yes
Yes

No

Yes
Yes

PP 6

PP 4
PP 2

SUP READ WRITE Address

VP 0:

VP 1:

VP 2:

No
Yes

No

Yes
Yes

Yes

No
Yes

Yes

PP 9
PP 6

PP 11

. . .
. . .

. . .

Figure 9.10 Using VM to provide page-level memory protection.

modify any virtual pages that are shared with other processes, unless all parties
explicitly allow it (via calls to explicit interprocess communication system calls).

As we have seen, providing separate virtual address spaces makes it easy to
isolate the private memories of different processes. But the address translation
mechanism can be extended in a natural way to provide even finer access control.
Since the address translation hardware reads a PTE each time the CPU generates
an address, it is straightforward to control access to the contents of a virtual page by
adding some additional permission bits to the PTE. Figure 9.10 shows the general
idea.

In this example, we have added three permission bits to each PTE. The SUP bit
indicates whether processes must be running in kernel (supervisor) mode to access
the page. Processes running in kernel mode can access any page, but processes
running in user mode are only allowed to access pages for which SUP is 0. The
READ and WRITE bits control read and write access to the page. For example,
if process i is running in user mode, then it has permission to read VP 0 and to
read or write VP 1. However, it is not allowed to access VP 2.

If an instruction violates these permissions, then the CPU triggers a general
protection fault that transfers control to an exception handler in the kernel. Unix
shells typically report this exception as a “segmentation fault.”

9.6 Address Translation

This section covers the basics of address translation. Our aim is to give you an
appreciation of the hardware’s role in supporting virtual memory, with enough
detail so that you can work through some concrete examples by hand. However,
keep in mind that we are omitting a number of details, especially related to timing,
that are important to hardware designers but are beyond our scope. For your

788 Chapter 9 Virtual Memory

Basic parameters

Symbol Description

N = 2n Number of addresses in virtual address space
M = 2m Number of addresses in physical address space
P = 2p Page size (bytes)

Components of a virtual address (VA)

Symbol Description

VPO Virtual page offset (bytes)
VPN Virtual page number
TLBI TLB index
TLBT TLB tag

Components of a physical address (PA)

Symbol Description

PPO Physical page offset (bytes)
PPN Physical page number
CO Byte offset within cache block
CI Cache index
CT Cache tag

Figure 9.11 Summary of address translation symbols.

reference, Figure 9.11 summarizes the symbols that we will be using throughout
this section.

Formally, address translation is a mapping between the elements of an N -
element virtual address space (VAS) and an M-element physical address space
(PAS),

MAP: VAS → PAS ∪ ∅

where

MAP(A) =
{

A′ if data at virtual addr A is present at physical addr A′ in PAS
∅ if data at virtual addr A is not present in physical memory

Figure 9.12 shows how the MMU uses the page table to perform this mapping.
A control register in the CPU, the page table base register (PTBR) points to the
current page table. The n-bit virtual address has two components: a p-bit virtual
page offset (VPO) and an (n − p)-bit virtual page number (VPN). The MMU uses
the VPN to select the appropriate PTE. For example, VPN 0 selects PTE 0, VPN 1
selects PTE 1, and so on. The corresponding physical address is the concatenation
of the physical page number (PPN) from the page table entry and the VPO from

Section 9.6 Address Translation 789

Page table
base register

(PTBR)

Physical address

Virtual address

Virtual page number (VPN) Virtual page offset (VPO)

Page
table

Valid Physical page number (PPN)

The VPN acts
as index into
the page table

If valid � 0
then page
not in memory
(page fault) Physical page number (PPN) Physical page offset (PPO)

n�1 p p�1

p p�1

0

m�1 0

Figure 9.12 Address translation with a page table.

the virtual address. Notice that since the physical and virtual pages are both P

bytes, the physical page offset (PPO) is identical to the VPO.
Figure 9.13(a) shows the steps that the CPU hardware performs when there

is a page hit.

. Step 1: The processor generates a virtual address and sends it to the MMU.

. Step 2: The MMU generates the PTE address and requests it from the
cache/main memory.

. Step 3: The cache/main memory returns the PTE to the MMU.

. Step 3: The MMU constructs the physical address and sends it to cache/main
memory.

. Step 4: The cache/main memory returns the requested data word to the pro-
cessor.

Unlike a page hit, which is handled entirely by hardware, handling a page
fault requires cooperation between hardware and the operating system kernel
(Figure 9.13(b)).

. Steps 1 to 3: The same as Steps 1 to 3 in Figure 9.13(a).

. Step 4: The valid bit in the PTE is zero, so the MMU triggers an exception,
which transfers control in the CPU to a page fault exception handler in the
operating system kernel.

. Step 5: The fault handler identifies a victim page in physical memory, and if
that page has been modified, pages it out to disk.

. Step 6: The fault handler pages in the new page and updates the PTE in
memory.

790 Chapter 9 Virtual Memory

5

CPU chip

Processor MMU
VA

Data

(a) Page hit

PA

PTE

PTEA

2

1
3

4

Cache/
memory

CPU chip

Processor MMU Disk
VA

PTE
Victim page

New page

PTEA

2

Exception

4

1

7

5

6

3 Cache/
memory

Page fault exception handler

(b) Page fault

Figure 9.13 Operational view of page hits and page faults. VA: virtual address. PTEA:
page table entry address. PTE: page table entry. PA: physical address.

. Step 7: The fault handler returns to the original process, causing the faulting
instruction to be restarted. The CPU resends the offending virtual address to
the MMU. Because the virtual page is now cached in physical memory, there
is a hit, and after the MMU performs the steps in Figure 9.13(b), the main
memory returns the requested word to the processor.

Practice Problem 9.3
Given a 32-bit virtual address space and a 24-bit physical address, determine the
number of bits in the VPN, VPO, PPN, and PPO for the following page sizes P :

P No. VPN bits No. VPO bits No. PPN bits No. PPO bits

1 KB
2 KB
4 KB
8 KB

Section 9.6 Address Translation 791

CPU chip

Processor MMU Memory
VA

Data L1
Cache

PA

PTEA

PTE

PTE

PTEA

PA

Data

PTEA
hit

PA
hit

PTEA
miss

PA
miss

Figure 9.14 Integrating VM with a physically addressed cache. VA: virtual address.
PTEA: page table entry address. PTE: page table entry. PA: physical address.

9.6.1 Integrating Caches and VM

In any system that uses both virtual memory and SRAM caches, there is the
issue of whether to use virtual or physical addresses to access the SRAM cache.
Although a detailed discussion of the trade-offs is beyond our scope here, most
systems opt for physical addressing. With physical addressing, it is straightforward
for multiple processes to have blocks in the cache at the same time and to share
blocks from the same virtual pages. Further, the cache does not have to deal
with protection issues because access rights are checked as part of the address
translation process.

Figure 9.14 shows how a physically addressed cache might be integrated with
virtual memory. The main idea is that the address translation occurs before the
cache lookup. Notice that page table entries can be cached, just like any other
data words.

9.6.2 Speeding up Address Translation with a TLB

As we have seen, every time the CPU generates a virtual address, the MMU must
refer to a PTE in order to translate the virtual address into a physical address. In
the worst case, this requires an additional fetch from memory, at a cost of tens
to hundreds of cycles. If the PTE happens to be cached in L1, then the cost goes
down to one or two cycles. However, many systems try to eliminate even this cost
by including a small cache of PTEs in the MMU called a translation lookaside
buffer (TLB).

A TLB is a small, virtually addressed cache where each line holds a block
consisting of a single PTE. A TLB usually has a high degree of associativity. As
shown in Figure 9.15, the index and tag fields that are used for set selection and line
matching are extracted from the virtual page number in the virtual address. If the
TLB has T = 2t sets, then the TLB index (TLBI) consists of the t least significant
bits of the VPN, and the TLB tag (TLBT) consists of the remaining bits in the
VPN.

792 Chapter 9 Virtual Memory

Figure 9.15
Components of a virtual
address that are used to
access the TLB.

n�1 p�t p p�1 0p�t�1

TLB tag (TLBT) TLB index (TLBI) VPO

VPN

Figure 9.16(a) shows the steps involved when there is a TLB hit (the usual
case). The key point here is that all of the address translation steps are performed
inside the on-chip MMU, and thus are fast.

. Step 1: The CPU generates a virtual address.

. Steps 2 and 3: The MMU fetches the appropriate PTE from the TLB.

. Step 4: The MMU translates the virtual address to a physical address and sends
it to the cache/main memory.

. Step 5: The cache/main memory returns the requested data word to the CPU.

When there is a TLB miss, then the MMU must fetch the PTE from the L1 cache,
as shown in Figure 9.16(b). The newly fetched PTE is stored in the TLB, possibly
overwriting an existing entry.

9.6.3 Multi-Level Page Tables

To this point we have assumed that the system uses a single page table to do address
translation. But if we had a 32-bit address space, 4 KB pages, and a 4-byte PTE,
then we would need a 4 MB page table resident in memory at all times, even if
the application referenced only a small chunk of the virtual address space. The
problem is compounded for systems with 64-bit address spaces.

The common approach for compacting the page table is to use a hierarchy
of page tables instead. The idea is easiest to understand with a concrete example.
Consider a 32-bit virtual address space partitioned into 4 KB pages, with page
table entries that are 4 bytes each. Suppose also that at this point in time the virtual
address space has the following form: The first 2K pages of memory are allocated
for code and data, the next 6K pages are unallocated, the next 1023 pages are also
unallocated, and the next page is allocated for the user stack. Figure 9.17 shows
how we might construct a two-level page table hierarchy for this virtual address
space.

Each PTE in the level-1 table is responsible for mapping a 4 MB chunk of the
virtual address space, where each chunk consists of 1024 contiguous pages. For
example, PTE 0 maps the first chunk, PTE 1 the next chunk, and so on. Given
that the address space is 4 GB, 1024 PTEs are sufficient to cover the entire space.

If every page in chunk i is unallocated, then level 1 PTE i is null. For example,
in Figure 9.17, chunks 2–7 are unallocated. However, if at least one page in chunk i

is allocated, then level 1 PTE i points to the base of a level 2 page table. For
example, in Figure 9.17, all or portions of chunks 0, 1, and 8 are allocated, so their
level 1 PTEs point to level 2 page tables.

Section 9.6 Address Translation 793

2

1

3

4

5

CPU chip

Processor Trans-
lation

TLB

Cache/
memoryVA

VPN PTE

Data

(a) TLB hit

PA

2

1

4

3

5

6

(b) TLB miss

CPU chip

Processor Trans-
lation

TLB

Cache/
memoryVA PA

VPN
PTE

Data

PTEA

Figure 9.16 Operational view of a TLB hit and miss.

Each PTE in a level 2 page table is responsible for mapping a 4 KB page of
virtual memory, just as before when we looked at single-level page tables. Notice
that with 4-byte PTEs, each level 1 and level 2 page table is 4K bytes, which
conveniently is the same size as a page.

This scheme reduces memory requirements in two ways. First, if a PTE in the
level 1 table is null, then the corresponding level 2 page table does not even have to
exist. This represents a significant potential savings, since most of the 4 GB virtual
address space for a typical program is unallocated. Second, only the level 1 table
needs to be in main memory at all times. The level 2 page tables can be created and

794 Chapter 9 Virtual Memory

. . .

VP 1023
VP 1024

VP 2047

Gap

PTE 0

PTE 1

PTE 2 (null)

VP 0

1023
unallocated

pages

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 0

PTE 1023

PTE 0

PTE 1023

1023 null
PTEs

PTE 7 (null)

PTE 8

(1K– 9)
null PTEs PTE 1023

. . .

. . .

VP 9215

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

Virtual
memory

Level 2
page tables

Level 1
page table

0

. . .

. . .

Figure 9.17 A two-level page table hierarchy. Notice that addresses increase from top
to bottom.

paged in and out by the VM system as they are needed, which reduces pressure on
main memory. Only the most heavily used level 2 page tables need to be cached
in main memory.

Figure 9.18 summarizes address translation with a k-level page table hierarchy.
The virtual address is partitioned into k VPNs and a VPO. Each VPN i, 1 ≤ i ≤ k,
is an index into a page table at level i. Each PTE in a level-j table, 1 ≤ j ≤ k − 1,
points to the base of some page table at level j + 1. Each PTE in a level-k table
contains either the PPN of some physical page or the address of a disk block.
To construct the physical address, the MMU must access k PTEs before it can
determine the PPN. As with a single-level hierarchy, the PPO is identical to the
VPO.

Accessing k PTEs may seem expensive and impractical at first glance. How-
ever, the TLB comes to the rescue here by caching PTEs from the page tables at
the different levels. In practice, address translation with multi-level page tables is
not significantly slower than with single-level page tables.

9.6.4 Putting It Together: End-to-end Address Translation

In this section, we put it all together with a concrete example of end-to-end
address translation on a small system with a TLB and L1 d-cache. To keep things
manageable, we make the following assumptions:

. The memory is byte addressable.

. Memory accesses are to 1-byte words (not 4-byte words).

Section 9.6 Address Translation 795

Figure 9.18
Address translation with
a k-level page table.

PPN PPO

. . .

.

m�1

n�1 p�1 0

p�1 0

Virtual address

Physical address

VPN 1 VPN 2 VPN k VPO

Level 1
page table

Level 2
page table

Level k
page table

PPN

. Virtual addresses are 14 bits wide (n = 14).

. Physical addresses are 12 bits wide (m = 12).

. The page size is 64 bytes (P = 64).

. The TLB is four-way set associative with 16 total entries.

. The L1 d-cache is physically addressed and direct mapped, with a 4-byte line
size and 16 total sets.

Figure 9.19 shows the formats of the virtual and physical addresses. Since each
page is 26 = 64 bytes, the low-order 6 bits of the virtual and physical addresses serve
as the VPO and PPO respectively. The high-order 8 bits of the virtual address serve
as the VPN. The high-order 6 bits of the physical address serve as the PPN.

Figure 9.20 shows a snapshot of our little memory system, including the TLB
(Figure 9.20(a)), a portion of the page table (Figure 9.20(b)), and the L1 cache
(Figure 9.20(c)). Above the figures of the TLB and cache, we have also shown
how the bits of the virtual and physical addresses are partitioned by the hardware
as it accesses these devices.

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN
(Virtual page number)

VPO
(Virtual page offset)

Virtual
address

11 10 9 8 7 6 5 4 3 2 1 0

PPN
(Physical page number)

PPO
(Physical page offset)

Physical
address

Figure 9.19 Addressing for small memory system. Assume 14-bit virtual addresses
(n = 14), 12-bit physical addresses (m = 12), and 64-byte pages (P = 64).

13

03

12 11 10 9 8 7 6 5 4 3 2 1 0

VPN

TLBT TLBI

(a) TLB: Four sets, 16 entries, four-way set associative

VPO

Virtual
address

03

02

07

�

2D

�

�

0

1

0

0

09

02

08

03

0D

�

�

0D

1

0

0

1

00

04

06

0A

�

�

�

34

0

0

0

1

07

0A

03

02

02

�

�

�

1

Tag

0

1

2

3

Set PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid

0

0

0

28

—

33

02

1

0

1

1

—

16

—

—

04

05

06

07

0

1

0

0

PPN

00

01

02

03

VPN Valid

13

17

09

�

1

1

1

0

�

2D

11

0D

0C

0D

0E

0F

0

1

1

1

PPN

08

09

0A

0B

VPN Valid

(b) Page table: Only the first 16 PTEs are shown

19

15

1B

36

1

0

1

0

32

0D

31

16

4

5

6

7

1

1

0

1

24 1

2D 0

2D 1

0B 0

12 0

16 1

13 1

14

8

9

A

B

C

D

E

F 0

Tag

0

1

2

3

Idx Valid

99

—

00

—

11

—

02

—

43

36

—

11

6D

72

—

C2

3A 00

— —

93 15

— —

— —

04 96

83 77

— —

Blk 0 Blk 1

23

—

04

—

11

—

08

—

8F

F0

—

DF

09

1D

—

03

51 89

— —

DA 3B

— —

— —

34 15

1B D3

— —

Blk 2 Blk 3

11 10 9 8 7 6 5 4 3 2 1 0

PPN

CT CI CO

PPO

Physical
address

(c) Cache: Sixteen sets, 4-byte blocks, direct mapped

Figure 9.20 TLB, page table, and cache for small memory system. All values in the
TLB, page table, and cache are in hexadecimal notation.

Section 9.6 Address Translation 797

. TLB: The TLB is virtually addressed using the bits of the VPN. Since the TLB
has four sets, the 2 low-order bits of the VPN serve as the set index (TLBI).
The remaining 6 high-order bits serve as the tag (TLBT) that distinguishes
the different VPNs that might map to the same TLB set.

. Page table. The page table is a single-level design with a total of 28 = 256 page
table entries (PTEs). However, we are only interested in the first sixteen of
these. For convenience, we have labeled each PTE with the VPN that indexes
it; but keep in mind that these VPNs are not part of the page table and not
stored in memory. Also, notice that the PPN of each invalid PTE is denoted
with a dash to reinforce the idea that whatever bit values might happen to be
stored there are not meaningful.

. Cache. The direct-mapped cache is addressed by the fields in the physical
address. Since each block is 4 bytes, the low-order 2 bits of the physical address
serve as the block offset (CO). Since there are 16 sets, the next 4 bits serve as
the set index (CI). The remaining 6 bits serve as the tag (CT).

Given this initial setup, let’s see what happens when the CPU executes a load
instruction that reads the byte at address 0x03d4. (Recall that our hypothetical
CPU reads one-byte words rather than four-byte words.) To begin this kind of
manual simulation, we find it helpful to write down the bits in the virtual address,
identify the various fields we will need, and determine their hex values. The
hardware performs a similar task when it decodes the address.

TLBT TLBI

0x03 0x03

bit position 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA = 0x03d4 0 0 0 0 1 1 1 1 0 1 0 1 0 0

VPN VPO

0x0f 0x14

To begin, the MMU extracts the VPN (0x0F) from the virtual address and
checks with the TLB to see if it has cached a copy of PTE 0x0F from some previous
memory reference. The TLB extracts the TLB index (0x03) and the TLB tag (0x3)
from the VPN, hits on a valid match in the second entry of Set 0x3, and returns
the cached PPN (0x0D) to the MMU.

If the TLB had missed, then the MMU would need to fetch the PTE from main
memory. However, in this case we got lucky and had a TLB hit. The MMU now has
everything it needs to form the physical address. It does this by concatenating the
PPN (0x0D) from the PTE with the VPO (0x14) from the virtual address, which
forms the physical address (0x354).

Next, the MMU sends the physical address to the cache, which extracts the
cache offset CO (0x0), the cache set index CI (0x5), and the cache tag CT (0x0D)
from the physical address.

798 Chapter 9 Virtual Memory

CT CI CO

0x0d 0x05 0x0

bit position 11 10 9 8 7 6 5 4 3 2 1 0
PA = 0x354 0 0 1 1 0 1 0 1 0 1 0 0

PPN PPO

0x0d 0x14

Since the tag in Set 0x5matches CT, the cache detects a hit, reads out the data
byte (0x36) at offset CO, and returns it to the MMU, which then passes it back to
the CPU.

Other paths through the translation process are also possible. For example, if
the TLB misses, then the MMU must fetch the PPN from a PTE in the page table.
If the resulting PTE is invalid, then there is a page fault and the kernel must page
in the appropriate page and rerun the load instruction. Another possibility is that
the PTE is valid, but the necessary memory block misses in the cache.

Practice Problem 9.4
Show how the example memory system in Section 9.6.4 translates a virtual address
into a physical address and accesses the cache. For the given virtual address,
indicate the TLB entry accessed, physical address, and cache byte value returned.
Indicate whether the TLB misses, whether a page fault occurs, and whether a cache
miss occurs. If there is a cache miss, enter “–” for “Cache byte returned.” If there
is a page fault, enter “–” for “PPN” and leave parts C and D blank.

Virtual address: 0x03d7

A. Virtual address format

13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN
TLB index
TLB tag
TLB hit? (Y/N)
Page fault? (Y/N)
PPN

C. Physical address format

11 10 9 8 7 6 5 4 3 2 1 0

Section 9.7 Case Study: The Intel Core i7/Linux Memory System 799

D. Physical memory reference

Parameter Value

Byte offset
Cache index
Cache tag
Cache hit? (Y/N)
Cache byte returned

9.7 Case Study: The Intel Core i7/Linux Memory System

We conclude our discussion of virtual memory mechanisms with a case study of a
real system: an Intel Core i7 running Linux. The Core i7 is based on the Nehalem
microarchitecture. Although the Nehalem design allows for full 64-bit virtual and
physical address spaces, the current Core i7 implementations (and those for the
foreseeable future) support a 48-bit (256 TB) virtual address space and a 52-bit
(4 PB) physical address space, along with a compatability mode that supports 32-
bit (4 GB) virtual and physical address spaces.

Figure 9.21 gives the highlights of the Core i7 memory system. The processor
package includes four cores, a large L3 cache shared by all of the cores, and a

DDR3 memory controller
3 × 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

L2 unified TLB
512 entries, 4-way

Main memory

MMU
(addr translation)

To other
cores

To I/O
bridge

L1 i-TLB
128 entries, 4-way

L1 d-TLB
64 entries, 4-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

L1 i-cache
32 KB, 8-way

L1 d-cache
32 KB, 8-way

Instruction
fetch

Registers

QuickPath interconnect
4 links @ 25.6 GB/s

102.4 GB/s total

Processor package

Core ×4

Figure 9.21 The Core i7 memory system.

800 Chapter 9 Virtual Memory

DDR3 memory controller. Each core contains a hierarchy of TLBs, a hierarchy
of data and instruction caches, and a set of fast point-to-point links, based on
the Intel QuickPath technology, for communicating directly with the other cores
and the external I/O bridge. The TLBs are virtually addressed, and four-way set
associative. The L1, L2, and L3 caches are physically addressed, and eight-way
set associative, with a block size of 64 bytes. The page size can be configured at
start-up time as either 4 KB or 4 MB. Linux uses 4-KB pages.

9.7.1 Core i7 Address Translation

Figure 9.22 summarizes the entire Core i7 address translation process, from the
time the CPU generates a virtual address until a data word arrives from memory.
The Core i7 uses a four-level page table hierarchy. Each process has its own private
page table hierarchy. When a Linux process is running, the page tables associated
with allocated pages are all memory-resident, although the Core i7 architecture
allows these page tables to be swapped in and out. The CR3 control register points
to the beginning of the level 1 (L1) page table. The value of CR3 is part of each
process context, and is restored during each context switch.

. . .

. . .

CPU

VPN VPO

36 12

TLBT TLBI
32 4

VPN1 VPN2

PTEPTEPTEPTE

PPN PPO

40 129 9

VPN3 VPN4

9 9

TLB
miss

Virtual address (VA)

TLB
hit

L1 TLB (16 sets, 4 entries/set)

Page tables

Result

CR3

32/64

CT CI CO

40 66

L1
hit

L1 d-cache
(64 sets, 8 lines/set)

L2, L3, and
main memory

L1
miss

Physical
address

(PA)

Figure 9.22 Summary of Core i7 address translation. For simplicity, the i-caches, i-TLB, and
L2 unified TLB are not shown.

Section 9.7 Case Study: The Intel Core i7/Linux Memory System 801

R/WU/SWTCDAPSGPage table physical base addr UnusedUnused P=1

Available for OS (page table location on disk) P=0

0123

XD

63 4567891112515262

Field Description

P Child page table present in physical memory (1) or not (0).
R/W Read-only or read-write access permission for all reachable pages.
U/S User or supervisor (kernel) mode access permission for all reachable pages.
WT Write-through or write-back cache policy for the child page table.
CD Caching disabled or enabled for the child page table.
A Reference bit (set by MMU on reads and writes, cleared by software).
PS Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).
Base addr 40 most significant bits of physical base address of child page table.
XD Disable or enable instruction fetches from all pages reachable from this PTE.

Figure 9.23 Format of level 1, level 2, and level 3 page table entries. Each entry
references a 4 KB child page table.

Figure 9.23 shows the format of an entry in a level 1, level 2, or level 3
page table. When P = 1 (which is always the case with Linux), the address field
contains a 40-bit physical page number (PPN) that points to the beginning of the
appropriate page table. Notice that this imposes a 4 KB alignment requirement
on page tables.

Figure 9.24 shows the format of an entry in a level 4 page table. When P = 1,
the address field contains a 40-bit PPN that points to the base of some page in
physical memory. Again, this imposes a 4 KB alignment requirement on physical
pages.

The PTE has three permission bits that control access to the page. The R/W bit
determines whether the contents of a page are read/write or read/only. The U/S

bit, which determines whether the page can be accessed in user mode, protects
code and data in the operating system kernel from user programs. The XD (exe-
cute disable) bit, which was introduced in 64-bit systems, can be used to disable
instruction fetches from individual memory pages. This is an important new fea-
ture that allows the operating system kernel to reduce the risk of buffer overflow
attacks by restricting execution to the read-only text segment.

As the MMU translates each virtual address, it also updates two other bits that
can be used by the kernel’s page fault handler. The MMU sets the A bit, which
is known as a reference bit, each time a page is accessed. The kernel can use the
reference bit to implement its page replacement algorithm. The MMU sets the D

bit, or dirty bit, each time the page is written to. A page that has been modified is
sometimes called a dirty page. The dirty bit tells the kernel whether or not it must
write-back a victim page before it copies in a replacement page. The kernel can
call a special kernel-mode instruction to clear the reference or dirty bits.

802 Chapter 9 Virtual Memory

R/WU/SWTCDA0 DGPage physical base addr UnusedUnused P=1

Available for OS (page table location on disk) P=0

0123

XD

63 4567891112515262

Field Description

P Child page present in physical memory (1) or not (0).
R/W Read-only or read/write access permission for child page.
U/S User or supervisor mode (kernel mode) access permission for child page.
WT Write-through or write-back cache policy for the child page.
CD Cache disabled or enabled.
A Reference bit (set by MMU on reads and writes, cleared by software).
D Dirty bit (set by MMU on writes, cleared by software).
G Global page (don’t evict from TLB on task switch).
Base addr 40 most significant bits of physical base address of child page.
XD Disable or enable instruction fetches from the child page.

Figure 9.24 Format of level 4 page table entries. Each entry references a 4 KB child
page.

Figure 9.25 shows how the Core i7 MMU uses the four levels of page tables
to translate a virtual address to a physical address. The 36-bit VPN is partitioned
into four 9-bit chunks, each of which is used as an offset into a page table. The
CR3 register contains the physical address of the L1 page table. VPN 1 provides
an offset to an L1 PTE, which contains the base address of the L2 page table. VPN
2 provides an offset to an L2 PTE, and so on.

Aside Optimizing address translation

In our discussion of address translation, we have described a sequential two-step process where the
MMU (1) translates the virtual address to a physical address, and then (2) passes the physical address
to the L1 cache. However, real hardware implementations use a neat trick that allows these steps to
be partially overlapped, thus speeding up accesses to the L1 cache. For example, a virtual address on
a Core i7 with 4 KB pages has 12 bits of VPO, and these bits are identical to the 12 bits of PPO in
the corresponding physical address. Since the eight-way set-associative physically addressed L1 caches
have 64 sets and 64-byte cache blocks, each physical address has 6 (log2 64) cache offset bits and 6
(log2 64) index bits. These 12 bits fit exactly in the 12-bit VPO of a virtual address, which is no accident!
When the CPU needs a virtual address translated, it sends the VPN to the MMU and the VPO to the
L1 cache. While the MMU is requesting a page table entry from the TLB, the L1 cache is busy using
the VPO bits to find the appropriate set and read out the eight tags and corresponding data words in
that set. When the MMU gets the PPN back from the TLB, the cache is ready to try to match the PPN
to one of these eight tags.

Section 9.7 Case Study: The Intel Core i7/Linux Memory System 803

VPO

L4 PT
Page
table

4 KB
region

per entry

2 MB
region

per entry

1 GB
region

per entry

512 GB
region

per entry

L3 PT
Page middle

directory

L2 PT
Page upper

directory

L1 PT
Page global

directory

Physical
address
of L1 PT

Physical
address
of page

CR3

Physical address

Virtual address

PPN

Offset into
physical and
virtual page

L4 PTE

40

12

12

PPO

12

40

40

9
L3 PTE

40

9
L2 PTE

40

9
L1 PTE

40

9

VPN 4

9

VPN 3

9

VPN 2

9

VPN 1

9

Figure 9.25 Core i7 page table translation. Legend: PT: page table, PTE: page table entry, VPN: virtual page
number, VPO: virtual page offset, PPN: physical page number, PPO: physical page offset. The Linux names for
the four levels of page tables are also shown.

9.7.2 Linux Virtual Memory System

A virtual memory system requires close cooperation between the hardware and
the kernel. Details vary from version to version, and a complete description is
beyond our scope. Nonetheless, our aim in this section is to describe enough of
the Linux virtual memory system to give you a sense of how a real operating system
organizes virtual memory and how it handles page faults.

Linux maintains a separate virtual address space for each process of the form
shown in Figure 9.26. We have seen this picture a number of times already, with
its familiar code, data, heap, shared library, and stack segments. Now that we
understand address translation, we can fill in some more details about the kernel
virtual memory that lies above the user stack.

The kernel virtual memory contains the code and data structures in the kernel.
Some regions of the kernel virtual memory are mapped to physical pages that
are shared by all processes. For example, each process shares the kernel’s code
and global data structures. Interestingly, Linux also maps a set of contiguous
virtual pages (equal in size to the total amount of DRAM in the system) to the
corresponding set of contiguous physical pages. This provides the kernel with a
convenient way to access any specific location in physical memory, for example,

804 Chapter 9 Virtual Memory

Figure 9.26
The virtual memory of a
Linux process.

0x08048000 (32)
0x40000000 (64)

0

Process-specific data
structures

(e.g., page tables,
task and mm structs,

kernel stack)

Physical memory

Kernel code and data

Memory mapped region
for shared libraries

Run-time heap (via malloc)

Uninitialized data (.bss)

Initialized data (.data)
Program text (.text)

User stack

Different for
each process

Identical for
each process

Process
virtual
memory

Kernel
virtual
memory

%esp

brk

when it needs to access page tables, or to perform memory-mapped I/O operations
on devices that are mapped to particular physical memory locations.

Other regions of kernel virtual memory contain data that differs for each
process. Examples include page tables, the stack that the kernel uses when it is
executing code in the context of the process, and various data structures that keep
track of the current organization of the virtual address space.

Linux Virtual Memory Areas

Linux organizes the virtual memory as a collection of areas (also called segments).
An area is a contiguous chunk of existing (allocated) virtual memory whose pages
are related in some way. For example, the code segment, data segment, heap,
shared library segment, and user stack are all distinct areas. Each existing virtual
page is contained in some area, and any virtual page that is not part of some area
does not exist and cannot be referenced by the process. The notion of an area is
important because it allows the virtual address space to have gaps. The kernel does
not keep track of virtual pages that do not exist, and such pages do not consume
any additional resources in memory, on disk, or in the kernel itself.

Figure 9.27 highlights the kernel data structures that keep track of the virtual
memory areas in a process. The kernel maintains a distinct task structure (task_
struct in the source code) for each process in the system. The elements of the task

Section 9.7 Case Study: The Intel Core i7/Linux Memory System 805

mm

task_struct

pgd

vm_end

vm_start

vm_prot

vm_flags

vm_next

vm_end

vm_start

vm_prot

vm_flags

vm_next

vm_end

Shared libraries

0

Data

Text

vm_start

vm_prot

vm_flags

vm_next

mmap

mm_struct
vm_area_struct

Process virtual memory

Figure 9.27 How Linux organizes virtual memory.

structure either contain or point to all of the information that the kernel needs to
run the process (e.g., the PID, pointer to the user stack, name of the executable
object file, and program counter).

One of the entries in the task structure points to an mm_struct that charac-
terizes the current state of the virtual memory. The two fields of interest to us
are pgd, which points to the base of the level 1 table (the page global directory),
and mmap, which points to a list of vm_area_structs (area structs), each of which
characterizes an area of the current virtual address space. When the kernel runs
this process, it stores pgd in the CR3 control register.

For our purposes, the area struct for a particular area contains the following
fields:

. vm_start: Points to the beginning of the area

. vm_end: Points to the end of the area

. vm_prot: Describes the read/write permissions for all of the pages contained
in the area

. vm_flags: Describes (among other things) whether the pages in the area are
shared with other processes or private to this process

. vm_next: Points to the next area struct in the list

806 Chapter 9 Virtual Memory

Linux Page Fault Exception Handling

Suppose the MMU triggers a page fault while trying to translate some virtual
address A. The exception results in a transfer of control to the kernel’s page fault
handler, which then performs the following steps:

1. Is virtual address A legal? In other words, does A lie within an area defined by
some area struct? To answer this question, the fault handler searches the list of
area structs, comparing A with the vm_start and vm_end in each area struct.
If the instruction is not legal, then the fault handler triggers a segmentation
fault, which terminates the process. This situation is labeled “1” in Figure 9.28.

Because a process can create an arbitrary number of new virtual memory
areas (using the mmap function described in the next section), a sequential
search of the list of area structs might be very costly. So in practice, Linux
superimposes a tree on the list, using some fields that we have not shown, and
performs the search on this tree.

2. Is the attempted memory access legal? In other words, does the process have
permission to read, write, or execute the pages in this area? For example, was
the page fault the result of a store instruction trying to write to a read-only
page in the text segment? Is the page fault the result of a process running
in user mode that is attempting to read a word from kernel virtual memory?
If the attempted access is not legal, then the fault handler triggers a protec-
tion exception, which terminates the process. This situation is labeled “2” in
Figure 9.28.

Process virtual memory

Shared libraries

Data

Text

Segmentation fault:
accessing a non-existing page

Normal page fault

Protection exception:
e.g., violating permission by
writing to a read-only page

1

3

2

vm_area_struct

0

vm_end

vm_start

r/o

vm_next

vm_end

vm_start

r/w

vm_next

vm_end

vm_start

r/o

vm_next

Figure 9.28 Linux page fault handling.

Section 9.8 Memory Mapping 807

3. At this point, the kernel knows that the page fault resulted from a legal
operation on a legal virtual address. It handles the fault by selecting a victim
page, swapping out the victim page if it is dirty, swapping in the new page,
and updating the page table. When the page fault handler returns, the CPU
restarts the faulting instruction, which sends A to the MMU again. This time,
the MMU translates A normally, without generating a page fault.

9.8 Memory Mapping

Linux (along with other forms of Unix) initializes the contents of a virtual memory
area by associating it with an object on disk, a process known as memory mapping.
Areas can be mapped to one of two types of objects:

1. Regular file in the Unix file system: An area can be mapped to a contiguous
section of a regular disk file, such as an executable object file. The file section is
divided into page-sized pieces, with each piece containing the initial contents
of a virtual page. Because of demand paging, none of these virtual pages is
actually swapped into physical memory until the CPU first touches the page
(i.e., issues a virtual address that falls within that page’s region of the address
space). If the area is larger than the file section, then the area is padded with
zeros.

2. Anonymous file: An area can also be mapped to an anonymous file, created
by the kernel, that contains all binary zeros. The first time the CPU touches
a virtual page in such an area, the kernel finds an appropriate victim page
in physical memory, swaps out the victim page if it is dirty, overwrites the
victim page with binary zeros, and updates the page table to mark the page
as resident. Notice that no data is actually transferred between disk and
memory. For this reason, pages in areas that are mapped to anonymous files
are sometimes called demand-zero pages.

In either case, once a virtual page is initialized, it is swapped back and forth
between a special swap file maintained by the kernel. The swap file is also known
as the swap space or the swap area. An important point to realize is that at any
point in time, the swap space bounds the total amount of virtual pages that can be
allocated by the currently running processes.

9.8.1 Shared Objects Revisited

The idea of memory mapping resulted from a clever insight that if the virtual
memory system could be integrated into the conventional file system, then it could
provide a simple and efficient way to load programs and data into memory.

As we have seen, the process abstraction promises to provide each process
with its own private virtual address space that is protected from errant writes
or reads by other processes. However, many processes have identical read-only
text areas. For example, each process that runs the Unix shell program tcsh has
the same text area. Further, many programs need to access identical copies of

808 Chapter 9 Virtual Memory

Process 1
virtual memory

Process 2
virtual memory

Physical
memory

Shared
object

(a)

Process 1
virtual memory

Process 2
virtual memory

Physical
memory

Shared
object

(b)

Figure 9.29 A shared object. (a) After process 1 maps the shared object. (b) After process 2 maps the same
shared object. (Note that the physical pages are not necessarily contiguous.)

read-only run-time library code. For example, every C program requires functions
from the standard C library such as printf. It would be extremely wasteful for
each process to keep duplicate copies of these commonly used codes in physical
memory. Fortunately, memory mapping provides us with a clean mechanism for
controlling how objects are shared by multiple processes.

An object can be mapped into an area of virtual memory as either a shared
object or a private object. If a process maps a shared object into an area of its virtual
address space, then any writes that the process makes to that area are visible to
any other processes that have also mapped the shared object into their virtual
memory. Further, the changes are also reflected in the original object on disk.

Changes made to an area mapped to a private object, on the other hand, are
not visible to other processes, and any writes that the process makes to the area
are not reflected back to the object on disk. A virtual memory area into which a
shared object is mapped is often called a shared area. Similarly for a private area.

Suppose that process 1 maps a shared object into an area of its virtual memory,
as shown in Figure 9.29(a). Now suppose that process 2 maps the same shared ob-
ject into its address space (not necessarily at the same virtual address as process 1),
as shown in Figure 9.29(b).

Since each object has a unique file name, the kernel can quickly determine
that process 1 has already mapped this object and can point the page table entries
in process 2 to the appropriate physical pages. The key point is that only a single
copy of the shared object needs to be stored in physical memory, even though the
object is mapped into multiple shared areas. For convenience, we have shown the
physical pages as being contiguous, but of course this is not true in general.

Private objects are mapped into virtual memory using a clever technique
known as copy-on-write. A private object begins life in exactly the same way as a

Section 9.8 Memory Mapping 809

Process 1
virtual memory

Process 2
virtual memory

Physical
memory

Private
copy-on-write object

(a)

Process 1
virtual memory

Process 2
virtual memory

Physical
memory

Private
copy-on-write object

(b)

copy-on-write

Write to private
copy-on-write

page

Figure 9.30 A private copy-on-write object. (a) After both processes have mapped the private copy-on-write
object. (b) After process 2 writes to a page in the private area.

shared object, with only one copy of the private object stored in physical memory.
For example, Figure 9.30(a) shows a case where two processes have mapped a
private object into different areas of their virtual memories but share the same
physical copy of the object. For each process that maps the private object, the page
table entries for the corresponding private area are flagged as read-only, and the
area struct is flagged as private copy-on-write. So long as neither process attempts
to write to its respective private area, they continue to share a single copy of the
object in physical memory. However, as soon as a process attempts to write to
some page in the private area, the write triggers a protection fault.

When the fault handler notices that the protection exception was caused by
the process trying to write to a page in a private copy-on-write area, it creates a
new copy of the page in physical memory, updates the page table entry to point
to the new copy, and then restores write permissions to the page, as shown in
Figure 9.30(b). When the fault handler returns, the CPU reexecutes the write,
which now proceeds normally on the newly created page.

By deferring the copying of the pages in private objects until the last possible
moment, copy-on-write makes the most efficient use of scarce physical memory.

9.8.2 The fork Function Revisited

Now that we understand virtual memory and memory mapping, we can get a clear
idea of how the fork function creates a new process with its own independent
virtual address space.

When the fork function is called by the current process, the kernel creates
various data structures for the new process and assigns it a unique PID. To create
the virtual memory for the new process, it creates exact copies of the current

810 Chapter 9 Virtual Memory

process’s mm_struct, area structs, and page tables. It flags each page in both
processes as read-only, and flags each area struct in both processes as private copy-
on-write.

When the fork returns in the new process, the new process now has an exact
copy of the virtual memory as it existed when the fork was called. When either
of the processes performs any subsequent writes, the copy-on-write mechanism
creates new pages, thus preserving the abstraction of a private address space for
each process.

9.8.3 The execve Function Revisited

Virtual memory and memory mapping also play key roles in the process of loading
programs into memory. Now that we understand these concepts, we can under-
stand how the execve function really loads and executes programs. Suppose that
the program running in the current process makes the following call:

Execve("a.out", NULL, NULL);

As you learned in Chapter 8, the execve function loads and runs the program
contained in the executable object file a.outwithin the current process, effectively
replacing the current program with the a.out program. Loading and running
a.out requires the following steps:

. Delete existing user areas. Delete the existing area structs in the user portion
of the current process’s virtual address.

. Map private areas. Create new area structs for the text, data, bss, and stack
areas of the new program. All of these new areas are private copy-on-write.
The text and data areas are mapped to the text and data sections of the a.out
file. The bss area is demand-zero, mapped to an anonymous file whose size is
contained in a.out. The stack and heap area are also demand-zero, initially
of zero-length. Figure 9.31 summarizes the different mappings of the private
areas.

. Map shared areas. If the a.out program was linked with shared objects, such
as the standard C library libc.so, then these objects are dynamically linked
into the program, and then mapped into the shared region of the user’s virtual
address space.

. Set the program counter (PC). The last thing that execve does is to set the
program counter in the current process’s context to point to the entry point
in the text area.

The next time this process is scheduled, it will begin execution from the entry
point. Linux will swap in code and data pages as needed.

9.8.4 User-level Memory Mapping with the mmap Function

Unix processes can use the mmap function to create new areas of virtual memory
and to map objects into these areas.

Section 9.8 Memory Mapping 811

Figure 9.31
How the loader maps the
areas of the user address
space.

Memory mapped region
for shared libraries

User stack

0

Run-time heap (via malloc)

Uninitialized data (.bss)

Initialized data (.data)

Program text (.text)

Private, demand-zero

Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

.data

.text

libc.so

.data

.text

a.out

#include <unistd.h>

#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags,

int fd, off_t offset);

Returns: pointer to mapped area if OK, MAP_FAILED (−1) on error

The mmap function asks the kernel to create a new virtual memory area,
preferably one that starts at address start, and to map a contiguous chunk of
the object specified by file descriptor fd to the new area. The contiguous object
chunk has a size of length bytes and starts at an offset of offset bytes from the
beginning of the file. The start address is merely a hint, and is usually specified as
NULL. For our purposes, we will always assume a NULL start address. Figure 9.32
depicts the meaning of these arguments.

The prot argument contains bits that describe the access permissions of the
newly mapped virtual memory area (i.e., the vm_prot bits in the corresponding
area struct).

. PROT_EXEC: Pages in the area consist of instructions that may be executed
by the CPU.

. PROT_READ: Pages in the area may be read.

. PROT_WRITE: Pages in the area may be written.

. PROT_NONE: Pages in the area cannot be accessed.

812 Chapter 9 Virtual Memory

Figure 9.32
Visual interpretation of
mmap arguments.

length (bytes)

length (bytes)

offset
(bytes)

Disk file specified by
file descriptor fd

Process
virtual memory

start
(or address

chosen by the
kernel)

0 0

The flags argument consists of bits that describe the type of the mapped
object. If the MAP_ANON flag bit is set, then the backing store is an anonymous
object and the corresponding virtual pages are demand-zero. MAP_PRIVATE
indicates a private copy-on-write object, and MAP_SHARED indicates a shared
object. For example,

bufp = Mmap(-1, size, PROT_READ, MAP_PRIVATE|MAP_ANON, 0, 0);

asks the kernel to create a new read-only, private, demand-zero area of virtual
memory containing size bytes. If the call is successful, then bufp contains the
address of the new area.

The munmap function deletes regions of virtual memory:

#include <unistd.h>

#include <sys/mman.h>

int munmap(void *start, size_t length);

Returns: 0 if OK, −1 on error

The munmap function deletes the area starting at virtual address start and consist-
ing of the next length bytes. Subsequent references to the deleted region result
in segmentation faults.

Practice Problem 9.5
Write a C programmmapcopy.c that usesmmap to copy an arbitrary-sized disk file to
stdout. The name of the input file should be passed as a command line argument.

9.9 Dynamic Memory Allocation

While it is certainly possible to use the low-level mmap and munmap functions to
create and delete areas of virtual memory, C programmers typically find it more

Section 9.9 Dynamic Memory Allocation 813

Figure 9.33
The heap.

Memory mapped region
for shared libraries

User stack

0

Heap

Uninitialized data (.bss)

Initialized data (.data)

Program text (.text)

Top of the heap
(brk ptr)

convenient and more portable to use a dynamic memory allocator when they need
to acquire additional virtual memory at run time.

A dynamic memory allocator maintains an area of a process’s virtual memory
known as the heap (Figure 9.33). Details vary from system to system, but without
loss of generality, we will assume that the heap is an area of demand-zero mem-
ory that begins immediately after the uninitialized bss area and grows upward
(toward higher addresses). For each process, the kernel maintains a variable brk
(pronounced “break”) that points to the top of the heap.

An allocator maintains the heap as a collection of various-sized blocks. Each
block is a contiguous chunk of virtual memory that is either allocated or free. An
allocated block has been explicitly reserved for use by the application. A free block
is available to be allocated. A free block remains free until it is explicitly allocated
by the application. An allocated block remains allocated until it is freed, either
explicitly by the application, or implicitly by the memory allocator itself.

Allocators come in two basic styles. Both styles require the application to
explicitly allocate blocks. They differ about which entity is responsible for freeing
allocated blocks.

. Explicit allocators require the application to explicitly free any allocated
blocks. For example, the C standard library provides an explicit allocator
called the malloc package. C programs allocate a block by calling the malloc
function, and free a block by calling the free function. The new and delete
calls in C++ are comparable.

. Implicit allocators, on the other hand, require the allocator to detect when
an allocated block is no longer being used by the program and then free
the block. Implicit allocators are also known as garbage collectors, and the

814 Chapter 9 Virtual Memory

process of automatically freeing unused allocated blocks is known as garbage
collection. For example, higher-level languages such as Lisp, ML, and Java rely
on garbage collection to free allocated blocks.

The remainder of this section discusses the design and implementation of
explicit allocators. We will discuss implicit allocators in Section 9.10. For concrete-
ness, our discussion focuses on allocators that manage heap memory. However,
you should be aware that memory allocation is a general idea that arises in a vari-
ety of contexts. For example, applications that do intensive manipulation of graphs
will often use the standard allocator to acquire a large block of virtual memory,
and then use an application-specific allocator to manage the memory within that
block as the nodes of the graph are created and destroyed.

9.9.1 The malloc and free Functions

The C standard library provides an explicit allocator known as themallocpackage.
Programs allocate blocks from the heap by calling the malloc function.

#include <stdlib.h>

void *malloc(size_t size);

Returns: ptr to allocated block if OK, NULL on error

The malloc function returns a pointer to a block of memory of at least size bytes
that is suitably aligned for any kind of data object that might be contained in the
block. On the Unix systems that we are familiar with, malloc returns a block that
is aligned to an 8-byte (double word) boundary.

Aside How big is a word?

Recall from our discussion of machine code in Chapter 3 that Intel refers to 4-byte objects as double
words. However, throughout this section, we will assume that words are 4-byte objects and that double
words are 8-byte objects, which is consistent with conventional terminology.

If malloc encounters a problem (e.g., the program requests a block of memory
that is larger than the available virtual memory), then it returns NULL and sets
errno. Malloc does not initialize the memory it returns. Applications that want
initialized dynamic memory can use calloc, a thin wrapper around the malloc
function that initializes the allocated memory to zero. Applications that want to
change the size of a previously allocated block can use the realloc function.

Dynamic memory allocators such as malloc can allocate or deallocate heap
memory explicitly by using the mmap and munmap functions, or they can use the
sbrk function:

Section 9.9 Dynamic Memory Allocation 815

#include <unistd.h>

void *sbrk(intptr_t incr);

Returns: old brk pointer on success, −1 on error

The sbrk function grows or shrinks the heap by adding incr to the kernel’s brk
pointer. If successful, it returns the old value of brk, otherwise it returns −1 and
sets errno to ENOMEM. If incr is zero, then sbrk returns the current value of
brk. Calling sbrk with a negative incr is legal but tricky because the return value
(the old value of brk) points to abs(incr) bytes past the new top of the heap.

Programs free allocated heap blocks by calling the free function.

#include <stdlib.h>

void free(void *ptr);

Returns: nothing

The ptr argument must point to the beginning of an allocated block that was
obtained from malloc, calloc, or realloc. If not, then the behavior of free
is undefined. Even worse, since it returns nothing, free gives no indication to
the application that something is wrong. As we shall see in Section 9.11, this can
produce some baffling run-time errors.

Figure 9.34 shows how an implementation of malloc and freemight manage
a (very) small heap of 16 words for a C program. Each box represents a 4-byte
word. The heavy-lined rectangles correspond to allocated blocks (shaded) and
free blocks (unshaded). Initially, the heap consists of a single 16-word double-
word aligned free block.

. Figure 9.34(a): The program asks for a four-word block. Malloc responds by
carving out a four-word block from the front of the free block and returning
a pointer to the first word of the block.

. Figure 9.34(b): The program requests a five-word block. Malloc responds by
allocating a six-word block from the front of the free block. In this example,
malloc pads the block with an extra word in order to keep the free block
aligned on a double-word boundary.

. Figure 9.34(c): The program requests a six-word block and malloc responds
by carving out a six-word block from the free block.

. Figure 9.34(d): The program frees the six-word block that was allocated in
Figure 9.34(b). Notice that after the call to free returns, the pointer p2 still
points to the freed block. It is the responsibility of the application not to use
p2 again until it is reinitialized by a new call to malloc.

816 Chapter 9 Virtual Memory

p1

(a) p1 = malloc(4*sizeof(int))

p1 p2

(b) p2 = malloc(5*sizeof(int))

p1 p2 p3

(c) p3 = malloc(6*sizeof(int))

p1 p2 p3

(d) free(p2)

p1 p2 p4 p3

(e) p4 = malloc(2*sizeof(int))

Figure 9.34 Allocating and freeing blocks with malloc and free. Each square
corresponds to a word. Each heavy rectangle corresponds to a block. Allocated blocks
are shaded. Padded regions of allocated blocks are shaded with stripes. Free blocks are
unshaded. Heap addresses increase from left to right.

. Figure 9.34(e): The program requests a two-word block. In this case, malloc
allocates a portion of the block that was freed in the previous step and returns
a pointer to this new block.

9.9.2 Why Dynamic Memory Allocation?

The most important reason that programs use dynamic memory allocation is that
often they do not know the sizes of certain data structures until the program
actually runs. For example, suppose we are asked to write a C program that reads
a list of n ASCII integers, one integer per line, from stdin into a C array. The
input consists of the integer n, followed by the n integers to be read and stored
into the array. The simplest approach is to define the array statically with some
hard-coded maximum array size:

1 #include "csapp.h"

2 #define MAXN 15213

3

4 int array[MAXN];

Section 9.9 Dynamic Memory Allocation 817

5

6 int main()

7 {

8 int i, n;

9

10 scanf("%d", &n);

11 if (n > MAXN)

12 app_error("Input file too big");

13 for (i = 0; i < n; i++)

14 scanf("%d", &array[i]);

15 exit(0);

16 }

Allocating arrays with hard-coded sizes like this is often a bad idea. The value
of MAXN is arbitrary and has no relation to the actual amount of available virtual
memory on the machine. Further, if the user of this program wanted to read a file
that was larger than MAXN, the only recourse would be to recompile the program
with a larger value of MAXN. While not a problem for this simple example, the
presence of hard-coded array bounds can become a maintenance nightmare for
large software products with millions of lines of code and numerous users.

A better approach is to allocate the array dynamically, at run time, after the
value of n becomes known. With this approach, the maximum size of the array is
limited only by the amount of available virtual memory.

1 #include "csapp.h"

2

3 int main()

4 {

5 int *array, i, n;

6

7 scanf("%d", &n);

8 array = (int *)Malloc(n * sizeof(int));

9 for (i = 0; i < n; i++)

10 scanf("%d", &array[i]);

11 exit(0);

12 }

Dynamic memory allocation is a useful and important programming tech-
nique. However, in order to use allocators correctly and efficiently, programmers
need to have an understanding of how they work. We will discuss some of the grue-
some errors that can result from the improper use of allocators in Section 9.11.

9.9.3 Allocator Requirements and Goals

Explicit allocators must operate within some rather stringent constraints.

. Handling arbitrary request sequences. An application can make an arbitrary
sequence of allocate and free requests, subject to the constraint that each

818 Chapter 9 Virtual Memory

free request must correspond to a currently allocated block obtained from
a previous allocate request. Thus, the allocator cannot make any assumptions
about the ordering of allocate and free requests. For example, the allocator
cannot assume that all allocate requests are accompanied by a matching free
request, or that matching allocate and free requests are nested.

. Making immediate responses to requests. The allocator must respond imme-
diately to allocate requests. Thus, the allocator is not allowed to reorder or
buffer requests in order to improve performance.

. Using only the heap. In order for the allocator to be scalable, any non-scalar
data structures used by the allocator must be stored in the heap itself.

. Aligning blocks (alignment requirement). The allocator must align blocks in
such a way that they can hold any type of data object. On most systems, this
means that the block returned by the allocator is aligned on an 8-byte (double-
word) boundary.

. Not modifying allocated blocks.Allocators can only manipulate or change free
blocks. In particular, they are not allowed to modify or move blocks once they
are allocated. Thus, techniques such as compaction of allocated blocks are not
permitted.

Working within these constraints, the author of an allocator attempts to meet
the often conflicting performance goals of maximizing throughput and memory
utilization.

. Goal 1: Maximizing throughput. Given some sequence of n allocate and free
requests

R0, R1, . . . , Rk, . . . , Rn−1

we would like to maximize an allocator’s throughput, which is defined as the
number of requests that it completes per unit time. For example, if an allo-
cator completes 500 allocate requests and 500 free requests in 1 second, then
its throughput is 1,000 operations per second. In general, we can maximize
throughput by minimizing the average time to satisfy allocate and free re-
quests. As we’ll see, it is not too difficult to develop allocators with reasonably
good performance where the worst-case running time of an allocate request
is linear in the number of free blocks and the running time of a free request
is constant.

. Goal 2: Maximizing memory utilization.Naive programmers often incorrectly
assume that virtual memory is an unlimited resource. In fact, the total amount
of virtual memory allocated by all of the processes in a system is limited by the
amount of swap space on disk. Good programmers know that virtual memory
is a finite resource that must be used efficiently. This is especially true for
a dynamic memory allocator that might be asked to allocate and free large
blocks of memory.

There are a number of ways to characterize how efficiently an allocator
uses the heap. In our experience, the most useful metric is peak utilization. As

Section 9.9 Dynamic Memory Allocation 819

before, we are given some sequence of n allocate and free requests

R0, R1, . . . , Rk, . . . , Rn−1

If an application requests a block of p bytes, then the resulting allocated block
has a payload of p bytes. After request Rk has completed, let the aggregate
payload, denoted Pk, be the sum of the payloads of the currently allocated
blocks, and let Hk denote the current (monotonically nondecreasing) size of
the heap.

Then the peak utilization over the first k requests, denoted by Uk, is
given by

Uk = maxi≤k Pi

Hk

The objective of the allocator then is to maximize the peak utilization Un−1
over the entire sequence. As we will see, there is a tension between maximiz-
ing throughput and utilization. In particular, it is easy to write an allocator
that maximizes throughput at the expense of heap utilization. One of the in-
teresting challenges in any allocator design is finding an appropriate balance
between the two goals.

Aside Relaxing the monotonicity assumption

We could relax the monotonically nondecreasing assumption in our definition of Uk and allow the heap
to grow up and down by letting Hk be the highwater mark over the first k requests.

9.9.4 Fragmentation

The primary cause of poor heap utilization is a phenomenon known as fragmen-
tation, which occurs when otherwise unused memory is not available to satisfy
allocate requests. There are two forms of fragmentation: internal fragmentation
and external fragmentation.

Internal fragmentation occurs when an allocated block is larger than the pay-
load. This might happen for a number of reasons. For example, the implementation
of an allocator might impose a minimum size on allocated blocks that is greater
than some requested payload. Or, as we saw in Figure 9.34(b), the allocator might
increase the block size in order to satisfy alignment constraints.

Internal fragmentation is straightforward to quantify. It is simply the sum of
the differences between the sizes of the allocated blocks and their payloads. Thus,
at any point in time, the amount of internal fragmentation depends only on the
pattern of previous requests and the allocator implementation.

External fragmentation occurs when there is enough aggregate free memory
to satisfy an allocate request, but no single free block is large enough to handle the
request. For example, if the request in Figure 9.34(e) were for six words rather than
two words, then the request could not be satisfied without requesting additional
virtual memory from the kernel, even though there are six free words remaining

820 Chapter 9 Virtual Memory

in the heap. The problem arises because these six words are spread over two free
blocks.

External fragmentation is much more difficult to quantify than internal frag-
mentation because it depends not only on the pattern of previous requests and the
allocator implementation, but also on the pattern of future requests. For example,
suppose that after k requests all of the free blocks are exactly four words in size.
Does this heap suffer from external fragmentation? The answer depends on the
pattern of future requests. If all of the future allocate requests are for blocks that
are smaller than or equal to four words, then there is no external fragmentation.
On the other hand, if one or more requests ask for blocks larger than four words,
then the heap does suffer from external fragmentation.

Since external fragmentation is difficult to quantify and impossible to predict,
allocators typically employ heuristics that attempt to maintain small numbers of
larger free blocks rather than large numbers of smaller free blocks.

9.9.5 Implementation Issues

The simplest imaginable allocator would organize the heap as a large array of
bytes and a pointer p that initially points to the first byte of the array. To allocate
size bytes, malloc would save the current value of p on the stack, increment p by
size, and return the old value of p to the caller. Free would simply return to the
caller without doing anything.

This naive allocator is an extreme point in the design space. Since each malloc
and free execute only a handful of instructions, throughput would be extremely
good. However, since the allocator never reuses any blocks, memory utilization
would be extremely bad. A practical allocator that strikes a better balance between
throughput and utilization must consider the following issues:

. Free block organization: How do we keep track of free blocks?

. Placement: How do we choose an appropriate free block in which to place a
newly allocated block?

. Splitting: After we place a newly allocated block in some free block, what do
we do with the remainder of the free block?

. Coalescing: What do we do with a block that has just been freed?

The rest of this section looks at these issues in more detail. Since the basic
techniques of placement, splitting, and coalescing cut across many different free
block organizations, we will introduce them in the context of a simple free block
organization known as an implicit free list.

9.9.6 Implicit Free Lists

Any practical allocator needs some data structure that allows it to distinguish
block boundaries and to distinguish between allocated and free blocks. Most
allocators embed this information in the blocks themselves. One simple approach
is shown in Figure 9.35.

Section 9.9 Dynamic Memory Allocation 821

Header

Block size

Payload
(allocated block only)

Padding (optional)

0 0 a

The block size includes
the header, payload, and
any padding

a = 1: Allocated
a = 0: Free

malloc returns a
pointer to the beginning
of the payload

31 3 2 1 0

Figure 9.35 Format of a simple heap block.

In this case, a block consists of a one-word header, the payload, and possibly
some additional padding. The header encodes the block size (including the header
and any padding) as well as whether the block is allocated or free. If we impose
a double-word alignment constraint, then the block size is always a multiple of
eight and the 3 low-order bits of the block size are always zero. Thus, we need to
store only the 29 high-order bits of the block size, freeing the remaining 3 bits
to encode other information. In this case, we are using the least significant of
these bits (the allocated bit) to indicate whether the block is allocated or free.
For example, suppose we have an allocated block with a block size of 24 (0x18)
bytes. Then its header would be

0x00000018 | 0x1 = 0x00000019

Similarly, a free block with a block size of 40 (0x28) bytes would have a header of

0x00000028 | 0x0 = 0x00000028

The header is followed by the payload that the application requested when it
called malloc. The payload is followed by a chunk of unused padding that can be
any size. There are a number of reasons for the padding. For example, the padding
might be part of an allocator’s strategy for combating external fragmentation. Or
it might be needed to satisfy the alignment requirement.

Given the block format in Figure 9.35, we can organize the heap as a sequence
of contiguous allocated and free blocks, as shown in Figure 9.36.

Unused
Start

of
heap

8/0 16/1 32/0 16/1 0/1
Double-

word
aligned

Figure 9.36 Organizing the heap with an implicit free list. Allocated blocks are shaded. Free blocks are
unshaded. Headers are labeled with (size (bytes)/allocated bit).

822 Chapter 9 Virtual Memory

We call this organization an implicit free list because the free blocks are linked
implicitly by the size fields in the headers. The allocator can indirectly traverse
the entire set of free blocks by traversing all of the blocks in the heap. Notice that
we need some kind of specially marked end block, in this example a terminating
header with the allocated bit set and a size of zero. (As we will see in Section 9.9.12,
setting the allocated bit simplifies the coalescing of free blocks.)

The advantage of an implicit free list is simplicity. A significant disadvantage
is that the cost of any operation, such as placing allocated blocks, that requires a
search of the free list will be linear in the total number of allocated and free blocks
in the heap.

It is important to realize that the system’s alignment requirement and the
allocator’s choice of block format impose a minimum block size on the allocator.
No allocated or free block may be smaller than this minimum. For example, if we
assume a double-word alignment requirement, then the size of each block must
be a multiple of two words (8 bytes). Thus, the block format in Figure 9.35 induces
a minimum block size of two words: one word for the header, and another to
maintain the alignment requirement. Even if the application were to request a
single byte, the allocator would still create a two-word block.

Practice Problem 9.6
Determine the block sizes and header values that would result from the following
sequence of malloc requests. Assumptions: (1) The allocator maintains double-
word alignment, and uses an implicit free list with the block format from Fig-
ure 9.35. (2) Block sizes are rounded up to the nearest multiple of 8 bytes.

Request Block size (decimal bytes) Block header (hex)

malloc(1)

malloc(5)

malloc(12)

malloc(13)

9.9.7 Placing Allocated Blocks

When an application requests a block of k bytes, the allocator searches the free
list for a free block that is large enough to hold the requested block. The manner
in which the allocator performs this search is determined by the placement policy.
Some common policies are first fit, next fit, and best fit.

First fit searches the free list from the beginning and chooses the first free
block that fits. Next fit is similar to first fit, but instead of starting each search at
the beginning of the list, it starts each search where the previous search left off.
Best fit examines every free block and chooses the free block with the smallest size
that fits.

An advantage of first fit is that it tends to retain large free blocks at the end
of the list. A disadvantage is that it tends to leave “splinters” of small free blocks

Section 9.9 Dynamic Memory Allocation 823

Unused
Start

of
heap

8/0 16/1 16/1 16/116/0 0/1
Double-

word
aligned

Figure 9.37 Splitting a free block to satisfy a three-word allocation request. Allocated blocks are shaded.
Free blocks are unshaded. Headers are labeled with (size (bytes)/allocated bit).

toward the beginning of the list, which will increase the search time for larger
blocks. Next fit was first proposed by Donald Knuth as an alternative to first fit,
motivated by the idea that if we found a fit in some free block the last time, there
is a good chance that we will find a fit the next time in the remainder of the block.
Next fit can run significantly faster than first fit, especially if the front of the list
becomes littered with many small splinters. However, some studies suggest that
next fit suffers from worse memory utilization than first fit. Studies have found
that best fit generally enjoys better memory utilization than either first fit or next
fit. However, the disadvantage of using best fit with simple free list organizations
such as the implicit free list, is that it requires an exhaustive search of the heap.
Later, we will look at more sophisticated segregated free list organizations that
approximate a best-fit policy without an exhaustive search of the heap.

9.9.8 Splitting Free Blocks

Once the allocator has located a free block that fits, it must make another policy
decision about how much of the free block to allocate. One option is to use
the entire free block. Although simple and fast, the main disadvantage is that it
introduces internal fragmentation. If the placement policy tends to produce good
fits, then some additional internal fragmentation might be acceptable.

However, if the fit is not good, then the allocator will usually opt to split
the free block into two parts. The first part becomes the allocated block, and the
remainder becomes a new free block. Figure 9.37 shows how the allocator might
split the eight-word free block in Figure 9.36 to satisfy an application’s request for
three words of heap memory.

9.9.9 Getting Additional Heap Memory

What happens if the allocator is unable to find a fit for the requested block? One
option is to try to create some larger free blocks by merging (coalescing) free
blocks that are physically adjacent in memory (next section). However, if this
does not yield a sufficiently large block, or if the free blocks are already maximally
coalesced, then the allocator asks the kernel for additional heap memory by calling
the sbrk function. The allocator transforms the additional memory into one large
free block, inserts the block into the free list, and then places the requested block
in this new free block.

824 Chapter 9 Virtual Memory

Unused
Start

of
heap

8/0 16/1 16/0 16/116/0 0/1
Double-

word
aligned

Figure 9.38 An example of false fragmentation. Allocated blocks are shaded. Free blocks are unshaded.
Headers are labeled with (size (bytes)/allocated bit).

9.9.10 Coalescing Free Blocks

When the allocator frees an allocated block, there might be other free blocks
that are adjacent to the newly freed block. Such adjacent free blocks can cause
a phenomenon known as false fragmentation, where there is a lot of available free
memory chopped up into small, unusable free blocks. For example, Figure 9.38
shows the result of freeing the block that was allocated in Figure 9.37. The result
is two adjacent free blocks with payloads of three words each. As a result, a
subsequent request for a payload of four words would fail, even though the
aggregate size of the two free blocks is large enough to satisfy the request.

To combat false fragmentation, any practical allocator must merge adjacent
free blocks in a process known as coalescing. This raises an important policy
decision about when to perform coalescing. The allocator can opt for immediate
coalescing by merging any adjacent blocks each time a block is freed. Or it can opt
for deferred coalescing by waiting to coalesce free blocks at some later time. For
example, the allocator might defer coalescing until some allocation request fails,
and then scan the entire heap, coalescing all free blocks.

Immediate coalescing is straightforward and can be performed in constant
time, but with some request patterns it can introduce a form of thrashing where a
block is repeatedly coalesced and then split soon thereafter. For example, in Fig-
ure 9.38 a repeated pattern of allocating and freeing a three-word block would
introduce a lot of unnecessary splitting and coalescing. In our discussion of allo-
cators, we will assume immediate coalescing, but you should be aware that fast
allocators often opt for some form of deferred coalescing.

9.9.11 Coalescing with Boundary Tags

How does an allocator implement coalescing? Let us refer to the block we want
to free as the current block. Then coalescing the next free block (in memory) is
straightforward and efficient. The header of the current block points to the header
of the next block, which can be checked to determine if the next block is free. If
so, its size is simply added to the size of the current header and the blocks are
coalesced in constant time.

But how would we coalesce the previous block? Given an implicit free list of
blocks with headers, the only option would be to search the entire list, remember-
ing the location of the previous block, until we reached the current block. With an

Section 9.9 Dynamic Memory Allocation 825

Figure 9.39
Format of heap block that
uses a boundary tag.

Block size

Payload
(allocated block only)

Padding (optional)

a/f
a = 001: Allocated
a = 000: Free

Block size a/f

31 3 2 1 0

Header

Footer

implicit free list, this means that each call to freewould require time linear in the
size of the heap. Even with more sophisticated free list organizations, the search
time would not be constant.

Knuth developed a clever and general technique, known as boundary tags,
that allows for constant-time coalescing of the previous block. The idea, which is
shown in Figure 9.39, is to add a footer (the boundary tag) at the end of each block,
where the footer is a replica of the header. If each block includes such a footer,
then the allocator can determine the starting location and status of the previous
block by inspecting its footer, which is always one word away from the start of the
current block.

Consider all the cases that can exist when the allocator frees the current block:

1. The previous and next blocks are both allocated.

2. The previous block is allocated and the next block is free.

3. The previous block is free and the next block is allocated.

4. The previous and next blocks are both free.

Figure 9.40 shows how we would coalesce each of the four cases. In case 1, both
adjacent blocks are allocated and thus no coalescing is possible. So the status of the
current block is simply changed from allocated to free. In case 2, the current block
is merged with the next block. The header of the current block and the footer of
the next block are updated with the combined sizes of the current and next blocks.
In case 3, the previous block is merged with the current block. The header of the
previous block and the footer of the current block are updated with the combined
sizes of the two blocks. In case 4, all three blocks are merged to form a single
free block, with the header of the previous block and the footer of the next block
updated with the combined sizes of the three blocks. In each case, the coalescing
is performed in constant time.

The idea of boundary tags is a simple and elegant one that generalizes to
many different types of allocators and free list organizations. However, there is
a potential disadvantage. Requiring each block to contain both a header and a
footer can introduce significant memory overhead if an application manipulates

826 Chapter 9 Virtual Memory

m1 a

a

a

a

a

a

n

n

m2

m2

m1

m1 a

a

f

f

a

a

n

n

m2

m2

Case 1

m1

m1 a

a

a

a

f

f

n

n

m2

m2

m1

m1 a

a

f

f

n�m2

n�m2

m1

Case 2

m1 f

f

a

a

a

a

n

n

m2

m2

m1

n�m1 f

f

a

a

n�m1

m2

m2

Case 3

m1 f

f

a

a

f

f

n

n

m2

m2

m1

n�m1�m2 f

fn�m1�m2

Case 4

Figure 9.40 Coalescing with boundary tags. Case 1: prev and next allocated. Case 2: prev allocated, next
free. Case 3: prev free, next allocated. Case 4: next and prev free.

many small blocks. For example, if a graph application dynamically creates and
destroys graph nodes by making repeated calls tomalloc andfree, and each graph
node requires only a couple of words of memory, then the header and the footer
will consume half of each allocated block.

Fortunately, there is a clever optimization of boundary tags that eliminates
the need for a footer in allocated blocks. Recall that when we attempt to coalesce
the current block with the previous and next blocks in memory, the size field in
the footer of the previous block is only needed if the previous block is free. If we
were to store the allocated/free bit of the previous block in one of the excess low-
order bits of the current block, then allocated blocks would not need footers, and
we could use that extra space for payload. Note, however, that free blocks still
need footers.

Practice Problem 9.7
Determine the minimum block size for each of the following combinations of
alignment requirements and block formats. Assumptions: Implicit free list, zero-
sized payloads are not allowed, and headers and footers are stored in 4-byte words.

Section 9.9 Dynamic Memory Allocation 827

Alignment Allocated block Free block Minimum block size (bytes)

Single word Header and footer Header and footer
Single word Header, but no footer Header and footer
Double word Header and footer Header and footer
Double word Header, but no footer Header and footer

9.9.12 Putting It Together: Implementing a Simple Allocator

Building an allocator is a challenging task. The design space is large, with nu-
merous alternatives for block format and free list format, as well as placement,
splitting, and coalescing policies. Another challenge is that you are often forced
to program outside the safe, familiar confines of the type system, relying on the
error-prone pointer casting and pointer arithmetic that is typical of low-level sys-
tems programming.

While allocators do not require enormous amounts of code, they are subtle
and unforgiving. Students familiar with higher-level languages such as C++ or Java
often hit a conceptual wall when they first encounter this style of programming. To
help you clear this hurdle, we will work through the implementation of a simple
allocator based on an implicit free list with immediate boundary-tag coalescing.
The maximum block size is 232 = 4 GB. The code is 64-bit clean, running without
modification in 32-bit (gcc -m32) or 64-bit (gcc -m64) processes.

General Allocator Design

Our allocator uses a model of the memory system provided by the memlib.c
package shown in Figure 9.41. The purpose of the model is to allow us to run
our allocator without interfering with the existing system-level malloc package.
The mem_init function models the virtual memory available to the heap as a
large, double-word aligned array of bytes. The bytes between mem_heap and mem_
brk represent allocated virtual memory. The bytes following mem_brk represent
unallocated virtual memory. The allocator requests additional heap memory by
calling the mem_sbrk function, which has the same interface as the system’s sbrk
function, as well as the same semantics, except that it rejects requests to shrink
the heap.

The allocator itself is contained in a source file (mm.c) that users can compile
and link into their applications. The allocator exports three functions to applica-
tion programs:

1 extern int mm_init(void);

2 extern void *mm_malloc (size_t size);

3 extern void mm_free (void *ptr);

The mm_init function initializes the allocator, returning 0 if successful and
−1 otherwise. The mm_malloc and mm_free functions have the same interfaces
and semantics as their system counterparts. The allocator uses the block format

828 Chapter 9 Virtual Memory

code/vm/malloc/memlib.c

1 /* Private global variables */

2 static char *mem_heap; /* Points to first byte of heap */

3 static char *mem_brk; /* Points to last byte of heap plus 1 */

4 static char *mem_max_addr; /* Max legal heap addr plus 1*/

5

6 /*

7 * mem_init - Initialize the memory system model

8 */

9 void mem_init(void)

10 {

11 mem_heap = (char *)Malloc(MAX_HEAP);

12 mem_brk = (char *)mem_heap;

13 mem_max_addr = (char *)(mem_heap + MAX_HEAP);

14 }

15

16 /*

17 * mem_sbrk - Simple model of the sbrk function. Extends the heap

18 * by incr bytes and returns the start address of the new area. In

19 * this model, the heap cannot be shrunk.

20 */

21 void *mem_sbrk(int incr)

22 {

23 char *old_brk = mem_brk;

24

25 if ((incr < 0) || ((mem_brk + incr) > mem_max_addr)) {

26 errno = ENOMEM;

27 fprintf(stderr, "ERROR: mem_sbrk failed. Ran out of memory...\n");

28 return (void *)-1;

29 }

30 mem_brk += incr;

31 return (void *)old_brk;

32 }

code/vm/malloc/memlib.c

Figure 9.41 memlib.c: Memory system model.

shown in Figure 9.39. The minimum block size is 16 bytes. The free list is organized
as an implicit free list, with the invariant form shown in Figure 9.42.

The first word is an unused padding word aligned to a double-word boundary.
The padding is followed by a special prologue block, which is an 8-byte allocated
block consisting of only a header and a footer. The prologue block is created
during initialization and is never freed. Following the prologue block are zero
or more regular blocks that are created by calls to malloc or free. The heap

Section 9.9 Dynamic Memory Allocation 829

Prologue
block

Regular
block 1

Regular
block 2

Start
of

heap
8/1 8/1 hdr hdrftr ftr

Regular
block n

Epilogue
block hdr

hdr ftr 0/1

static char *heap_listp

Double-
word

aligned
. . .

Figure 9.42 Invariant form of the implicit free list.

always ends with a special epilogue block, which is a zero-sized allocated block
that consists of only a header. The prologue and epilogue blocks are tricks that
eliminate the edge conditions during coalescing. The allocator uses a single private
(static) global variable (heap_listp) that always points to the prologue block.
(As a minor optimization, we could make it point to the next block instead of the
prologue block.)

Basic Constants and Macros for Manipulating the Free List

Figure 9.43 shows some basic constants and macros that we will use throughout
the allocator code. Lines 2–4 define some basic size constants: the sizes of words
(WSIZE) and double words (DSIZE), and the size of the initial free block and
the default size for expanding the heap (CHUNKSIZE).

Manipulating the headers and footers in the free list can be troublesome
because it demands extensive use of casting and pointer arithmetic. Thus, we find
it helpful to define a small set of macros for accessing and traversing the free list
(lines 9–25). The PACK macro (line 9) combines a size and an allocate bit and
returns a value that can be stored in a header or footer.

The GET macro (line 12) reads and returns the word referenced by argu-
ment p. The casting here is crucial. The argument p is typically a (void *) pointer,
which cannot be dereferenced directly. Similarly, the PUT macro (line 13) stores
val in the word pointed at by argument p.

The GET_SIZE and GET_ALLOC macros (lines 16–17) return the size and
allocated bit, respectively, from a header or footer at address p. The remaining
macros operate on block pointers (denoted bp) that point to the first payload
byte. Given a block pointer bp, the HDRP and FTRP macros (lines 20–21) return
pointers to the block header and footer, respectively. The NEXT_BLKP and
PREV_BLKP macros (lines 24–25) return the block pointers of the next and
previous blocks, respectively.

The macros can be composed in various ways to manipulate the free list. For
example, given a pointer bp to the current block, we could use the following line
of code to determine the size of the next block in memory:

size_t size = GET_SIZE(HDRP(NEXT_BLKP(bp)));

830 Chapter 9 Virtual Memory

code/vm/malloc/mm.c

1 /* Basic constants and macros */

2 #define WSIZE 4 /* Word and header/footer size (bytes) */

3 #define DSIZE 8 /* Double word size (bytes) */

4 #define CHUNKSIZE (1<<12) /* Extend heap by this amount (bytes) */

5

6 #define MAX(x, y) ((x) > (y)? (x) : (y))

7

8 /* Pack a size and allocated bit into a word */

9 #define PACK(size, alloc) ((size) | (alloc))

10

11 /* Read and write a word at address p */

12 #define GET(p) (*(unsigned int *)(p))

13 #define PUT(p, val) (*(unsigned int *)(p) = (val))

14

15 /* Read the size and allocated fields from address p */

16 #define GET_SIZE(p) (GET(p) & ~0x7)

17 #define GET_ALLOC(p) (GET(p) & 0x1)

18

19 /* Given block ptr bp, compute address of its header and footer */

20 #define HDRP(bp) ((char *)(bp) - WSIZE)

21 #define FTRP(bp) ((char *)(bp) + GET_SIZE(HDRP(bp)) - DSIZE)

22

23 /* Given block ptr bp, compute address of next and previous blocks */

24 #define NEXT_BLKP(bp) ((char *)(bp) + GET_SIZE(((char *)(bp) - WSIZE)))

25 #define PREV_BLKP(bp) ((char *)(bp) - GET_SIZE(((char *)(bp) - DSIZE)))

code/vm/malloc/mm.c

Figure 9.43 Basic constants and macros for manipulating the free list.

Creating the Initial Free List

Before calling mm_malloc or mm_free, the application must initialize the heap
by calling the mm_init function (Figure 9.44). The mm_init function gets four
words from the memory system and initializes them to create the empty free list
(lines 4–10). It then calls the extend_heap function (Figure 9.45), which extends
the heap by CHUNKSIZE bytes and creates the initial free block. At this point,
the allocator is initialized and ready to accept allocate and free requests from the
application.

The extend_heap function is invoked in two different circumstances: (1) when
the heap is initialized, and (2) when mm_malloc is unable to find a suitable fit. To
maintain alignment, extend_heap rounds up the requested size to the nearest
multiple of 2 words (8 bytes), and then requests the additional heap space from
the memory system (lines 7–9).

The remainder of the extend_heap function (lines 12–17) is somewhat subtle.
The heap begins on a double-word aligned boundary, and every call to extend_
heap returns a block whose size is an integral number of double words. Thus, every

Section 9.9 Dynamic Memory Allocation 831

code/vm/malloc/mm.c

1 int mm_init(void)

2 {

3 /* Create the initial empty heap */

4 if ((heap_listp = mem_sbrk(4*WSIZE)) == (void *)-1)

5 return -1;

6 PUT(heap_listp, 0); /* Alignment padding */

7 PUT(heap_listp + (1*WSIZE), PACK(DSIZE, 1)); /* Prologue header */

8 PUT(heap_listp + (2*WSIZE), PACK(DSIZE, 1)); /* Prologue footer */

9 PUT(heap_listp + (3*WSIZE), PACK(0, 1)); /* Epilogue header */

10 heap_listp += (2*WSIZE);

11

12 /* Extend the empty heap with a free block of CHUNKSIZE bytes */

13 if (extend_heap(CHUNKSIZE/WSIZE) == NULL)

14 return -1;

15 return 0;

16 }

code/vm/malloc/mm.c

Figure 9.44 mm_init: Creates a heap with an initial free block.

code/vm/malloc/mm.c

1 static void *extend_heap(size_t words)

2 {

3 char *bp;

4 size_t size;

5

6 /* Allocate an even number of words to maintain alignment */

7 size = (words % 2) ? (words+1) * WSIZE : words * WSIZE;

8 if ((long)(bp = mem_sbrk(size)) == -1)

9 return NULL;

10

11 /* Initialize free block header/footer and the epilogue header */

12 PUT(HDRP(bp), PACK(size, 0)); /* Free block header */

13 PUT(FTRP(bp), PACK(size, 0)); /* Free block footer */

14 PUT(HDRP(NEXT_BLKP(bp)), PACK(0, 1)); /* New epilogue header */

15

16 /* Coalesce if the previous block was free */

17 return coalesce(bp);

18 }

code/vm/malloc/mm.c

Figure 9.45 extend_heap: Extends the heap with a new free block.

832 Chapter 9 Virtual Memory

call to mem_sbrk returns a double-word aligned chunk of memory immediately
following the header of the epilogue block. This header becomes the header of
the new free block (line 12), and the last word of the chunk becomes the new
epilogue block header (line 14). Finally, in the likely case that the previous heap
was terminated by a free block, we call the coalesce function to merge the two
free blocks and return the block pointer of the merged blocks (line 17).

Freeing and Coalescing Blocks

An application frees a previously allocated block by calling the mm_free function
(Figure 9.46), which frees the requested block (bp) and then merges adjacent free
blocks using the boundary-tags coalescing technique described in Section 9.9.11.

The code in the coalescehelper function is a straightforward implementation
of the four cases outlined in Figure 9.40. There is one somewhat subtle aspect. The
free list format we have chosen—with its prologue and epilogue blocks that are
always marked as allocated—allows us to ignore the potentially troublesome edge
conditions where the requested block bp is at the beginning or end of the heap.
Without these special blocks, the code would be messier, more error prone, and
slower, because we would have to check for these rare edge conditions on each
and every free request.

Allocating Blocks

An application requests a block of size bytes of memory by calling the mm_malloc
function (Figure 9.47). After checking for spurious requests, the allocator must
adjust the requested block size to allow room for the header and the footer, and to
satisfy the double-word alignment requirement. Lines 12–13 enforce the minimum
block size of 16 bytes: 8 bytes to satisfy the alignment requirement, and 8 more
for the overhead of the header and footer. For requests over 8 bytes (line 15),
the general rule is to add in the overhead bytes and then round up to the nearest
multiple of 8.

Once the allocator has adjusted the requested size, it searches the free list for a
suitable free block (line 18). If there is a fit, then the allocator places the requested
block and optionally splits the excess (line 19), and then returns the address of the
newly allocated block.

If the allocator cannot find a fit, it extends the heap with a new free block
(lines 24–26), places the requested block in the new free block, optionally splitting
the block (line 27), and then returns a pointer to the newly allocated block.

Practice Problem 9.8
Implement a find_fit function for the simple allocator described in Section
9.9.12.

static void *find_fit(size_t asize)

Your solution should perform a first-fit search of the implicit free list.

Section 9.9 Dynamic Memory Allocation 833

code/vm/malloc/mm.c

1 void mm_free(void *bp)

2 {

3 size_t size = GET_SIZE(HDRP(bp));

4

5 PUT(HDRP(bp), PACK(size, 0));

6 PUT(FTRP(bp), PACK(size, 0));

7 coalesce(bp);

8 }

9

10 static void *coalesce(void *bp)

11 {

12 size_t prev_alloc = GET_ALLOC(FTRP(PREV_BLKP(bp)));

13 size_t next_alloc = GET_ALLOC(HDRP(NEXT_BLKP(bp)));

14 size_t size = GET_SIZE(HDRP(bp));

15

16 if (prev_alloc && next_alloc) { /* Case 1 */

17 return bp;

18 }

19

20 else if (prev_alloc && !next_alloc) { /* Case 2 */

21 size += GET_SIZE(HDRP(NEXT_BLKP(bp)));

22 PUT(HDRP(bp), PACK(size, 0));

23 PUT(FTRP(bp), PACK(size,0));

24 }

25

26 else if (!prev_alloc && next_alloc) { /* Case 3 */

27 size += GET_SIZE(HDRP(PREV_BLKP(bp)));

28 PUT(FTRP(bp), PACK(size, 0));

29 PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));

30 bp = PREV_BLKP(bp);

31 }

32

33 else { /* Case 4 */

34 size += GET_SIZE(HDRP(PREV_BLKP(bp))) +

35 GET_SIZE(FTRP(NEXT_BLKP(bp)));

36 PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));

37 PUT(FTRP(NEXT_BLKP(bp)), PACK(size, 0));

38 bp = PREV_BLKP(bp);

39 }

40 return bp;

41 }

code/vm/malloc/mm.c

Figure 9.46 mm_free: Frees a block and uses boundary-tag coalescing to merge it
with any adjacent free blocks in constant time.

834 Chapter 9 Virtual Memory

code/vm/malloc/mm.c

1 void *mm_malloc(size_t size)

2 {

3 size_t asize; /* Adjusted block size */

4 size_t extendsize; /* Amount to extend heap if no fit */

5 char *bp;

6

7 /* Ignore spurious requests */

8 if (size == 0)

9 return NULL;

10

11 /* Adjust block size to include overhead and alignment reqs. */

12 if (size <= DSIZE)

13 asize = 2*DSIZE;

14 else

15 asize = DSIZE * ((size + (DSIZE) + (DSIZE-1)) / DSIZE);

16

17 /* Search the free list for a fit */

18 if ((bp = find_fit(asize)) != NULL) {

19 place(bp, asize);

20 return bp;

21 }

22

23 /* No fit found. Get more memory and place the block */

24 extendsize = MAX(asize,CHUNKSIZE);

25 if ((bp = extend_heap(extendsize/WSIZE)) == NULL)

26 return NULL;

27 place(bp, asize);

28 return bp;

29 }

code/vm/malloc/mm.c

Figure 9.47 mm_malloc: Allocates a block from the free list.

Practice Problem 9.9
Implement a place function for the example allocator.

static void place(void *bp, size_t asize)

Your solution should place the requested block at the beginning of the free block,
splitting only if the size of the remainder would equal or exceed the minimum
block size.

Section 9.9 Dynamic Memory Allocation 835

Block size

Payload

(a) Allocated block

Padding (optional)

a/f

Block size a/f

31 3 2 1 0

Header

Footer

Block size

pred (Predecessor)

(b) Free block

succ (Successor)

Padding (optional)

a/f

Block size a/f

31 3 2 1 0

Header

Old payload

Footer

Figure 9.48 Format of heap blocks that use doubly linked free lists.

9.9.13 Explicit Free Lists

The implicit free list provides us with a simple way to introduce some basic
allocator concepts. However, because block allocation time is linear in the total
number of heap blocks, the implicit free list is not appropriate for a general-
purpose allocator (although it might be fine for a special-purpose allocator where
the number of heap blocks is known beforehand to be small).

A better approach is to organize the free blocks into some form of explicit
data structure. Since by definition the body of a free block is not needed by the
program, the pointers that implement the data structure can be stored within the
bodies of the free blocks. For example, the heap can be organized as a doubly
linked free list by including a pred (predecessor) and succ (successor) pointer in
each free block, as shown in Figure 9.48.

Using a doubly linked list instead of an implicit free list reduces the first fit
allocation time from linear in the total number of blocks to linear in the number
of free blocks. However, the time to free a block can be either linear or constant,
depending on the policy we choose for ordering the blocks in the free list.

One approach is to maintain the list in last-in first-out (LIFO) order by insert-
ing newly freed blocks at the beginning of the list. With a LIFO ordering and a
first fit placement policy, the allocator inspects the most recently used blocks first.
In this case, freeing a block can be performed in constant time. If boundary tags
are used, then coalescing can also be performed in constant time.

Another approach is to maintain the list in address order, where the address
of each block in the list is less than the address of its successor. In this case, freeing
a block requires a linear-time search to locate the appropriate predecessor. The
trade-off is that address-ordered first fit enjoys better memory utilization than
LIFO-ordered first fit, approaching the utilization of best fit.

A disadvantage of explicit lists in general is that free blocks must be large
enough to contain all of the necessary pointers, as well as the header and possibly
a footer. This results in a larger minimum block size, and increases the potential
for internal fragmentation.

836 Chapter 9 Virtual Memory

9.9.14 Segregated Free Lists

As we have seen, an allocator that uses a single linked list of free blocks requires
time linear in the number of free blocks to allocate a block. A popular approach for
reducing the allocation time, known generally as segregated storage, is to maintain
multiple free lists, where each list holds blocks that are roughly the same size. The
general idea is to partition the set of all possible block sizes into equivalence classes
called size classes. There are many ways to define the size classes. For example, we
might partition the block sizes by powers of two:

{1}, {2}, {3, 4}, {5−8}, . . . , {1025−2048}, {2049−4096}, {4097−∞}
Or we might assign small blocks to their own size classes and partition large blocks
by powers of two:

{1}, {2}, {3}, . . . , {1023}, {1024}, {1025−2048}, {2049 − 4096}, {4097−∞}
The allocator maintains an array of free lists, with one free list per size class,
ordered by increasing size. When the allocator needs a block of size n, it searches
the appropriate free list. If it cannot find a block that fits, it searches the next list,
and so on.

The dynamic storage allocation literature describes dozens of variants of seg-
regated storage that differ in how they define size classes, when they perform
coalescing, when they request additional heap memory from the operating sys-
tem, whether they allow splitting, and so forth. To give you a sense of what is
possible, we will describe two of the basic approaches: simple segregated storage
and segregated fits.

Simple Segregated Storage

With simple segregated storage, the free list for each size class contains same-sized
blocks, each the size of the largest element of the size class. For example, if some
size class is defined as {17−32}, then the free list for that class consists entirely of
blocks of size 32.

To allocate a block of some given size, we check the appropriate free list. If the
list is not empty, we simply allocate the first block in its entirety. Free blocks are
never split to satisfy allocation requests. If the list is empty, the allocator requests
a fixed-sized chunk of additional memory from the operating system (typically
a multiple of the page size), divides the chunk into equal-sized blocks, and links
the blocks together to form the new free list. To free a block, the allocator simply
inserts the block at the front of the appropriate free list.

There are a number of advantages to this simple scheme. Allocating and
freeing blocks are both fast constant-time operations. Further, the combination
of the same-sized blocks in each chunk, no splitting, and no coalescing means that
there is very little per-block memory overhead. Since each chunk has only same-
sized blocks, the size of an allocated block can be inferred from its address. Since
there is no coalescing, allocated blocks do not need an allocated/free flag in the
header. Thus, allocated blocks require no headers, and since there is no coalescing,

Section 9.9 Dynamic Memory Allocation 837

they do not require any footers either. Since allocate and free operations insert
and delete blocks at the beginning of the free list, the list need only be singly
linked instead of doubly linked. The bottom line is that the only required field in
any block is a one-word succ pointer in each free block, and thus the minimum
block size is only one word.

A significant disadvantage is that simple segregated storage is susceptible to
internal and external fragmentation. Internal fragmentation is possible because
free blocks are never split. Worse, certain reference patterns can cause extreme
external fragmentation because free blocks are never coalesced (Problem 9.10).

Practice Problem 9.10
Describe a reference pattern that results in severe external fragmentation in an
allocator based on simple segregated storage.

Segregated Fits

With this approach, the allocator maintains an array of free lists. Each free list is
associated with a size class and is organized as some kind of explicit or implicit
list. Each list contains potentially different-sized blocks whose sizes are members
of the size class. There are many variants of segregated fits allocators. Here we
describe a simple version.

To allocate a block, we determine the size class of the request and do a first-
fit search of the appropriate free list for a block that fits. If we find one, then we
(optionally) split it and insert the fragment in the appropriate free list. If we cannot
find a block that fits, then we search the free list for the next larger size class. We
repeat until we find a block that fits. If none of the free lists yields a block that fits,
then we request additional heap memory from the operating system, allocate the
block out of this new heap memory, and place the remainder in the appropriate
size class. To free a block, we coalesce and place the result on the appropriate free
list.

The segregated fits approach is a popular choice with production-quality
allocators such as the GNU malloc package provided in the C standard library
because it is both fast and memory efficient. Search times are reduced because
searches are limited to particular parts of the heap instead of the entire heap.
Memory utilization can improve because of the interesting fact that a simple first-
fit search of a segregated free list approximates a best-fit search of the entire heap.

Buddy Systems

A buddy system is a special case of segregated fits where each size class is a power
of two. The basic idea is that given a heap of 2m words, we maintain a separate free
list for each block size 2k, where 0 ≤ k ≤ m. Requested block sizes are rounded up
to the nearest power of two. Originally, there is one free block of size 2m words.

To allocate a block of size 2k, we find the first available block of size 2j , such
that k ≤ j ≤ m. If j = k, then we are done. Otherwise, we recursively split the

838 Chapter 9 Virtual Memory

block in half until j = k. As we perform this splitting, each remaining half (known
as a buddy) is placed on the appropriate free list. To free a block of size 2k, we
continue coalescing with the free. When we encounter an allocated buddy, we stop
the coalescing.

A key fact about buddy systems is that given the address and size of a block,
it is easy to compute the address of its buddy. For example, a block of size 32 byes
with address

xxx...x00000

has its buddy at address

xxx...x10000

In other words, the addresses of a block and its buddy differ in exactly one bit
position.

The major advantage of a buddy system allocator is its fast searching and
coalescing. The major disadvantage is that the power-of-two requirement on the
block size can cause significant internal fragmentation. For this reason, buddy
system allocators are not appropriate for general-purpose workloads. However,
for certain application-specific workloads, where the block sizes are known in
advance to be powers of two, buddy system allocators have a certain appeal.

9.10 Garbage Collection

With an explicit allocator such as the C malloc package, an application allocates
and frees heap blocks by making calls to malloc and free. It is the application’s
responsibility to free any allocated blocks that it no longer needs.

Failing to free allocated blocks is a common programming error. For example,
consider the following C function that allocates a block of temporary storage as
part of its processing:

1 void garbage()

2 {

3 int *p = (int *)Malloc(15213);

4

5 return; /* Array p is garbage at this point */

6 }

Since p is no longer needed by the program, it should have been freed before
garbage returned. Unfortunately, the programmer has forgotten to free the block.
It remains allocated for the lifetime of the program, needlessly occupying heap
space that could be used to satisfy subsequent allocation requests.

A garbage collector is a dynamic storage allocator that automatically frees al-
located blocks that are no longer needed by the program. Such blocks are known
as garbage (hence the term garbage collector). The process of automatically re-
claiming heap storage is known as garbage collection. In a system that supports

Section 9.10 Garbage Collection 839

garbage collection, applications explicitly allocate heap blocks but never explic-
itly free them. In the context of a C program, the application calls malloc, but
never calls free. Instead, the garbage collector periodically identifies the garbage
blocks and makes the appropriate calls to free to place those blocks back on the
free list.

Garbage collection dates back to Lisp systems developed by John McCarthy
at MIT in the early 1960s. It is an important part of modern language systems such
as Java, ML, Perl, and Mathematica, and it remains an active and important area of
research. The literature describes an amazing number of approaches for garbage
collection. We will limit our discussion to McCarthy’s original Mark&Sweep al-
gorithm, which is interesting because it can be built on top of an existing malloc
package to provide garbage collection for C and C++ programs.

9.10.1 Garbage Collector Basics

A garbage collector views memory as a directed reachability graph of the form
shown in Figure 9.49. The nodes of the graph are partitioned into a set of root
nodes and a set of heap nodes. Each heap node corresponds to an allocated block
in the heap. A directed edge p → q means that some location in block p points to
some location in block q. Root nodes correspond to locations not in the heap that
contain pointers into the heap. These locations can be registers, variables on the
stack, or global variables in the read-write data area of virtual memory.

We say that a node p is reachable if there exists a directed path from any root
node to p. At any point in time, the unreachable nodes correspond to garbage that
can never be used again by the application. The role of a garbage collector is to
maintain some representation of the reachability graph and periodically reclaim
the unreachable nodes by freeing them and returning them to the free list.

Garbage collectors for languages like ML and Java, which exert tight con-
trol over how applications create and use pointers, can maintain an exact repre-
sentation of the reachability graph, and thus can reclaim all garbage. However,
collectors for languages like C and C++ cannot in general maintain exact repre-
sentations of the reachability graph. Such collectors are known as conservative
garbage collectors. They are conservative in the sense that each reachable block

Root nodes

Heap nodes

Reachable

Unreachable
(garbage)

Figure 9.49 A garbage collector’s view of memory as a directed graph.

840 Chapter 9 Virtual Memory

C application
program

malloc()
Conservative

garbage
collector

free()

Dynamic storage allocator

Figure 9.50 Integrating a conservative garbage collector and a C malloc package.

is correctly identified as reachable, while some unreachable nodes might be incor-
rectly identified as reachable.

Collectors can provide their service on demand, or they can run as separate
threads in parallel with the application, continuously updating the reachability
graph and reclaiming garbage. For example, consider how we might incorporate a
conservative collector for C programs into an existing malloc package, as shown
in Figure 9.50.

The application calls malloc in the usual manner whenever it needs heap
space. If malloc is unable to find a free block that fits, then it calls the garbage col-
lector in hopes of reclaiming some garbage to the free list. The collector identifies
the garbage blocks and returns them to the heap by calling the free function. The
key idea is that the collector calls free instead of the application. When the call
to the collector returns, malloc tries again to find a free block that fits. If that fails,
then it can ask the operating system for additional memory. Eventually malloc
returns a pointer to the requested block (if successful) or the NULL pointer (if
unsuccessful).

9.10.2 Mark&Sweep Garbage Collectors

A Mark&Sweep garbage collector consists of a mark phase, which marks all
reachable and allocated descendants of the root nodes, followed by a sweep phase,
which frees each unmarked allocated block. Typically, one of the spare low-order
bits in the block header is used to indicate whether a block is marked or not.

Our description of Mark&Sweep will assume the following functions, where
ptr is defined as typedef void *ptr.

. ptr isPtr(ptr p): If p points to some word in an allocated block, returns a
pointer b to the beginning of that block. Returns NULL otherwise.

. int blockMarked(ptr b): Returns true if block b is already marked.

. int blockAllocated(ptr b): Returns true if block b is allocated.

. void markBlock(ptr b): Marks block b.

. int length(ptr b): Returns the length in words (excluding the header) of
block b.

. void unmarkBlock(ptr b): Changes the status of block b from marked to
unmarked.

. ptr nextBlock(ptr b): Returns the successor of block b in the heap.

Section 9.10 Garbage Collection 841

(a) mark function

void mark(ptr p) {

if ((b = isPtr(p)) == NULL)

return;

if (blockMarked(b))

return;

markBlock(b);

len = length(b);

for (i=0; i < len; i++)

mark(b[i]);

return;

}

(b) sweep function

void sweep(ptr b, ptr end) {

while (b < end) {

if (blockMarked(b))

unmarkBlock(b);

else if (blockAllocated(b))

free(b);

b = nextBlock(b);

}

return;

}

Figure 9.51 Pseudo-code for the mark and sweep functions.

The mark phase calls the mark function shown in Figure 9.51(a) once for each root
node. The mark function returns immediately if p does not point to an allocated
and unmarked heap block. Otherwise, it marks the block and calls itself recursively
on each word in block. Each call to the mark function marks any unmarked and
reachable descendants of some root node. At the end of the mark phase, any
allocated block that is not marked is guaranteed to be unreachable and, hence,
garbage that can be reclaimed in the sweep phase.

The sweep phase is a single call to the sweep function shown in Figure 9.51(b).
The sweep function iterates over each block in the heap, freeing any unmarked
allocated blocks (i.e., garbage) that it encounters.

Figure 9.52 shows a graphical interpretation of Mark&Sweep for a small heap.
Block boundaries are indicated by heavy lines. Each square corresponds to a
word of memory. Each block has a one-word header, which is either marked or
unmarked.

1 2 3 4 5 6

Before mark:

Root

After mark:

Unmarked block
header

Marked block
header

After sweep: FreeFree

Figure 9.52 Mark and sweep example. Note that the arrows in this example denote
memory references, and not free list pointers.

842 Chapter 9 Virtual Memory

Initially, the heap in Figure 9.52 consists of six allocated blocks, each of which
is unmarked. Block 3 contains a pointer to block 1. Block 4 contains pointers
to blocks 3 and 6. The root points to block 4. After the mark phase, blocks 1,
3, 4, and 6 are marked because they are reachable from the root. Blocks 2 and
5 are unmarked because they are unreachable. After the sweep phase, the two
unreachable blocks are reclaimed to the free list.

9.10.3 Conservative Mark&Sweep for C Programs

Mark&Sweep is an appropriate approach for garbage collecting C programs be-
cause it works in place without moving any blocks. However, the C language poses
some interesting challenges for the implementation of the isPtr function.

First, C does not tag memory locations with any type information. Thus, there
is no obvious way for isPtr to determine if its input parameter p is a pointer or not.
Second, even if we were to know that p was a pointer, there would be no obvious
way for isPtr to determine whether p points to some location in the payload of
an allocated block.

One solution to the latter problem is to maintain the set of allocated blocks
as a balanced binary tree that maintains the invariant that all blocks in the left
subtree are located at smaller addresses and all blocks in the right subtree are
located in larger addresses. As shown in Figure 9.53, this requires two additional
fields (left and right) in the header of each allocated block. Each field points to
the header of some allocated block.

The isPtr(ptr p) function uses the tree to perform a binary search of the
allocated blocks. At each step, it relies on the size field in the block header to
determine if p falls within the extent of the block.

The balanced tree approach is correct in the sense that it is guaranteed to mark
all of the nodes that are reachable from the roots. This is a necessary guarantee,
as application users would certainly not appreciate having their allocated blocks
prematurely returned to the free list. However, it is conservative in the sense that
it may incorrectly mark blocks that are actually unreachable, and thus it may fail
to free some garbage. While this does not affect the correctness of application
programs, it can result in unnecessary external fragmentation.

The fundamental reason that Mark&Sweep collectors for C programs must
be conservative is that the C language does not tag memory locations with type
information. Thus, scalars like ints or floats can masquerade as pointers. For
example, suppose that some reachable allocated block contains an int in its
payload whose value happens to correspond to an address in the payload of some
other allocated block b. There is no way for the collector to infer that the data is
really an int and not a pointer. Therefore, the allocator must conservatively mark
block b as reachable, when in fact it might not be.

Figure 9.53
Left and right pointers
in a balanced tree of
allocated blocks.

Size Left Right Remainder of block

Allocated block header

� �

Section 9.11 Common Memory-Related Bugs in C Programs 843

9.11 Common Memory-Related Bugs in C Programs

Managing and using virtual memory can be a difficult and error-prone task for C
programmers. Memory-related bugs are among the most frightening because they
often manifest themselves at a distance, in both time and space, from the source of
the bug. Write the wrong data to the wrong location, and your program can run for
hours before it finally fails in some distant part of the program. We conclude our
discussion of virtual memory with a discussion of some of the common memory-
related bugs.

9.11.1 Dereferencing Bad Pointers

As we learned in Section 9.7.2, there are large holes in the virtual address space of a
process that are not mapped to any meaningful data. If we attempt to dereference
a pointer into one of these holes, the operating system will terminate our program
with a segmentation exception. Also, some areas of virtual memory are read-only.
Attempting to write to one of these areas terminates the program with a protection
exception.

A common example of dereferencing a bad pointer is the classic scanf bug.
Suppose we want to use scanf to read an integer from stdin into a variable.
The correct way to do this is to pass scanf a format string and the address of the
variable:

scanf("%d", &val)

However, it is easy for new C programmers (and experienced ones too!) to pass
the contents of val instead of its address:

scanf("%d", val)

In this case, scanf will interpret the contents of val as an address and attempt to
write a word to that location. In the best case, the program terminates immediately
with an exception. In the worst case, the contents of val correspond to some
valid read/write area of virtual memory, and we overwrite memory, usually with
disastrous and baffling consequences much later.

9.11.2 Reading Uninitialized Memory

While bss memory locations (such as uninitialized global C variables) are always
initialized to zeros by the loader, this is not true for heap memory. A common
error is to assume that heap memory is initialized to zero:

1 /* Return y = Ax */

2 int *matvec(int **A, int *x, int n)

3 {

4 int i, j;

5

6 int *y = (int *)Malloc(n * sizeof(int));

7

844 Chapter 9 Virtual Memory

8 for (i = 0; i < n; i++)

9 for (j = 0; j < n; j++)

10 y[i] += A[i][j] * x[j];

11 return y;

12 }

In this example, the programmer has incorrectly assumed that vector y has been
initialized to zero. A correct implementation would explicitly zero y[i], or use
calloc.

9.11.3 Allowing Stack Buffer Overflows

As we saw in Section 3.12, a program has a buffer overflow bug if it writes to a target
buffer on the stack without examining the size of the input string. For example,
the following function has a buffer overflow bug because the gets function copies
an arbitrary length string to the buffer. To fix this, we would need to use the fgets
function, which limits the size of the input string.

1 void bufoverflow()

2 {

3 char buf[64];

4

5 gets(buf); /* Here is the stack buffer overflow bug */

6 return;

7 }

9.11.4 Assuming that Pointers and the Objects They Point to Are the
Same Size

One common mistake is to assume that pointers to objects are the same size as
the objects they point to:

1 /* Create an nxm array */

2 int **makeArray1(int n, int m)

3 {

4 int i;

5 int **A = (int **)Malloc(n * sizeof(int));

6

7 for (i = 0; i < n; i++)

8 A[i] = (int *)Malloc(m * sizeof(int));

9 return A;

10 }

The intent here is to create an array of n pointers, each of which points to an array
of m ints. However, because the programmer has written sizeof(int) instead
of sizeof(int *) in line 5, the code actually creates an array of ints.

This code will run fine on machines where ints and pointers to ints are the
same size. But if we run this code on a machine like the Core i7, where a pointer is

Section 9.11 Common Memory-Related Bugs in C Programs 845

larger than an int, then the loop in lines 7–8 will write past the end of the A array.
Since one of these words will likely be the boundary tag footer of the allocated
block, we may not discover the error until we free the block much later in the
program, at which point the coalescing code in the allocator will fail dramatically
and for no apparent reason. This is an insidious example of the kind of “action at
a distance” that is so typical of memory-related programming bugs.

9.11.5 Making Off-by-One Errors

Off-by-one errors are another common source of overwriting bugs:

1 /* Create an nxm array */

2 int **makeArray2(int n, int m)

3 {

4 int i;

5 int **A = (int **)Malloc(n * sizeof(int *));

6

7 for (i = 0; i <= n; i++)

8 A[i] = (int *)Malloc(m * sizeof(int));

9 return A;

10 }

This is another version of the program in the previous section. Here we have
created an n-element array of pointers in line 5, but then tried to initialize n + 1 of
its elements in lines 7 and 8, in the process overwriting some memory that follows
the A array.

9.11.6 Referencing a Pointer Instead of the Object It Points to

If we are not careful about the precedence and associativity of C operators, then
we incorrectly manipulate a pointer instead of the object it points to. For example,
consider the following function, whose purpose is to remove the first item in a
binary heap of *size items, and then reheapify the remaining *size - 1 items:

1 int *binheapDelete(int **binheap, int *size)

2 {

3 int *packet = binheap[0];

4

5 binheap[0] = binheap[*size - 1];

6 *size--; /* This should be (*size)-- */

7 heapify(binheap, *size, 0);

8 return(packet);

9 }

In line 6, the intent is to decrement the integer value pointed to by thesizepointer.
However, because the unary -- and * operators have the same precedence and
associate from right to left, the code in line 6 actually decrements the pointer

846 Chapter 9 Virtual Memory

itself instead of the integer value that it points to. If we are lucky, the program will
crash immediately; but more likely we will be left scratching our heads when the
program produces an incorrect answer much later in its execution. The moral here
is to use parentheses whenever in doubt about precedence and associativity. For
example, in line 6 we should have clearly stated our intent by using the expression
(*size)--.

9.11.7 Misunderstanding Pointer Arithmetic

Another common mistake is to forget that arithmetic operations on pointers are
performed in units that are the size of the objects they point to, which are not
necessarily bytes. For example, the intent of the following function is to scan an
array of ints and return a pointer to the first occurrence of val:

1 int *search(int *p, int val)

2 {

3 while (*p && *p != val)

4 p += sizeof(int); /* Should be p++ */

5 return p;

6 }

However, because line 4 increments the pointer by 4 (the number of bytes in an
integer) each time through the loop, the function incorrectly scans every fourth
integer in the array.

9.11.8 Referencing Nonexistent Variables

Naive C programmers who do not understand the stack discipline will sometimes
reference local variables that are no longer valid, as in the following example:

1 int *stackref ()

2 {

3 int val;

4

5 return &val;

6 }

This function returns a pointer (say, p) to a local variable on the stack and then
pops its stack frame. Although p still points to a valid memory address, it no longer
points to a valid variable. When other functions are called later in the program, the
memory will be reused for their stack frames. Later, if the program assigns some
value to *p, then it might actually be modifying an entry in another function’s
stack frame, with potentially disastrous and baffling consequences.

Section 9.11 Common Memory-Related Bugs in C Programs 847

9.11.9 Referencing Data in Free Heap Blocks

A similar error is to reference data in heap blocks that have already been freed.
For example, consider the following example, which allocates an integer array x in
line 6, prematurely frees block x in line 10, and then later references it in line 14:

1 int *heapref(int n, int m)

2 {

3 int i;

4 int *x, *y;

5

6 x = (int *)Malloc(n * sizeof(int));

7

8 /* ... */ /* Other calls to malloc and free go here */

9

10 free(x);

11

12 y = (int *)Malloc(m * sizeof(int));

13 for (i = 0; i < m; i++)

14 y[i] = x[i]++; /* Oops! x[i] is a word in a free block */

15

16 return y;

17 }

Depending on the pattern of malloc and free calls that occur between lines 6
and 10, when the program references x[i] in line 14, the array x might be part
of some other allocated heap block and have been overwritten. As with many
memory-related bugs, the error will only become evident later in the program
when we notice that the values in y are corrupted.

9.11.10 Introducing Memory Leaks

Memory leaks are slow, silent killers that occur when programmers inadvertently
create garbage in the heap by forgetting to free allocated blocks. For example, the
following function allocates a heap block x and then returns without freeing it:

1 void leak(int n)

2 {

3 int *x = (int *)Malloc(n * sizeof(int));

4

5 return; /* x is garbage at this point */

6 }

If leak is called frequently, then the heap will gradually fill up with garbage,
in the worst case consuming the entire virtual address space. Memory leaks are
particularly serious for programs such as daemons and servers, which by definition
never terminate.

848 Chapter 9 Virtual Memory

9.12 Summary

Virtual memory is an abstraction of main memory. Processors that support virtual
memory reference main memory using a form of indirection known as virtual ad-
dressing. The processor generates a virtual address, which is translated into a phys-
ical address before being sent to the main memory. The translation of addresses
from a virtual address space to a physical address space requires close cooperation
between hardware and software. Dedicated hardware translates virtual addresses
using page tables whose contents are supplied by the operating system.

Virtual memory provides three important capabilities. First, it automatically
caches recently used contents of the virtual address space stored on disk in main
memory. The block in a virtual memory cache is known as a page. A reference
to a page on disk triggers a page fault that transfers control to a fault handler
in the operating system. The fault handler copies the page from disk to the main
memory cache, writing back the evicted page if necessary. Second, virtual memory
simplifies memory management, which in turn simplifies linking, sharing data
between processes, the allocation of memory for processes, and program loading.
Finally, virtual memory simplifies memory protection by incorporating protection
bits into every page table entry.

The process of address translation must be integrated with the operation of
any hardware caches in the system. Most page table entries are located in the L1
cache, but the cost of accessing page table entries from L1 is usually eliminated
by an on-chip cache of page table entries called a TLB.

Modern systems initialize chunks of virtual memory by associating them with
chunks of files on disk, a process known as memory mapping. Memory mapping
provides an efficient mechanism for sharing data, creating new processes, and
loading programs. Applications can manually create and delete areas of the virtual
address space using the mmap function. However, most programs rely on a dynamic
memory allocator such as malloc, which manages memory in an area of the virtual
address space called the heap. Dynamic memory allocators are application-level
programs with a system-level feel, directly manipulating memory without much
help from the type system. Allocators come in two flavors. Explicit allocators
require applications to explicitly free their memory blocks. Implicit allocators
(garbage collectors) free any unused and unreachable blocks automatically.

Managing and using memory is a difficult and error-prone task for C program-
mers. Examples of common errors include dereferencing bad pointers, reading
uninitialized memory, allowing stack buffer overflows, assuming that pointers and
the objects they point to are the same size, referencing a pointer instead of the
object it points to, misunderstanding pointer arithmetic, referencing nonexistent
variables, and introducing memory leaks.

Bibliographic Notes

Kilburn and his colleagues published the first description of virtual memory [60].
Architecture texts contain additional details about the hardware’s role in virtual
memory [49]. Operating systems texts contain additional information about the
operating system’s role [98, 104, 112]. Bovet and Cesati [11] give a detailed de-

Homework Problems 849

scription of the Linux virtual memory system. Intel Corporation provides detailed
documentation on 32-bit and 64-bit address translation on IA processors [30].

Knuth wrote the classic work on storage allocation in 1968 [61]. Since that
time there has been a tremendous amount of work in the area. Wilson, Johnstone,
Neely, and Boles have written a beautiful survey and performance evaluation of
explicit allocators [117]. The general comments in this book about the throughput
and utilization of different allocator strategies are paraphrased from their sur-
vey. Jones and Lins provide a comprehensive survey of garbage collection [54].
Kernighan and Ritchie [58] show the complete code for a simple allocator based
on an explicit free list with a block size and successor pointer in each free block.
The code is interesting in that it uses unions to eliminate a lot of the complicated
pointer arithmetic, but at the expense of a linear-time (rather than constant-time)
free operation.

Homework Problems

9.11 ◆
In the following series of problems, you are to show how the example memory
system in Section 9.6.4 translates a virtual address into a physical address and
accesses the cache. For the given virtual address, indicate the TLB entry accessed,
the physical address, and the cache byte value returned. Indicate whether the TLB
misses, whether a page fault occurs, and whether a cache miss occurs. If there is
a cache miss, enter “–” for “Cache Byte returned.” If there is a page fault, enter
“–” for “PPN” and leave parts C and D blank.

Virtual address: 0x027c

A. Virtual address format

13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN
TLB index
TLB tag
TLB hit? (Y/N)
Page fault? (Y/N)
PPN

C. Physical address format

11 10 9 8 7 6 5 4 3 2 1 0

850 Chapter 9 Virtual Memory

D. Physical memory reference

Parameter Value

Byte offset
Cache index
Cache tag
Cache hit? (Y/N)
Cache byte returned

9.12 ◆
Repeat Problem 9.11 for the following address:

Virtual address: 0x03a9

A. Virtual address format

13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN
TLB index
TLB tag
TLB hit? (Y/N)
Page fault? (Y/N)
PPN

C. Physical address format

11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference

Parameter Value

Byte offset
Cache index
Cache tag
Cache hit? (Y/N)
Cache byte returned

Homework Problems 851

9.13 ◆
Repeat Problem 9.11 for the following address:

Virtual address: 0x0040

A. Virtual address format

13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN
TLB index
TLB tag
TLB hit? (Y/N)
Page fault? (Y/N)
PPN

C. Physical address format

11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference

Parameter Value

Byte offset
Cache index
Cache tag
Cache hit? (Y/N)
Cache byte returned

9.14 ◆◆
Given an input file hello.txt that consists of the string “Hello, world!\n”, write
a C program that uses mmap to change the contents of hello.txt to “Jello,
world!\n”.

9.15 ◆
Determine the block sizes and header values that would result from the following
sequence of malloc requests. Assumptions: (1) The allocator maintains double-
word alignment, and uses an implicit free list with the block format from Fig-
ure 9.35. (2) Block sizes are rounded up to the nearest multiple of 8 bytes.

852 Chapter 9 Virtual Memory

Request Block size (decimal bytes) Block header (hex)

malloc(3)

malloc(11)

malloc(20)

malloc(21)

9.16 ◆
Determine the minimum block size for each of the following combinations of
alignment requirements and block formats. Assumptions: Explicit free list, 4-byte
pred and succ pointers in each free block, zero-sized payloads are not allowed,
and headers and footers are stored in 4-byte words.

Alignment Allocated block Free block Minimum block size (bytes)

Single word Header and footer Header and footer
Single word Header, but no footer Header and footer
Double word Header and footer Header and footer
Double word Header, but no footer Header and footer

9.17 ◆◆◆
Develop a version of the allocator in Section 9.9.12 that performs a next-fit search
instead of a first-fit search.

9.18 ◆◆◆
The allocator in Section 9.9.12 requires both a header and a footer for each block
in order to perform constant-time coalescing. Modify the allocator so that free
blocks require a header and footer, but allocated blocks require only a header.

9.19 ◆
You are given three groups of statements relating to memory management and
garbage collection below. In each group, only one statement is true. Your task is
to indicate which statement is true.

1. (a) In a buddy system, up to 50% of the space can be wasted due to internal
fragmentation.

(b) The first-fit memory allocation algorithm is slower than the best-fit algo-
rithm (on average).

(c) Deallocation using boundary tags is fast only when the list of free blocks
is ordered according to increasing memory addresses.

(d) The buddy system suffers from internal fragmentation, but not from
external fragmentation.

2. (a) Using the first-fit algorithm on a free list that is ordered according to
decreasing block sizes results in low performance for allocations, but
avoids external fragmentation.

(b) For the best-fit method, the list of free blocks should be ordered according
to increasing memory addresses.

(c) The best-fit method chooses the largest free block into which the re-
quested segment fits.

Solutions to Practice Problems 853

(d) Using the first-fit algorithm on a free list that is ordered according to
increasing block sizes is equivalent to using the best-fit algorithm.

3. Mark & sweep garbage collectors are called conservative if:
(a) They coalesce freed memory only when a memory request cannot be

satisfied.
(b) They treat everything that looks like a pointer as a pointer.
(c) They perform garbage collection only when they run out of memory.
(d) They do not free memory blocks forming a cyclic list.

9.20 ◆◆◆◆
Write your own version of malloc and free, and compare its running time and
space utilization to the version of malloc provided in the standard C library.

Solutions to Practice Problems

Solution to Problem 9.1 (page 779)
This problem gives you some appreciation for the sizes of different address spaces.
At one point in time, a 32-bit address space seemed impossibly large. But now
there are database and scientific applications that need more, and you can expect
this trend to continue. At some point in your lifetime, expect to find yourself
complaining about the cramped 64-bit address space on your personal computer!

No. virtual address bits (n) No. virtual addresses (N) Largest possible virtual address

8 28 = 256 28 − 1 = 255
16 216 = 64K 216 − 1 = 64K − 1
32 232 = 4G 232 − 1 = 4G − 1
48 248 = 256T 248 = 256T − 1
64 264 = 16, 384P 264 − 1 = 16, 384P − 1

Solution to Problem 9.2 (page 781)
Since each virtual page is P = 2p bytes, there are a total of 2n/2p = 2n−p possible
pages in the system, each of which needs a page table entry (PTE).

n P = 2p # PTEs

16 4K 16
16 8K 8
32 4K 1M
32 8K 512K

Solution to Problem 9.3 (page 790)
You need to understand this kind of problem well in order to fully grasp address
translation. Here is how to solve the first subproblem: We are given n = 32 virtual
address bits and m = 24 physical address bits. A page size of P = 1 KB means we
need log2(1 K) = 10 bits for both the VPO and PPO. (Recall that the VPO and
PPO are identical.) The remaining address bits are the VPN and PPN, respectively.

854 Chapter 9 Virtual Memory

P # VPN bits # VPO bits # PPN bits # PPO bits

1 KB 22 10 14 10
2 KB 21 11 13 11
4 KB 20 12 12 12
8 KB 19 13 11 13

Solution to Problem 9.4 (page 798)
Doing a few of these manual simulations is a great way to firm up your under-
standing of address translation. You might find it helpful to write out all the bits
in the addresses, and then draw boxes around the different bit fields, such as VPN,
TLBI, etc. In this particular problem, there are no misses of any kind: the TLB
has a copy of the PTE and the cache has a copy of the requested data words. See
Problems 9.11, 9.12, and 9.13 for some different combinations of hits and misses.

A. 00 0011 1101 0111

B. Parameter Value

VPN 0xf

TLB index 0x3

TLB tag 0x3

TLB hit? (Y/N) Y
Page fault? (Y/N) N
PPN 0xd

C. 0011 0101 0111

D. Parameter Value

Byte offset 0x3

Cache index 0x5

Cache tag 0xd

Cache hit? (Y/N) Y
Cache byte returned 0x1d

Solution to Problem 9.5 (page 812)
Solving this problem will give you a good feel for the idea of memory mapping.
Try it yourself. We haven’t discussed the open, fstat, or write functions, so you’ll
need to read their man pages to see how they work.

code/vm/mmapcopy.c

1 #include "csapp.h"

2

3 /*

4 * mmapcopy - uses mmap to copy file fd to stdout

5 */

6 void mmapcopy(int fd, int size)

7 {

8 char *bufp; /* Pointer to memory mapped VM area */

Solutions to Practice Problems 855

9

10 bufp = Mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);

11 Write(1, bufp, size);

12 return;

13 }

14

15 /* mmapcopy driver */

16 int main(int argc, char **argv)

17 {

18 struct stat stat;

19 int fd;

20

21 /* Check for required command line argument */

22 if (argc != 2) {

23 printf("usage: %s <filename>\n", argv[0]);

24 exit(0);

25 }

26

27 /* Copy the input argument to stdout */

28 fd = Open(argv[1], O_RDONLY, 0);

29 fstat(fd, &stat);

30 mmapcopy(fd, stat.st_size);

31 exit(0);

32 }

code/vm/mmapcopy.c

Solution to Problem 9.6 (page 822)
This problem touches on some core ideas such as alignment requirements, min-
imum block sizes, and header encodings. The general approach for determining
the block size is to round the sum of the requested payload and the header size
to the nearest multiple of the alignment requirement (in this case 8 bytes). For
example, the block size for the malloc(1) request is 4 + 1 = 5 rounded up to 8.
The block size for the malloc(13) request is 13 + 4 = 17 rounded up to 24.

Request Block size (decimal bytes) Block header (hex)

malloc(1) 8 0x9

malloc(5) 16 0x11

malloc(12) 16 0x11

malloc(13) 24 0x19

Solution to Problem 9.7 (page 826)
The minimum block size can have a significant effect on internal fragmentation.
Thus, it is good to understand the minimum block sizes associated with different
allocator designs and alignment requirements. The tricky part is to realize that
the same block can be allocated or free at different points in time. Thus, the
minimum block size is the maximum of the minimum allocated block size and

856 Chapter 9 Virtual Memory

the minimum free block size. For example, in the last subproblem, the minimum
allocated block size is a 4-byte header and a 1-byte payload rounded up to eight
bytes. The minimum free block size is a 4-byte header and 4-byte footer, which is
already a multiple of 8 and doesn’t need to be rounded. So the minimum block
size for this allocator is 8 bytes.

Alignment Allocated block Free block Minimum block size (bytes)

Single word Header and footer Header and footer 12
Single word Header, but no footer Header and footer 8
Double word Header and footer Header and footer 16
Double word Header, but no footer Header and footer 8

Solution to Problem 9.8 (page 832)
There is nothing very tricky here. But the solution requires you to understand
how the rest of our simple implicit-list allocator works and how to manipulate
and traverse blocks.

code/vm/malloc/mm.c

1 static void *find_fit(size_t asize)

2 {

3 /* First fit search */

4 void *bp;

5

6 for (bp = heap_listp; GET_SIZE(HDRP(bp)) > 0; bp = NEXT_BLKP(bp)) {

7 if (!GET_ALLOC(HDRP(bp)) && (asize <= GET_SIZE(HDRP(bp)))) {

8 return bp;

9 }

10 }

11 return NULL; /* No fit */

code/vm/malloc/mm.c

Solution to Problem 9.9 (page 834)
This is another warm-up exercise to help you become familiar with allocators.
Notice that for this allocator the minimum block size is 16 bytes. If the remainder
of the block after splitting would be greater than or equal to the minimum block
size, then we go ahead and split the block (lines 6 to 10). The only tricky part here
is to realize that you need to place the new allocated block (lines 6 and 7) before
moving to the next block (line 8).

code/vm/malloc/mm.c

1 static void place(void *bp, size_t asize)

2 {

3 size_t csize = GET_SIZE(HDRP(bp));

4

5 if ((csize - asize) >= (2*DSIZE)) {

6 PUT(HDRP(bp), PACK(asize, 1));

Solutions to Practice Problems 857

7 PUT(FTRP(bp), PACK(asize, 1));

8 bp = NEXT_BLKP(bp);

9 PUT(HDRP(bp), PACK(csize-asize, 0));

10 PUT(FTRP(bp), PACK(csize-asize, 0));

11 }

12 else {

13 PUT(HDRP(bp), PACK(csize, 1));

14 PUT(FTRP(bp), PACK(csize, 1));

15 }

16 }

code/vm/malloc/mm.c

Solution to Problem 9.10 (page 837)
Here is one pattern that will cause external fragmentation: The application makes
numerous allocation and free requests to the first size class, followed by numer-
ous allocation and free requests to the second size class, followed by numerous
allocation and free requests to the third size class, and so on. For each size class,
the allocator creates a lot of memory that is never reclaimed because the allocator
doesn’t coalesce, and because the application never requests blocks from that size
class again.

This page intentionally left blank

Part III
Interaction and
Communication
Between Programs

To this point in our study of computer systems, we have assumed that
programs run in isolation, with minimal input and output. How-
ever, in the real world, application programs use services provided

by the operating system to communicate with I/O devices and with other
programs.

This part of the book will give you an understanding of the basic
I/O services provided by Unix operating systems, and how to use these
services to build applications such as Web clients and servers that com-
municate with each other over the Internet. You will learn techniques for
writing concurrent programs such as Web servers that can service mul-
tiple clients at the same time. Writing concurrent application programs
can also allow them to execute faster on modern multi-core processors.
When you finish this part, you will be well on your way to becoming a
power programmer with a mature understanding of computer systems
and their impact on your programs.

859

This page intentionally left blank

C H A P T E R 10
System-Level I/O

10.1 Unix I/O 862

10.2 Opening and Closing Files 863

10.3 Reading and Writing Files 865

10.4 Robust Reading and Writing with the Rio Package 867

10.5 Reading File Metadata 873

10.6 Sharing Files 875

10.7 I/O Redirection 877

10.8 Standard I/O 879

10.9 Putting It Together: Which I/O Functions Should I Use? 880

10.10 Summary 881

Bibliographic Notes 882

Homework Problems 882

Solutions to Practice Problems 883

861

862 Chapter 10 System-Level I/O

Input/output (I/O) is the process of copying data between main memory and
external devices such as disk drives, terminals, and networks. An input operation
copies data from an I/O device to main memory, and an output operation copies
data from memory to a device.

All language run-time systems provide higher-level facilities for performing
I/O. For example, ANSI C provides the standard I/O library, with functions such as
printf and scanf that perform buffered I/O. The C++ language provides similar
functionality with its overloaded << (“put to”) and >> (“get from”) operators. On
Unix systems, these higher-level I/O functions are implemented using system-level
Unix I/O functions provided by the kernel. Most of the time, the higher-level I/O
functions work quite well and there is no need to use Unix I/O directly. So why
bother learning about Unix I/O?

. Understanding Unix I/O will help you understand other systems concepts. I/O
is integral to the operation of a system, and because of this we often encounter
circular dependences between I/O and other systems ideas. For example,
I/O plays a key role in process creation and execution. Conversely, process
creation plays a key role in how files are shared by different processes. Thus,
to really understand I/O you need to understand processes, and vice versa.
We have already touched on aspects of I/O in our discussions of the memory
hierarchy, linking and loading, processes, and virtual memory. Now that you
have a better understanding of these ideas, we can close the circle and delve
into I/O in more detail.

. Sometimes you have no choice but to use Unix I/O. There are some important
cases where using higher-level I/O functions is either impossible or inappro-
priate. For example, the standard I/O library provides no way to access file
metadata such as file size or file creation time. Further, there are problems with
the standard I/O library that make it risky to use for network programming.

This chapter introduces you to the general concepts of Unix I/O and standard
I/O, and shows you how to use them reliably from your C programs. Besides
serving as a general introduction, this chapter lays a firm foundation for our
subsequent study of network programming and concurrency.

10.1 Unix I/O

A Unix file is a sequence of m bytes:

B0, B1, . . . , Bk, . . . , Bm−1.

All I/O devices, such as networks, disks, and terminals, are modeled as files, and
all input and output is performed by reading and writing the appropriate files. This
elegant mapping of devices to files allows the Unix kernel to export a simple, low-
level application interface, known as Unix I/O, that enables all input and output
to be performed in a uniform and consistent way:

. Opening files. An application announces its intention to access an I/O device
by asking the kernel to open the corresponding file. The kernel returns a

Section 10.2 Opening and Closing Files 863

small nonnegative integer, called a descriptor, that identifies the file in all
subsequent operations on the file. The kernel keeps track of all information
about the open file. The application only keeps track of the descriptor.

Each process created by a Unix shell begins life with three open files:
standard input (descriptor 0), standard output (descriptor 1), and standard
error (descriptor 2). The header file <unistd.h> defines constants STDIN_
FILENO, STDOUT_FILENO, and STDERR_FILENO, which can be used instead of
the explicit descriptor values.

. Changing the current file position. The kernel maintains a file position k, ini-
tially 0, for each open file. The file position is a byte offset from the beginning
of a file. An application can set the current file position k explicitly by per-
forming a seek operation.

. Reading and writing files. A read operation copies n > 0 bytes from a file to
memory, starting at the current file position k, and then incrementing k by n.
Given a file with a size of m bytes, performing a read operation when k ≥ m

triggers a condition known as end-of-file (EOF), which can be detected by the
application. There is no explicit “EOF character” at the end of a file.

Similarly, a write operation copies n > 0 bytes from memory to a file,
starting at the current file position k, and then updating k.

. Closing files. When an application has finished accessing a file, it informs the
kernel by asking it to close the file. The kernel responds by freeing the data
structures it created when the file was opened and restoring the descriptor to
a pool of available descriptors. When a process terminates for any reason, the
kernel closes all open files and frees their memory resources.

10.2 Opening and Closing Files

A process opens an existing file or creates a new file by calling the open function:

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(char *filename, int flags, mode_t mode);

Returns: new file descriptor if OK, −1 on error

The open function converts a filename to a file descriptor and returns the
descriptor number. The descriptor returned is always the smallest descriptor that
is not currently open in the process. The flags argument indicates how the process
intends to access the file:

. O_RDONLY: Reading only

. O_WRONLY: Writing only

. O_RDWR: Reading and writing

For example, here is how to open an existing file for reading:

864 Chapter 10 System-Level I/O

Mask Description

S_IRUSR User (owner) can read this file
S_IWUSR User (owner) can write this file
S_IXUSR User (owner) can execute this file

S_IRGRP Members of the owner’s group can read this file
S_IWGRP Members of the owner’s group can write this file
S_IXGRP Members of the owner’s group can execute this file

S_IROTH Others (anyone) can read this file
S_IWOTH Others (anyone) can write this file
S_IXOTH Others (anyone) can execute this file

Figure 10.1 Access permission bits. Defined in sys/stat.h.

fd = Open("foo.txt", O_RDONLY, 0);

The flags argument can also be or’d with one or more bit masks that provide
additional instructions for writing:

. O_CREAT: If the file doesn’t exist, then create a truncated (empty) version
of it.

. O_TRUNC: If the file already exists, then truncate it.

. O_APPEND: Before each write operation, set the file position to the end of
the file.

For example, here is how you might open an existing file with the intent of
appending some data:

fd = Open("foo.txt", O_WRONLY|O_APPEND, 0);

The mode argument specifies the access permission bits of new files. The
symbolic names for these bits are shown in Figure 10.1. As part of its context,
each process has a umask that is set by calling the umask function. When a process
creates a new file by calling the open function with some mode argument, then the
access permission bits of the file are set to mode & ~umask. For example, suppose
we are given the following default values for mode and umask:

#define DEF_MODE S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH

#define DEF_UMASK S_IWGRP|S_IWOTH

Then the following code fragment creates a new file in which the owner of the file
has read and write permissions, and all other users have read permissions:

Section 10.3 Reading and Writing Files 865

umask(DEF_UMASK);

fd = Open("foo.txt", O_CREAT|O_TRUNC|O_WRONLY, DEF_MODE);

Finally, a process closes an open file by calling the close function.

#include <unistd.h>

int close(int fd);

Returns: zero if OK, −1 on error

Closing a descriptor that is already closed is an error.

Practice Problem 10.1
What is the output of the following program?

1 #include "csapp.h"

2

3 int main()

4 {

5 int fd1, fd2;

6

7 fd1 = Open("foo.txt", O_RDONLY, 0);

8 Close(fd1);

9 fd2 = Open("baz.txt", O_RDONLY, 0);

10 printf("fd2 = %d\n", fd2);

11 exit(0);

12 }

10.3 Reading and Writing Files

Applications perform input and output by calling the read and write functions,
respectively.

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t n);

Returns: number of bytes read if OK, 0 on EOF, −1 on error

ssize_t write(int fd, const void *buf, size_t n);

Returns: number of bytes written if OK, −1 on error

The read function copies at most n bytes from the current file position of
descriptor fd to memory location buf. A return value of −1 indicates an error,
and a return value of 0 indicates EOF. Otherwise, the return value indicates the
number of bytes that were actually transferred.

866 Chapter 10 System-Level I/O

code/io/cpstdin.c

1 #include "csapp.h"

2

3 int main(void)

4 {

5 char c;

6

7 while(Read(STDIN_FILENO, &c, 1) != 0)

8 Write(STDOUT_FILENO, &c, 1);

9 exit(0);

10 }

code/io/cpstdin.c

Figure 10.2 Copies standard input to standard output one byte at a time.

The write function copies at most n bytes from memory location buf to the
current file position of descriptor fd. Figure 10.2 shows a program that uses read
and write calls to copy the standard input to the standard output, 1 byte at a time.

Applications can explicitly modify the current file position by calling the
lseek function, which is beyond our scope.

Aside What’s the difference between ssize_t and size_t?

You might have noticed that the read function has a size_t input argument and an ssize_t return
value. So what’s the difference between these two types? A size_t is defined as an unsigned int, and
an ssize_t (signed size) is defined as an int. The read function returns a signed size rather than an
unsigned size because it must return a −1 on error. Interestingly, the possibility of returning a single
−1 reduces the maximum size of a read by a factor of two, from 4 GB down to 2 GB.

In some situations, read and write transfer fewer bytes than the application
requests. Such short counts do not indicate an error. They occur for a number of
reasons:

. Encountering EOF on reads. Suppose that we are ready to read from a file
that contains only 20 more bytes from the current file position and that we
are reading the file in 50-byte chunks. Then the next read will return a short
count of 20, and the read after that will signal EOF by returning a short count
of zero.

. Reading text lines from a terminal.If the open file is associated with a terminal
(i.e., a keyboard and display), then each read function will transfer one text
line at a time, returning a short count equal to the size of the text line.

. Reading and writing network sockets.If the open file corresponds to a network
socket (Section 11.3.3), then internal buffering constraints and long network
delays can cause read and write to return short counts. Short counts can
also occur when you call read and write on a Unix pipe, an interprocess
communication mechanism that is beyond our scope.

Section 10.4 Robust Reading and Writing with the Rio Package 867

In practice, you will never encounter short counts when you read from disk
files except on EOF, and you will never encounter short counts when you write
to disk files. However, if you want to build robust (reliable) network applications
such as Web servers, then you must deal with short counts by repeatedly calling
read and write until all requested bytes have been transferred.

10.4 Robust Reading and Writing with the Rio Package

In this section, we will develop an I/O package, called the Rio (Robust I/O)
package, that handles these short counts for you automatically. The Rio package
provides convenient, robust, and efficient I/O in applications such as network
programs that are subject to short counts. Rio provides two different kinds of
functions:

. Unbuffered input and output functions. These functions transfer data directly
between memory and a file, with no application-level buffering. They are
especially useful for reading and writing binary data to and from networks.

. Buffered input functions.These functions allow you to efficiently read text lines
and binary data from a file whose contents are cached in an application-level
buffer, similar to the one provided for standard I/O functions such as printf.
Unlike the buffered I/O routines presented in [109], the buffered Rio input
functions are thread-safe (Section 12.7.1) and can be interleaved arbitrarily
on the same descriptor. For example, you can read some text lines from a
descriptor, then some binary data, and then some more text lines.

We are presenting the Rio routines for two reasons. First, we will be using
them in the network applications we develop in the next two chapters. Second, by
studying the code for these routines, you will gain a deeper understanding of Unix
I/O in general.

10.4.1 Rio Unbuffered Input and Output Functions

Applications can transfer data directly between memory and a file by calling the
rio_readn and rio_writen functions.

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);

ssize_t rio_writen(int fd, void *usrbuf, size_t n);

Returns: number of bytes transferred if OK, 0 on EOF (rio_readn only), −1 on error

The rio_readn function transfers up to n bytes from the current file position
of descriptor fd to memory location usrbuf. Similarly, the rio_writen function
transfers n bytes from location usrbuf to descriptor fd. The rio_readn function
can only return a short count if it encounters EOF. The rio_writen function never
returns a short count. Calls to rio_readn and rio_writen can be interleaved
arbitrarily on the same descriptor.

868 Chapter 10 System-Level I/O

Figure 10.3 shows the code for rio_readn and rio_writen. Notice that each
function manually restarts the read or write function if it is interrupted by the
return from an application signal handler. To be as portable as possible, we allow
for interrupted system calls and restart them when necessary. (See Section 8.5.4
for a discussion on interrupted system calls.)

10.4.2 Rio Buffered Input Functions

A text line is a sequence of ASCII characters terminated by a newline character.
On Unix systems, the newline character (‘\n’) is the same as the ASCII line feed
character (LF) and has a numeric value of 0x0a. Suppose we wanted to write
a program that counts the number of text lines in a text file. How might we do
this? One approach is to use the read function to transfer 1 byte at a time from
the file to the user’s memory, checking each byte for the newline character. The
disadvantage of this approach is that it is inefficient, requiring a trap to the kernel
to read each byte in the file.

A better approach is to call a wrapper function (rio_readlineb) that copies
the text line from an internal read buffer, automatically making a read call to
refill the buffer whenever it becomes empty. For files that contain both text lines
and binary data (such as the HTTP responses described in Section 11.5.3) we also
provide a buffered version of rio_readn, called rio_readnb, that transfers raw
bytes from the same read buffer as rio_readlineb.

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

Returns: nothing

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Returns: number of bytes read if OK, 0 on EOF, −1 on error

The rio_readinitb function is called once per open descriptor. It associates
the descriptor fd with a read buffer of type rio_t at address rp.

The rio_readlineb function reads the next text line from file rp (including
the terminating newline character), copies it to memory location usrbuf, and ter-
minates the text line with the null (zero) character. The rio_readlineb function
reads at most maxlen-1 bytes, leaving room for the terminating null character.
Text lines that exceed maxlen-1 bytes are truncated and terminated with a null
character.

The rio_readnb function reads up to n bytes from file rp to memory location
usrbuf. Calls to rio_readlineb and rio_readnb can be interleaved arbitrarily
on the same descriptor. However, calls to these buffered functions should not be
interleaved with calls to the unbuffered rio_readn function.

You will encounter numerous examples of the Rio functions in the remainder
of this text. Figure 10.4 shows how to use the Rio functions to copy a text file from
standard input to standard output, one line at a time.

Section 10.4 Robust Reading and Writing with the Rio Package 869

code/src/csapp.c

1 ssize_t rio_readn(int fd, void *usrbuf, size_t n)

2 {

3 size_t nleft = n;

4 ssize_t nread;

5 char *bufp = usrbuf;

6

7 while (nleft > 0) {

8 if ((nread = read(fd, bufp, nleft)) < 0) {

9 if (errno == EINTR) /* Interrupted by sig handler return */

10 nread = 0; /* and call read() again */

11 else

12 return -1; /* errno set by read() */

13 }

14 else if (nread == 0)

15 break; /* EOF */

16 nleft -= nread;

17 bufp += nread;

18 }

19 return (n - nleft); /* Return >= 0 */

20 }

code/src/csapp.c

code/src/csapp.c

1 ssize_t rio_writen(int fd, void *usrbuf, size_t n)

2 {

3 size_t nleft = n;

4 ssize_t nwritten;

5 char *bufp = usrbuf;

6

7 while (nleft > 0) {

8 if ((nwritten = write(fd, bufp, nleft)) <= 0) {

9 if (errno == EINTR) /* Interrupted by sig handler return */

10 nwritten = 0; /* and call write() again */

11 else

12 return -1; /* errno set by write() */

13 }

14 nleft -= nwritten;

15 bufp += nwritten;

16 }

17 return n;

18 }

code/src/csapp.c

Figure 10.3 The rio_readn and rio_writen functions.

870 Chapter 10 System-Level I/O

code/io/cpfile.c

1 #include "csapp.h"

2

3 int main(int argc, char **argv)

4 {

5 int n;

6 rio_t rio;

7 char buf[MAXLINE];

8

9 Rio_readinitb(&rio, STDIN_FILENO);

10 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)

11 Rio_writen(STDOUT_FILENO, buf, n);

12 }

code/io/cpfile.c

Figure 10.4 Copying a text file from standard input to standard output.

Figure 10.5 shows the format of a read buffer, along with the code for the
rio_readinitb function that initializes it. The rio_readinitb function sets up
an empty read buffer and associates an open file descriptor with that buffer.

The heart of the Rio read routines is the rio_read function shown in Fig-
ure 10.6. The rio_read function is a buffered version of the Unix read function.
When rio_read is called with a request to read n bytes, there are rp->rio_cnt

code/include/csapp.h

1 #define RIO_BUFSIZE 8192

2 typedef struct {

3 int rio_fd; /* Descriptor for this internal buf */

4 int rio_cnt; /* Unread bytes in internal buf */

5 char *rio_bufptr; /* Next unread byte in internal buf */

6 char rio_buf[RIO_BUFSIZE]; /* Internal buffer */

7 } rio_t;

code/include/csapp.h

code/src/csapp.c

1 void rio_readinitb(rio_t *rp, int fd)

2 {

3 rp->rio_fd = fd;

4 rp->rio_cnt = 0;

5 rp->rio_bufptr = rp->rio_buf;

6 }

code/src/csapp.c

Figure 10.5 A read buffer of type rio_t and the rio_readinitb function that
initializes it.

Section 10.4 Robust Reading and Writing with the Rio Package 871

code/src/csapp.c

1 static ssize_t rio_read(rio_t *rp, char *usrbuf, size_t n)

2 {

3 int cnt;

4

5 while (rp->rio_cnt <= 0) { /* Refill if buf is empty */

6 rp->rio_cnt = read(rp->rio_fd, rp->rio_buf,

7 sizeof(rp->rio_buf));

8 if (rp->rio_cnt < 0) {

9 if (errno != EINTR) /* Interrupted by sig handler return */

10 return -1;

11 }

12 else if (rp->rio_cnt == 0) /* EOF */

13 return 0;

14 else

15 rp->rio_bufptr = rp->rio_buf; /* Reset buffer ptr */

16 }

17

18 /* Copy min(n, rp->rio_cnt) bytes from internal buf to user buf */

19 cnt = n;

20 if (rp->rio_cnt < n)

21 cnt = rp->rio_cnt;

22 memcpy(usrbuf, rp->rio_bufptr, cnt);

23 rp->rio_bufptr += cnt;

24 rp->rio_cnt -= cnt;

25 return cnt;

26 }

code/src/csapp.c

Figure 10.6 The internal rio_read function.

unread bytes in the read buffer. If the buffer is empty, then it is replenished with
a call to read. Receiving a short count from this invocation of read is not an er-
ror, and simply has the effect of partially filling the read buffer. Once the buffer is
nonempty, rio_read copies the minimum of n and rp->rio_cnt bytes from the
read buffer to the user buffer and returns the number of bytes copied.

To an application program, the rio_read function has the same semantics as
the Unix read function. On error, it returns −1 and sets errno appropriately. On
EOF, it returns 0. It returns a short count if the number of requested bytes exceeds
the number of unread bytes in the read buffer. The similarity of the two functions
makes it easy to build different kinds of buffered read functions by substituting
rio_read for read. For example, the rio_readnb function in Figure 10.7 has the
same structure as rio_readn, with rio_read substituted for read. Similarly, the
rio_readlineb routine in Figure 10.7 calls rio_read at most maxlen-1 times.
Each call returns 1 byte from the read buffer, which is then checked for being the
terminating newline.

code/src/csapp.c

1 ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen)

2 {

3 int n, rc;

4 char c, *bufp = usrbuf;

5

6 for (n = 1; n < maxlen; n++) {

7 if ((rc = rio_read(rp, &c, 1)) == 1) {

8 *bufp++ = c;

9 if (c == ’\n’)

10 break;

11 } else if (rc == 0) {

12 if (n == 1)

13 return 0; /* EOF, no data read */

14 else

15 break; /* EOF, some data was read */

16 } else

17 return -1; /* Error */

18 }

19 *bufp = 0;

20 return n;

21 }

code/src/csapp.c

code/src/csapp.c

1 ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n)

2 {

3 size_t nleft = n;

4 ssize_t nread;

5 char *bufp = usrbuf;

6

7 while (nleft > 0) {

8 if ((nread = rio_read(rp, bufp, nleft)) < 0) {

9 if (errno == EINTR) /* Interrupted by sig handler return */

10 nread = 0; /* Call read() again */

11 else

12 return -1; /* errno set by read() */

13 }

14 else if (nread == 0)

15 break; /* EOF */

16 nleft -= nread;

17 bufp += nread;

18 }

19 return (n - nleft); /* Return >= 0 */

20 }

code/src/csapp.c

Figure 10.7 The rio_readlineb and rio_readnb functions.

Section 10.5 Reading File Metadata 873

Aside Origins of the Rio package

The Rio functions are inspired by the readline, readn, and writen functions described by W. Richard
Stevens in his classic network programming text [109]. The rio_readn and rio_writen functions are
identical to the Stevens readn and writen functions. However, the Stevens readline function has some
limitations that are corrected in Rio. First, because readline is buffered and readn is not, these two
functions cannot be used together on the same descriptor. Second, because it uses a static buffer, the
Stevens readline function is not thread-safe, which required Stevens to introduce a different thread-
safe version called readline_r. We have corrected both of these flaws with the rio_readlineb and
rio_readnb functions, which are mutually compatible and thread-safe.

10.5 Reading File Metadata

An application can retrieve information about a file (sometimes called the file’s
metadata) by calling the stat and fstat functions.

#include <unistd.h>

#include <sys/stat.h>

int stat(const char *filename, struct stat *buf);

int fstat(int fd, struct stat *buf);

Returns: 0 if OK, −1 on error

The stat function takes as input a file name and fills in the members of a
stat structure shown in Figure 10.8. The fstat function is similar, but takes a file

statbuf.h (included by sys/stat.h)

/* Metadata returned by the stat and fstat functions */

struct stat {

dev_t st_dev; /* Device */

ino_t st_ino; /* inode */

mode_t st_mode; /* Protection and file type */

nlink_t st_nlink; /* Number of hard links */

uid_t st_uid; /* User ID of owner */

gid_t st_gid; /* Group ID of owner */

dev_t st_rdev; /* Device type (if inode device) */

off_t st_size; /* Total size, in bytes */

unsigned long st_blksize; /* Blocksize for filesystem I/O */

unsigned long st_blocks; /* Number of blocks allocated */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last modification */

time_t st_ctime; /* Time of last change */

};

statbuf.h (included by sys/stat.h)

Figure 10.8 The stat structure.

874 Chapter 10 System-Level I/O

Macro Description

S_ISREG() Is this a regular file?
S_ISDIR() Is this a directory file?
S_ISSOCK() Is this a network socket?

Figure 10.9 Macros for determining file type from the st_mode bits. Defined in
sys/stat.h.

descriptor instead of a file name. We will need the st_mode and st_sizemembers
of the stat structure when we discuss Web servers in Section 11.5. The other
members are beyond our scope.

The st_sizemember contains the file size in bytes. The st_modemember en-
codes both the file permission bits (Figure 10.1) and the file type. Unix recognizes
a number of different file types. A regular file contains some sort of binary or text
data. To the kernel there is no difference between text files and binary files. A
directory file contains information about other files. A socket is a file that is used
to communicate with another process across a network (Section 11.4).

Unix provides macro predicates for determining the file type from the st_
mode member. Figure 10.9 lists a subset of these macros.

code/io/statcheck.c

1 #include "csapp.h"

2

3 int main (int argc, char **argv)

4 {

5 struct stat stat;

6 char *type, *readok;

7

8 Stat(argv[1], &stat);

9 if (S_ISREG(stat.st_mode)) /* Determine file type */

10 type = "regular";

11 else if (S_ISDIR(stat.st_mode))

12 type = "directory";

13 else

14 type = "other";

15 if ((stat.st_mode & S_IRUSR)) /* Check read access */

16 readok = "yes";

17 else

18 readok = "no";

19

20 printf("type: %s, read: %s\n", type, readok);

21 exit(0);

22 }

code/io/statcheck.c

Figure 10.10 Querying and manipulating a file’s st_mode bits.

Section 10.6 Sharing Files 875

Figure 10.10 shows how we might use these macros and the stat function to
read and interpret a file’s st_mode bits.

10.6 Sharing Files

Unix files can be shared in a number of different ways. Unless you have a clear
picture of how the kernel represents open files, the idea of file sharing can be quite
confusing. The kernel represents open files using three related data structures:

. Descriptor table. Each process has its own separate descriptor table whose en-
tries are indexed by the process’s open file descriptors. Each open descriptor
entry points to an entry in the file table.

. File table.The set of open files is represented by a file table that is shared by all
processes. Each file table entry consists of (for our purposes) the current file
position, a reference count of the number of descriptor entries that currently
point to it, and a pointer to an entry in the v-node table. Closing a descriptor
decrements the reference count in the associated file table entry. The kernel
will not delete the file table entry until its reference count is zero.

. v-node table. Like the file table, the v-node table is shared by all processes.
Each entry contains most of the information in the stat structure, including
the st_mode and st_size members.

Figure 10.11 shows an example where descriptors 1 and 4 reference two
different files through distinct open file table entries. This is the typical situation,
where files are not shared, and where each descriptor corresponds to a distinct
file.

Multiple descriptors can also reference the same file through different file
table entries, as shown in Figure 10.12. This might happen, for example, if you
were to call the open function twice with the same filename. The key idea is that
each descriptor has its own distinct file position, so different reads on different
descriptors can fetch data from different locations in the file.

Figure 10.11
Typical kernel data
structures for open
files. In this example,
two descriptors reference
distinct files. There is no
sharing.

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

stdin fd 0
stdout fd 1
stderr fd 2

 fd 3
fd 4

File size

File access

File type

File B

File pos

refcnt�1

…

File A

File pos

refcnt�1

… …

File size

File access

File type

…

876 Chapter 10 System-Level I/O

Figure 10.12
File sharing. This example
shows two descriptors
sharing the same disk file
through two open file table
entries.

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

fd 0
fd 1
fd 2
fd 3
fd 4

File size

File access

File type

File B

File pos

refcnt�1

…

File A

File pos

refcnt�1

… …

Figure 10.13
How a child process
inherits the parent’s open
files. The initial situation is
in Figure 10.11.

Descriptor tables Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

 fd 0
fd 1

 fd 2
 fd 3
fd 4

File size

File access

File type

File B

File pos

refcnt�2

…

File AParent’s table

 fd 0
fd 1

 fd 2
 fd 3
fd 4

Child’s table

File pos

refcnt�2

… …

File size

File access

File type

…

We can also understand how parent and child processes share files. Suppose
that before a call to fork, the parent process has the open files shown in Fig-
ure 10.11. Then Figure 10.13 shows the situation after the call to fork. The child
gets its own duplicate copy of the parent’s descriptor table. Parent and child share
the same set of open file tables, and thus share the same file position. An important
consequence is that the parent and child must both close their descriptors before
the kernel will delete the corresponding file table entry.

Practice Problem 10.2
Suppose the disk file foobar.txt consists of the six ASCII characters “foobar”.
Then what is the output of the following program?

1 #include "csapp.h"

2

3 int main()

Section 10.7 I/O Redirection 877

4 {

5 int fd1, fd2;

6 char c;

7

8 fd1 = Open("foobar.txt", O_RDONLY, 0);

9 fd2 = Open("foobar.txt", O_RDONLY, 0);

10 Read(fd1, &c, 1);

11 Read(fd2, &c, 1);

12 printf("c = %c\n", c);

13 exit(0);

14 }

Practice Problem 10.3
As before, suppose the disk file foobar.txt consists of the six ASCII characters
“foobar”. Then what is the output of the following program?

1 #include "csapp.h"

2

3 int main()

4 {

5 int fd;

6 char c;

7

8 fd = Open("foobar.txt", O_RDONLY, 0);

9 if (Fork() == 0) {

10 Read(fd, &c, 1);

11 exit(0);

12 }

13 Wait(NULL);

14 Read(fd, &c, 1);

15 printf("c = %c\n", c);

16 exit(0);

17 }

10.7 I/O Redirection

Unix shells provide I/O redirection operators that allow users to associate standard
input and output with disk files. For example, typing

unix> ls > foo.txt

causes the shell to load and execute the ls program, with standard output redi-
rected to disk file foo.txt. As we will see in Section 11.5, a Web server performs

878 Chapter 10 System-Level I/O

Figure 10.14
Kernel data structures
after redirecting stan-
dard output by calling
dup2(4,1). The initial
situation is shown in Fig-
ure 10.11.

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

 fd 0
 fd 1
 fd 2
 fd 3
fd 4

File size

File access

File type

File B

File pos

refcnt�2

…

File A

File pos

refcnt�0

… …

File size

File access

File type

…

a similar kind of redirection when it runs a CGI program on behalf of the client.
So how does I/O redirection work? One way is to use the dup2 function.

#include <unistd.h>

int dup2(int oldfd, int newfd);

Returns: nonnegative descriptor if OK, −1 on error

Thedup2 function copies descriptor table entryoldfd to descriptor table entry
newfd, overwriting the previous contents of descriptor table entry newfd. If newfd
was already open, then dup2 closes newfd before it copies oldfd.

Suppose that before calling dup2(4,1) we have the situation in Figure 10.11,
where descriptor 1 (standard output) corresponds to file A (say, a terminal), and
descriptor 4 corresponds to file B (say, a disk file). The reference counts for A and B

are both equal to 1. Figure 10.14 shows the situation after calling dup2(4,1). Both
descriptors now point to file B; file A has been closed and its file table and v-node
table entries deleted; and the reference count for file B has been incremented.
From this point on, any data written to standard output is redirected to file B.

Aside Right and left hoinkies

To avoid confusion with other bracket-type operators such as ‘]’ and ‘[’, we have always referred to
the shell’s ‘>’ operator as a “right hoinky”, and the ‘<’ operator as a “left hoinky”.

Practice Problem 10.4
How would you use dup2 to redirect standard input to descriptor 5?

Section 10.8 Standard I/O 879

Practice Problem 10.5
Assuming that the disk file foobar.txt consists of the six ASCII characters
“foobar”, what is the output of the following program?

1 #include "csapp.h"

2

3 int main()

4 {

5 int fd1, fd2;

6 char c;

7

8 fd1 = Open("foobar.txt", O_RDONLY, 0);

9 fd2 = Open("foobar.txt", O_RDONLY, 0);

10 Read(fd2, &c, 1);

11 Dup2(fd2, fd1);

12 Read(fd1, &c, 1);

13 printf("c = %c\n", c);

14 exit(0);

15 }

10.8 Standard I/O

ANSI C defines a set of higher level input and output functions, called the standard
I/O library, that provides programmers with a higher-level alternative to Unix
I/O. The library (libc) provides functions for opening and closing files (fopen
and fclose), reading and writing bytes (fread and fwrite), reading and writing
strings (fgets and fputs), and sophisticated formatted I/O (scanf and printf).

The standard I/O library models an open file as a stream. To the programmer, a
stream is a pointer to a structure of type FILE. Every ANSI C program begins with
three open streams, stdin, stdout, and stderr, which correspond to standard
input, standard output, and standard error, respectively:

#include <stdio.h>

extern FILE *stdin; /* Standard input (descriptor 0) */

extern FILE *stdout; /* Standard output (descriptor 1) */

extern FILE *stderr; /* Standard error (descriptor 2) */

A stream of type FILE is an abstraction for a file descriptor and a stream
buffer. The purpose of the stream buffer is the same as the Rio read buffer: to
minimize the number of expensive Unix I/O system calls. For example, suppose we
have a program that makes repeated calls to the standard I/O getc function, where
each invocation returns the next character from a file. When getc is called the first
time, the library fills the stream buffer with a single call to the read function, and
then returns the first byte in the buffer to the application. As long as there are

880 Chapter 10 System-Level I/O

unread bytes in the buffer, subsequent calls to getc can be served directly from
the stream buffer.

10.9 Putting It Together: Which I/O Functions Should I Use?

Figure 10.15 summarizes the various I/O packages that we have discussed in this
chapter. Unix I/O is implemented in the operating system kernel. It is available
to applications through functions such as open, close, lseek, read, write, and
stat functions. The higher-level Rio and standard I/O functions are implemented
“on top of” (using) the Unix I/O functions. The Rio functions are robust wrappers
for read and write that were developed specifically for this textbook. They au-
tomatically deal with short counts and provide an efficient buffered approach for
reading text lines. The standard I/O functions provide a more complete buffered
alternative to the Unix I/O functions, including formatted I/O routines.

So which of these functions should you use in your programs? The standard
I/O functions are the method of choice for I/O on disk and terminal devices. Most
C programmers use standard I/O exclusively throughout their careers, never both-
ering with the lower-level Unix I/O functions. Whenever possible, we recommend
that you do likewise.

Unfortunately, standard I/O poses some nasty problems when we attempt
to use it for input and output on networks. As we will see in Section 11.4, the
Unix abstraction for a network is a type of file called a socket. Like any Unix file,
sockets are referenced by file descriptors, known in this case as socket descriptors.
Application processes communicate with processes running on other computers
by reading and writing socket descriptors.

Standard I/O streams are full duplex in the sense that programs can perform
input and output on the same stream. However, there are poorly documented
restrictions on streams that interact badly with restrictions on sockets:

. Restriction 1: Input functions following output functions. An input function
cannot follow an output function without an intervening call to fflush, fseek,
fsetpos, or rewind. The fflush function empties the buffer associated with

C application program

Standard I/O
functions

RIO
functions

Unix I/O functions
(accessed via system calls)

fopen
fread
fscanf
sscanf
fgets
fflush
fclose

fdopen
fwrite
fprintf
sprintf
fputs
fseek rio_readn

rio_writen
rio_readinitb
rio_readlineb
rio_readnbopen

write
stat

read
lseek
close

Figure 10.15 Relationship between Unix I/O, standard I/O, and Rio.

Section 10.10 Summary 881

a stream. The latter three functions use the Unix I/O lseek function to reset
the current file position.

. Restriction 2: Output functions following input functions. An output function
cannot follow an input function without an intervening call to fseek, fsetpos,
or rewind, unless the input function encounters an end-of-file.

These restrictions pose a problem for network applications because it is illegal
to use the lseek function on a socket. The first restriction on stream I/O can be
worked around by adopting a discipline of flushing the buffer before every input
operation. However, the only way to work around the second restriction is to
open two streams on the same open socket descriptor, one for reading and one
for writing:

FILE *fpin, *fpout;

fpin = fdopen(sockfd, "r");

fpout = fdopen(sockfd, "w");

But this approach has problems as well, because it requires the application
to call fclose on both streams in order to free the memory resources associated
with each stream and avoid a memory leak:

fclose(fpin);

fclose(fpout);

Each of these operations attempts to close the same underlying socket descrip-
tor, so the second close operation will fail. This is not a problem for sequential
programs, but closing an already closed descriptor in a threaded program is a
recipe for disaster (see Section 12.7.4).

Thus, we recommend that you not use the standard I/O functions for input
and output on network sockets. Use the robust Rio functions instead. If you need
formatted output, use the sprintf function to format a string in memory, and then
send it to the socket using rio_writen. If you need formatted input, use rio_
readlineb to read an entire text line, and then use sscanf to extract different
fields from the text line.

10.10 Summary

Unix provides a small number of system-level functions that allow applications to
open, close, read, and write files; fetch file metadata; and perform I/O redirection.
Unix read and write operations are subject to short counts that applications
must anticipate and handle correctly. Instead of calling the Unix I/O functions
directly, applications should use the Rio package, which deals with short counts
automatically by repeatedly performing read and write operations until all of the
requested data have been transferred.

The Unix kernel uses three related data structures to represent open files.
Entries in a descriptor table point to entries in the open file table, which point

882 Chapter 10 System-Level I/O

to entries in the v-node table. Each process has its own distinct descriptor table,
while all processes share the same open file and v-node tables. Understanding the
general organization of these structures clarifies our understanding of both file
sharing and I/O redirection.

The standard I/O library is implemented on top of Unix I/O and provides a
powerful set of higher-level I/O routines. For most applications, standard I/O is the
simpler, preferred alternative to Unix I/O. However, because of some mutually
incompatible restrictions on standard I/O and network files, Unix I/O, rather than
standard I/O, should be used for network applications.

Bibliographic Notes

Stevens wrote the standard reference text for Unix I/O [110]. Kernighan and
Ritchie give a clear and complete discussion of the standard I/O functions [58].

Homework Problems

10.6 ◆
What is the output of the following program?

1 #include "csapp.h"

2

3 int main()

4 {

5 int fd1, fd2;

6

7 fd1 = Open("foo.txt", O_RDONLY, 0);

8 fd2 = Open("bar.txt", O_RDONLY, 0);

9 Close(fd2);

10 fd2 = Open("baz.txt", O_RDONLY, 0);

11 printf("fd2 = %d\n", fd2);

12 exit(0);

13 }

10.7 ◆
Modify the cpfile program in Figure 10.4 so that it uses the Rio functions to copy
standard input to standard output, MAXBUF bytes at a time.

10.8 ◆◆
Write a version of the statcheck program in Figure 10.10, called fstatcheck,
that takes a descriptor number on the command line rather than a file name.

10.9 ◆◆
Consider the following invocation of the fstatcheck program from Problem 10.8:

unix> fstatcheck 3 < foo.txt

Solutions to Practice Problems 883

You might expect that this invocation of fstatcheck would fetch and display
metadata for file foo.txt. However, when we run it on our system, it fails with
a “bad file descriptor.” Given this behavior, fill in the pseudo-code that the shell
must be executing between the fork and execve calls:

if (Fork() == 0) { /* Child */

/* What code is the shell executing right here? */

Execve("fstatcheck", argv, envp);

}

10.10 ◆◆
Modify the cpfile program in Figure 10.4 so that it takes an optional command
line argument infile. If infile is given, then copy infile to standard output;
otherwise, copy standard input to standard output as before. The twist is that your
solution must use the original copy loop (lines 9–11) for both cases. You are only
allowed to insert code, and you are not allowed to change any of the existing code.

Solutions to Practice Problems

Solution to Problem 10.1 (page 865)
Unix processes begin life with open descriptors assigned to stdin (descriptor 0),
stdout (descriptor 1), and stderr (descriptor 2). The open function always re-
turns the lowest unopened descriptor, so the first call to open returns descriptor 3.
The call to the close function frees up descriptor 3. The final call to open returns
descriptor 3, and thus the output of the program is “fd2 = 3”.

Solution to Problem 10.2 (page 876)
The descriptors fd1 and fd2 each have their own open file table entry, so each
descriptor has its own file position for foobar.txt. Thus, the read from fd2 reads
the first byte of foobar.txt, and the output is

c = f

and not

c = o

as you might have thought initially.

Solution to Problem 10.3 (page 877)
Recall that the child inherits the parent’s descriptor table and that all processes
shared the same open file table. Thus, the descriptor fd in both the parent and
child points to the same open file table entry. When the child reads the first byte
of the file, the file position increases by one. Thus, the parent reads the second
byte, and the output is

c = o

884 Chapter 10 System-Level I/O

Solution to Problem 10.4 (page 878)
To redirect standard input (descriptor 0) to descriptor 5, we would call dup2(5,0),
or equivalently, dup2(5,STDIN_FILENO).

Solution to Problem 10.5 (page 879)
At first glance, you might think the output would be

c = f

but because we are redirecting fd1 to fd2, the output is really

c = o

C H A P T E R 11
Network Programming

11.1 The Client-Server Programming Model 886

11.2 Networks 887

11.3 The Global IP Internet 891

11.4 The Sockets Interface 900

11.5 Web Servers 911

11.6 Putting It Together: The Tiny Web Server 919

11.7 Summary 927

Bibliographic Notes 928

Homework Problems 928

Solutions to Practice Problems 929

885

886 Chapter 11 Network Programming

Network applications are everywhere. Any time you browse the Web, send an
email message, or pop up an X window, you are using a network application.
Interestingly, all network applications are based on the same basic programming
model, have similar overall logical structures, and rely on the same programming
interface.

Network applications rely on many of the concepts that you have already
learned in our study of systems. For example, processes, signals, byte ordering,
memory mapping, and dynamic storage allocation all play important roles. There
are new concepts to master as well. We will need to understand the basic client-
server programming model and how to write client-server programs that use the
services provided by the Internet. At the end, we will tie all of these ideas together
by developing a small but functional Web server that can serve both static and
dynamic content with text and graphics to real Web browsers.

11.1 The Client-Server Programming Model

Every network application is based on the client-server model. With this model, an
application consists of a server process and one or more client processes. A server
manages some resource, and it provides some service for its clients by manipulating
that resource. For example, a Web server manages a set of disk files that it retrieves
and executes on behalf of clients. An FTP server manages a set of disk files that it
stores and retrieves for clients. Similarly, an email server manages a spool file that
it reads and updates for clients.

The fundamental operation in the client-server model is the transaction (Fig-
ure 11.1). A client-server transaction consists of four steps:

1. When a client needs service, it initiates a transaction by sending a request to
the server. For example, when a Web browser needs a file, it sends a request
to a Web server.

2. The server receives the request, interprets it, and manipulates its resources in
the appropriate way. For example, when a Web server receives a request from
a browser, it reads a disk file.

3. The server sends a response to the client, and then waits for the next request.
For example, a Web server sends the file back to a client.

4. The client receives the response and manipulates it. For example, after a Web
browser receives a page from the server, it displays it on the screen.

4. Client
processes
response

1. Client sends request

3. Server sends response 2. Server
processes

request

Client
process

Server
process Resource

Figure 11.1 A client-server transaction.

Section 11.2 Networks 887

It is important to realize that clients and servers are processes and not ma-
chines, or hosts as they are often called in this context. A single host can run many
different clients and servers concurrently, and a client and server transaction can
be on the same or different hosts. The client-server model is the same, regardless
of the mapping of clients and servers to hosts.

Aside Client-server transactions vs. database transactions

Client-server transactions are not database transactions and do not share any of their properties, such
as atomicity. In our context, a transaction is simply a sequence of steps carried out by a client and a
server.

11.2 Networks

Clients and servers often run on separate hosts and communicate using the hard-
ware and software resources of a computer network. Networks are sophisticated
systems, and we can only hope to scratch the surface here. Our aim is to give you
a workable mental model from a programmer’s perspective.

To a host, a network is just another I/O device that serves as a source and sink
for data, as shown in Figure 11.2. An adapter plugged into an expansion slot on
the I/O bus provides the physical interface to the network. Data received from the
network is copied from the adapter across the I/O and memory buses into memory,
typically by a DMA transfer. Similarly, data can also be copied from memory to
the network.

Figure 11.2
Hardware organization
of a network host.

CPU chip

Register file

ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus

Expansion slots

Disk
controller

Network
adapter

Network

Graphics
adapter

MonitorMouse Keyboard

USB
controller

Disk

888 Chapter 11 Network Programming

Figure 11.3
Ethernet segment.

Host Host Host

Hub

100 Mb/s 100 Mb/s

Physically, a network is a hierarchical system that is organized by geographical
proximity. At the lowest level is a LAN (Local Area Network) that spans a
building or a campus. The most popular LAN technology by far is Ethernet,
which was developed in the mid-1970s at Xerox PARC. Ethernet has proven to
be remarkably resilient, evolving from 3 Mb/s to 10 Gb/s.

An Ethernet segment consists of some wires (usually twisted pairs of wires)
and a small box called a hub, as shown in Figure 11.3. Ethernet segments typically
span small areas, such as a room or a floor in a building. Each wire has the same
maximum bit bandwidth, typically 100 Mb/s or 1 Gb/s. One end is attached to
an adapter on a host, and the other end is attached to a port on the hub. A hub
slavishly copies every bit that it receives on each port to every other port. Thus,
every host sees every bit.

Each Ethernet adapter has a globally unique 48-bit address that is stored in
a non-volatile memory on the adapter. A host can send a chunk of bits called a
frame to any other host on the segment. Each frame includes some fixed number
of header bits that identify the source and destination of the frame and the frame
length, followed by a payload of data bits. Every host adapter sees the frame, but
only the destination host actually reads it.

Multiple Ethernet segments can be connected into larger LANs, called
bridged Ethernets, using a set of wires and small boxes called bridges, as shown
in Figure 11.4. Bridged Ethernets can span entire buildings or campuses. In a
bridged Ethernet, some wires connect bridges to bridges, and others connect
bridges to hubs. The bandwidths of the wires can be different. In our example,
the bridge–bridge wire has a 1 Gb/s bandwidth, while the four hub–bridge wires
have bandwidths of 100 Mb/s.

Bridges make better use of the available wire bandwidth than hubs. Using a
clever distributed algorithm, they automatically learn over time which hosts are
reachable from which ports, and then selectively copy frames from one port to
another only when it is necessary. For example, if host A sends a frame to host B,
which is on the segment, then bridge X will throw away the frame when it arrives
at its input port, thus saving bandwidth on the other segments. However, if host A
sends a frame to host C on a different segment, then bridge X will copy the frame
only to the port connected to bridge Y, which will copy the frame only to the port
connected to bridge C’s segment.

To simplify our pictures of LANs, we will draw the hubs and bridges and the
wires that connect them as a single horizontal line, as shown in Figure 11.5.

At a higher level in the hierarchy, multiple incompatible LANs can be con-
nected by specialized computers called routers to form an internet (interconnected
network).

Section 11.2 Networks 889

Host Host Host

Hub Bridge

Bridge

Host Host

100 Mb/s

100 Mb/s 100 Mb/s

100 Mb/s

1 Gb/s

Host Host

Hub

Host Host

Hub

Host Host

Hub

Host

C

X

A B

Y

Figure 11.4 Bridged Ethernet segments.

Aside Internet vs. internet

We will always use lowercase internet to denote the general concept, and uppercase Internet to denote
a specific implementation, namely the global IP Internet.

Each router has an adapter (port) for each network that it is connected to.
Routers can also connect high-speed point-to-point phone connections, which are
examples of networks known as WANs (Wide-Area Networks), so called because
they span larger geographical areas than LANs. In general, routers can be used
to build internets from arbitrary collections of LANs and WANs. For example,
Figure 11.6 shows an example internet with a pair of LANs and WANs connected
by three routers.

The crucial property of an internet is that it can consist of different LANs
and WANs with radically different and incompatible technologies. Each host is
physically connected to every other host, but how is it possible for some source
host to send data bits to another destination host across all of these incompatible
networks?

The solution is a layer of protocol software running on each host and router
that smoothes out the differences between the different networks. This software

Figure 11.5
Conceptual view of a
LAN.

Host Host Host. . .

890 Chapter 11 Network Programming

Host Host Host. . .

LAN

Host Host Host. . .

LAN

WAN WAN
RouterRouterRouter

Figure 11.6 A small internet. Two LANs and two WANs are connected by three routers.

implements a protocol that governs how hosts and routers cooperate in order to
transfer data. The protocol must provide two basic capabilities:

. Naming scheme.Different LAN technologies have different and incompatible
ways of assigning addresses to hosts. The internet protocol smoothes these
differences by defining a uniform format for host addresses. Each host is then
assigned at least one of these internet addresses that uniquely identifies it.

. Delivery mechanism. Different networking technologies have different and
incompatible ways of encoding bits on wires and of packaging these bits
into frames. The internet protocol smoothes these differences by defining a
uniform way to bundle up data bits into discrete chunks called packets. A
packet consists of a header, which contains the packet size and addresses of
the source and destination hosts, and a payload, which contains data bits sent
from the source host.

Figure 11.7 shows an example of how hosts and routers use the internet
protocol to transfer data across incompatible LANs. The example internet consists
of two LANs connected by a router. A client running on host A, which is attached
to LAN1, sends a sequence of data bytes to a server running on host B, which is
attached to LAN2. There are eight basic steps:

1. The client on host A invokes a system call that copies the data from the client’s
virtual address space into a kernel buffer.

2. The protocol software on host A creates a LAN1 frame by appending an
internet header and a LAN1 frame header to the data. The internet header
is addressed to internet host B. The LAN1 frame header is addressed to the
router. It then passes the frame to the adapter. Notice that the payload of the
LAN1 frame is an internet packet, whose payload is the actual user data. This
kind of encapsulation is one of the fundamental insights of internetworking.

3. The LAN1 adapter copies the frame to the network.

4. When the frame reaches the router, the router’s LAN1 adapter reads it from
the wire and passes it to the protocol software.

5. The router fetches the destination internet address from the internet packet
header and uses this as an index into a routing table to determine where to
forward the packet, which in this case is LAN2. The router then strips off the

Section 11.3 The Global IP Internet 891

Host A

Client

Protocol
software

Protocol
software

LAN1
adapter

Host B

Server

Protocol
software

Data

internet packet

LAN1 frame

LAN1 LAN2

(1)

Data PH FH1(2)

Lan 2 frame

Data PH FH2 (5)

Data PH FH1(3) Data PH FH2(6)

Data PH FH2(7)

Data(8)

Data PH FH1(4)

LAN1
adapter

LAN2
adapter

Router

LAN2
adapter

Figure 11.7 How data travels from one host to another on an internet. Key: PH: internet packet header;
FH1: frame header for LAN1; FH2: frame header for LAN2.

old LAN1 frame header, prepends a new LAN2 frame header addressed to
host B, and passes the resulting frame to the adapter.

6. The router’s LAN2 adapter copies the frame to the network.

7. When the frame reaches host B, its adapter reads the frame from the wire and
passes it to the protocol software.

8. Finally, the protocol software on host B strips off the packet header and frame
header. The protocol software will eventually copy the resulting data into the
server’s virtual address space when the server invokes a system call that reads
the data.

Of course, we are glossing over many difficult issues here. What if different net-
works have different maximum frame sizes? How do routers know where to for-
ward frames? How are routers informed when the network topology changes?
What if a packet gets lost? Nonetheless, our example captures the essence of the
internet idea, and encapsulation is the key.

11.3 The Global IP Internet

The global IP Internet is the most famous and successful implementation of an
internet. It has existed in one form or another since 1969. While the internal
architecture of the Internet is complex and constantly changing, the organization
of client-server applications has remained remarkably stable since the early 1980s.
Figure 11.8 shows the basic hardware and software organization of an Internet

892 Chapter 11 Network Programming

Figure 11.8
Hardware and software
organization of an
Internet application.

Client

Internet client host

User code

Sockets interface
(system calls)

Hardware interface
(interrupts)

TCP/IP Kernel code

Network
adapter

Server

Internet server host

TCP/IP

Network
adapter

Hardware

Global IP Internet

client-server application. Each Internet host runs software that implements the
TCP/IP protocol (Transmission Control Protocol/Internet Protocol), which is
supported by almost every modern computer system. Internet clients and servers
communicate using a mix of sockets interface functions and Unix I/O functions.
(We will describe the sockets interface in Section 11.4.) The sockets functions are
typically implemented as system calls that trap into the kernel and call various
kernel-mode functions in TCP/IP.

TCP/IP is actually a family of protocols, each of which contributes different
capabilities. For example, the IP protocol provides the basic naming scheme and
a delivery mechanism that can send packets, known as datagrams, from one
Internet host to any other host. The IP mechanism is unreliable in the sense
that it makes no effort to recover if datagrams are lost or duplicated in the
network. UDP (Unreliable Datagram Protocol) extends IP slightly, so that packets
can be transferred from process to process, rather than host to host. TCP is a
complex protocol that builds on IP to provide reliable full duplex (bidirectional)
connections between processes. To simplify our discussion, we will treat TCP/IP
as a single monolithic protocol. We will not discuss its inner workings, and we will
only discuss some of the basic capabilities that TCP and IP provide to application
programs. We will not discuss UDP.

From a programmer’s perspective, we can think of the Internet as a worldwide
collection of hosts with the following properties:

. The set of hosts is mapped to a set of 32-bit IP addresses.

. The set of IP addresses is mapped to a set of identifiers called Internet domain
names.

. A process on one Internet host can communicate with a process on any other
Internet host over a connection.

The next three sections discuss these fundamental Internet ideas in more
detail.

Section 11.3 The Global IP Internet 893

netinet/in.h

/* Internet address structure */

struct in_addr {

unsigned int s_addr; /* Network byte order (big-endian) */

};

netinet/in.h

Figure 11.9 IP address structure.

11.3.1 IP Addresses

An IP address is an unsigned 32-bit integer. Network programs store IP addresses
in the IP address structure shown in Figure 11.9.

Aside Why store the scalar IP address in a structure?

Storing a scalar address in a structure is an unfortunate artifact from the early implementations of the
sockets interface. It would make more sense to define a scalar type for IP addresses, but it is too late
to change now because of the enormous installed base of applications.

Because Internet hosts can have different host byte orders, TCP/IP defines a
uniform network byte order (big-endian byte order) for any integer data item, such
as an IP address, that is carried across the network in a packet header. Addresses in
IP address structures are always stored in (big-endian) network byte order, even
if the host byte order is little-endian. Unix provides the following functions for
converting between network and host byte order:

#include <netinet/in.h>

unsigned long int htonl(unsigned long int hostlong);

unsigned short int htons(unsigned short int hostshort);

Returns: value in network byte order

unsigned long int ntohl(unsigned long int netlong);

unsigned short int ntohs(unsigned short int netshort);

Returns: value in host byte order

The htonl function converts a 32-bit integer from host byte order to network
byte order. The ntohl function converts a 32-bit integer from network byte or-
der to host byte order. The htons and ntohs functions perform corresponding
conversions for 16-bit integers.

IP addresses are typically presented to humans in a form known as dotted-
decimal notation, where each byte is represented by its decimal value and sep-
arated from the other bytes by a period. For example, 128.2.194.242 is the
dotted-decimal representation of the address 0x8002c2f2. On Linux systems, you

894 Chapter 11 Network Programming

can use the hostname command to determine the dotted-decimal address of your
own host:

linux> hostname -i

128.2.194.242

Internet programs convert back and forth between IP addresses and dotted-
decimal strings using the functions inet_aton and inet_ntoa:

#include <arpa/inet.h>

int inet_aton(const char *cp, struct in_addr *inp);

Returns: 1 if OK, 0 on error

char *inet_ntoa(struct in_addr in);

Returns: pointer to a dotted-decimal string

The inet_aton function converts a dotted-decimal string (cp) to an IP address
in network byte order (inp). Similarly, the inet_ntoa function converts an IP
address in network byte order to its corresponding dotted-decimal string. Notice
that a call to inet_aton passes a pointer to a structure, while a call to inet_ntoa
passes the structure itself.

Aside What do ntoa and aton mean?

The “n” denotes network representation. The “a” denotes application representation. The “to”
means to.

Practice Problem 11.1
Complete the following table:

Hex address Dotted-decimal address

0x0

0xffffffff

0x7f000001

205.188.160.121

64.12.149.13

205.188.146.23

Practice Problem 11.2
Write a program hex2dd.c that converts its hex argument to a dotted-decimal
string and prints the result. For example,

Section 11.3 The Global IP Internet 895

unix> ./hex2dd 0x8002c2f2

128.2.194.242

Practice Problem 11.3
Write a program dd2hex.c that converts its dotted-decimal argument to a hex
number and prints the result. For example,

unix> ./dd2hex 128.2.194.242

0x8002c2f2

11.3.2 Internet Domain Names

Internet clients and servers use IP addresses when they communicate with each
other. However, large integers are difficult for people to remember, so the Internet
also defines a separate set of more human-friendly domain names, as well as a
mechanism that maps the set of domain names to the set of IP addresses. A domain
name is a sequence of words (letters, numbers, and dashes) separated by periods,
such as

kittyhawk.cmcl.cs.cmu.edu

The set of domain names forms a hierarchy, and each domain name encodes
its position in the hierarchy. An example is the easiest way to understand this.
Figure 11.10 shows a portion of the domain name hierarchy. The hierarchy is

mil edu gov com

cmumit

cs ece

kittyhawk
128.2.194.242

cmcl

unnamed root

pdl

imperial
128.2.189.40

amazon

www
208.216.181.15

First-level domain names

Second-level domain names

Third-level domain names

berkeley

Figure 11.10 Subset of the Internet domain name hierarchy.

896 Chapter 11 Network Programming

netdb.h

/* DNS host entry structure */

struct hostent {

char *h_name; /* Official domain name of host */

char **h_aliases; /* Null-terminated array of domain names */

int h_addrtype; /* Host address type (AF_INET) */

int h_length; /* Length of an address, in bytes */

char **h_addr_list; /* Null-terminated array of in_addr structs */

};

netdb.h

Figure 11.11 DNS host entry structure.

represented as a tree. The nodes of the tree represent domain names that are
formed by the path back to the root. Subtrees are referred to as subdomains. The
first level in the hierarchy is an unnamed root node. The next level is a collection
of first-level domain names that are defined by a nonprofit organization called
ICANN (Internet Corporation for Assigned Names and Numbers). Common first-
level domains include com, edu, gov, org, and net.

At the next level are second-level domain names such as cmu.edu, which are
assigned on a first-come first-serve basis by various authorized agents of ICANN.
Once an organization has received a second-level domain name, then it is free to
create any other new domain name within its subdomain.

The Internet defines a mapping between the set of domain names and the
set of IP addresses. Until 1988, this mapping was maintained manually in a sin-
gle text file called HOSTS.TXT. Since then, the mapping has been maintained in a
distributed world-wide database known as DNS (Domain Name System). Con-
ceptually, the DNS database consists of millions of the host entry structures shown
in Figure 11.11, each of which defines the mapping between a set of domain names
(an official name and a list of aliases) and a set of IP addresses. In a mathematical
sense, you can think of each host entry as an equivalence class of domain names
and IP addresses.

Internet applications retrieve arbitrary host entries from the DNS database
by calling the gethostbyname and gethostbyaddr functions.

#include <netdb.h>

struct hostent *gethostbyname(const char *name);

Returns: non-NULL pointer if OK, NULL pointer on error with h_errno set

struct hostent *gethostbyaddr(const char *addr, int len, 0);

Returns: non-NULL pointer if OK, NULL pointer on error with h_errno set

The gethostbyname function returns the host entry associated with the do-
main name name. The gethostbyaddr function returns the host entry associated
with the IP address addr. The second argument gives the length in bytes of an IP

Section 11.3 The Global IP Internet 897

code/netp/hostinfo.c

1 #include "csapp.h"

2

3 int main(int argc, char **argv)

4 {

5 char **pp;

6 struct in_addr addr;

7 struct hostent *hostp;

8

9 if (argc != 2) {

10 fprintf(stderr, "usage: %s <domain name or dotted-decimal>\n",

11 argv[0]);

12 exit(0);

13 }

14

15 if (inet_aton(argv[1], &addr) != 0)

16 hostp = Gethostbyaddr((const char *)&addr, sizeof(addr), AF_INET);

17 else

18 hostp = Gethostbyname(argv[1]);

19

20 printf("official hostname: %s\n", hostp->h_name);

21

22 for (pp = hostp->h_aliases; *pp != NULL; pp++)

23 printf("alias: %s\n", *pp);

24

25 for (pp = hostp->h_addr_list; *pp != NULL; pp++) {

26 addr.s_addr = ((struct in_addr *)*pp)->s_addr;

27 printf("address: %s\n", inet_ntoa(addr));

28 }

29 exit(0);

30 }

code/netp/hostinfo.c

Figure 11.12 Retrieves and prints a DNS host entry.

address, which for the current Internet is always 4 bytes. For our purposes, the
third argument is always zero.

We can explore some of the properties of the DNS mapping with the hostinfo
program in Figure 11.12, which reads a domain name or dotted-decimal address
from the command line and displays the corresponding host entry. Each Internet
host has the locally defined domain name localhost, which always maps to the
loopback address 127.0.0.1:

unix> ./hostinfo localhost

official hostname: localhost

alias: localhost.localdomain

address: 127.0.0.1

898 Chapter 11 Network Programming

The localhost name provides a convenient and portable way to reference
clients and servers that are running on the same machine, which can be especially
useful for debugging. We can use hostname to determine the real domain name
of our local host:

unix> hostname

bluefish.ics.cs.cmu.edu

In the simplest case, there is a one-to-one mapping between a domain name and
an IP address:

unix> ./hostinfo bluefish.ics.cs.cmu.edu

official hostname: bluefish.ics.cs.cmu.edu

alias: bluefish.alias.cs.cmu.edu

address: 128.2.205.216

However, in some cases, multiple domain names are mapped to the same IP
address:

unix> ./hostinfo cs.mit.edu

official hostname: eecs.mit.edu

alias: cs.mit.edu

address: 18.62.1.6

In the most general case, multiple domain names can be mapped to multiple IP
addresses:

unix> ./hostinfo google.com

official hostname: google.com

address: 74.125.45.100

address: 74.125.67.100

address: 74.125.127.100

Finally, we notice that some valid domain names are not mapped to any IP address:

unix> ./hostinfo edu

Gethostbyname error: No address associated with name

unix> ./hostinfo cmcl.cs.cmu.edu

Gethostbyname error: No address associated with name

Aside How many Internet hosts are there?

Twice a year since 1987, the Internet Software Consortium conducts the Internet Domain Survey. The
survey, which estimates the number of Internet hosts by counting the number of IP addresses that have
been assigned a domain name, reveals an amazing trend. Since 1987, when there were about 20,000
Internet hosts, the number of hosts has roughly doubled each year. By June 2009, there were nearly
700,000,000 Internet hosts!

Section 11.3 The Global IP Internet 899

Practice Problem 11.4
Compile the hostinfo program from Figure 11.12. Then runhostinfo google.com
three times in a row on your system.

A. What do you notice about the ordering of the IP addresses in the three host
entries?

B. How might this ordering be useful?

11.3.3 Internet Connections

Internet clients and servers communicate by sending and receiving streams of
bytes over connections. A connection is point-to-point in the sense that it connects
a pair of processes. It is full-duplex in the sense that data can flow in both directions
at the same time. And it is reliable in the sense that—barring some catastrophic
failure such as a cable cut by the proverbial careless backhoe operator—the stream
of bytes sent by the source process is eventually received by the destination process
in the same order it was sent.

A socket is an end point of a connection. Each socket has a corresponding
socket address that consists of an Internet address and a 16-bit integer port, and
is denoted by address:port. The port in the client’s socket address is assigned
automatically by the kernel when the client makes a connection request, and is
known as an ephemeral port. However, the port in the server’s socket address is
typically some well-known port that is associated with the service. For example,
Web servers typically use port 80, and email servers use port 25. On Unix machines,
the file /etc/services contains a comprehensive list of the services provided on
that machine, along with their well-known ports.

A connection is uniquely identified by the socket addresses of its two end-
points. This pair of socket addresses is known as a socket pair and is denoted by
the tuple

(cliaddr:cliport, servaddr:servport)

where cliaddr is the client’s IP address, cliport is the client’s port, servaddr
is the server’s IP address, and servport is the server’s port. For example, Fig-
ure 11.13 shows a connection between a Web client and a Web server.

Client

Client host address
128.2.194.242

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)

Server host address
208.216.181.15

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Figure 11.13 Anatomy of an Internet connection.

900 Chapter 11 Network Programming

In this example, the Web client’s socket address is

128.2.194.242:51213

where port 51213 is an ephemeral port assigned by the kernel. The Web server’s
socket address is

208.216.181.15:80

where port 80 is the well-known port associated with Web services. Given these
client and server socket addresses, the connection between the client and server
is uniquely identified by the socket pair

(128.2.194.242:51213, 208.216.181.15:80)

Aside Origins of the Internet

The Internet is one of the most successful examples of government, university, and industry partnership.
Many factors contributed to its success, but we think two are particularly important: a sustained 30-
year investment by the United States government, and a commitment by passionate researchers to
what Dave Clarke at MIT has dubbed “rough consensus and working code.”

The seeds of the Internet were sown in 1957, when, at the height of the Cold War, the Soviet
Union shocked the world by launching Sputnik, the first artificial earth satellite. In response, the United
States government created the Advanced Research Projects Agency (ARPA), whose charter was to
reestablish the U.S. lead in science and technology. In 1967, Lawrence Roberts at ARPA published
plans for a new network called the ARPANET. The first ARPANET nodes were up and running by
1969. By 1971, there were 13 ARPANET nodes, and email had emerged as the first important network
application.

In 1972, Robert Kahn outlined the general principles of internetworking: a collection of intercon-
nected networks, with communication between the networks handled independently on a “best-effort
basis” by black boxes called “routers.” In 1974, Kahn and Vinton Cerf published the first details of
TCP/IP, which by 1982 had become the standard internetworking protocol for ARPANET. On January
1, 1983, every node on the ARPANET switched to TCP/IP, marking the birth of the global IP Internet.

In 1985, Paul Mockapetris invented DNS, and there were over 1000 Internet hosts. The next year,
the National Science Foundation (NSF) built the NSFNET backbone connecting 13 sites with 56 Kb/s
phone lines. It was later upgraded to 1.5 Mb/s T1 links in 1988, and 45 Mb/s T3 links in 1991. By
1988, there were more than 50,000 hosts. In 1989, the original ARPANET was officially retired. In
1995, when there were almost 10,000,000 Internet hosts, NSF retired NSFNET and replaced it with the
modern Internet architecture based on private commercial backbones connected by public network
access points.

11.4 The Sockets Interface

The sockets interface is a set of functions that are used in conjunction with the Unix
I/O functions to build network applications. It has been implemented on most
modern systems, including all Unix variants, Windows, and Macintosh systems.

Section 11.4 The Sockets Interface 901

Client

socket

open_clientfd

open_listenfd

connect

rio_writen rio_readlineb

rio_readlineb

close

Server

Connection
request

Await connection
request from
next client

EOF

socket

bind

listen

accept

rio_writen

rio_readlineb

close

Figure 11.14 Overview of the sockets interface.

Figure 11.14 gives an overview of the sockets interface in the context of a typical
client-server transaction. You should use this picture as a road map when we
discuss the individual functions.

Aside Origins of the sockets interface

The sockets interface was developed by researchers at University of California, Berkeley, in the early
1980s. For this reason, it is often referred to as Berkeley sockets. The Berkeley researchers developed
the sockets interface to work with any underlying protocol. The first implementation was for TCP/IP,
which they included in the Unix 4.2BSD kernel and distributed to numerous universities and labs.
This was an important event in Internet history. Almost overnight, thousands of people had access to
TCP/IP and its source codes. It generated tremendous excitement and sparked a flurry of new research
in networking and internetworking.

11.4.1 Socket Address Structures

From the perspective of the Unix kernel, a socket is an end point for communi-
cation. From the perspective of a Unix program, a socket is an open file with a
corresponding descriptor.

Internet socket addresses are stored in 16-byte structures of the type
sockaddr_in, shown in Figure 11.15. For Internet applications, the sin_family
member is AF_INET, the sin_portmember is a 16-bit port number, and the sin_
addr member is a 32-bit IP address. The IP address and port number are always
stored in network (big-endian) byte order.

902 Chapter 11 Network Programming

sockaddr: socketbits.h (included by socket.h), sockaddr_in: netinet/in.h

/* Generic socket address structure (for connect, bind, and accept) */

struct sockaddr {

unsigned short sa_family; /* Protocol family */

char sa_data[14]; /* Address data. */

};

/* Internet-style socket address structure */

struct sockaddr_in {

unsigned short sin_family; /* Address family (always AF_INET) */

unsigned short sin_port; /* Port number in network byte order */

struct in_addr sin_addr; /* IP address in network byte order */

unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sockaddr: socketbits.h (included by socket.h), sockaddr_in: netinet/in.h

Figure 11.15 Socket address structures. The in_addr struct is shown in Figure 11.9.

Aside What does the _in suffix mean?

The _in suffix is short for internet, not input.

The connect, bind, and accept functions require a pointer to a protocol-
specific socket address structure. The problem faced by the designers of the sockets
interface was how to define these functions to accept any kind of socket address
structure. Today we would use the generic void * pointer, which did not exist in
C at that time. The solution was to define sockets functions to expect a pointer
to a generic sockaddr structure, and then require applications to cast pointers to
protocol-specific structures to this generic structure. To simplify our code exam-
ples, we follow Stevens’s lead and define the following type:

typedef struct sockaddr SA;

We then use this type whenever we need to cast a sockaddr_in structure to a
generic sockaddr structure. (See line 20 of Figure 11.16 for an example.)

11.4.2 The socket Function

Clients and servers use the socket function to create a socket descriptor.

#include <sys/types.h>

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Returns: nonnegative descriptor if OK, −1 on error

Section 11.4 The Sockets Interface 903

In our codes, we will always call the socket function with the arguments

clientfd = Socket(AF_INET, SOCK_STREAM, 0);

where AF_INET indicates that we are using the Internet, and SOCK_STREAM
indicates that the socket will be an end point for an Internet connection. The
clientfd descriptor returned by socket is only partially opened and cannot yet
be used for reading and writing. How we finish opening the socket depends on
whether we are a client or a server. The next section describes how we finish
opening the socket if we are a client.

11.4.3 The connect Function

A client establishes a connection with a server by calling the connect function.

#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

Returns: 0 if OK, −1 on error

The connect function attempts to establish an Internet connection with the
server at socket address serv_addr, where addrlen is sizeof(sockaddr_in).
The connect function blocks until either the connection is successfully established
or an error occurs. If successful, the sockfd descriptor is now ready for reading
and writing, and the resulting connection is characterized by the socket pair

(x:y, serv_addr.sin_addr:serv_addr.sin_port)

where x is the client’s IP address and y is the ephemeral port that uniquely
identifies the client process on the client host.

11.4.4 The open_clientfd Function

We find it convenient to wrap the socket and connect functions into a helper
function called open_clientfd that a client can use to establish a connection with
a server.

#include "csapp.h"

int open_clientfd(char *hostname, int port);

Returns: descriptor if OK, −1 on Unix error, −2 on DNS error

The open_clientfd function establishes a connection with a server running
on host hostname and listening for connection requests on the well-known port
port. It returns an open socket descriptor that is ready for input and output using
the Unix I/O functions. Figure 11.16 shows the code for open_clientfd.

After creating the socket descriptor (line 7), we retrieve the DNS host entry
for the server and copy the first IP address in the host entry (which is already in

904 Chapter 11 Network Programming

code/src/csapp.c

1 int open_clientfd(char *hostname, int port)

2 {

3 int clientfd;

4 struct hostent *hp;

5 struct sockaddr_in serveraddr;

6

7 if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

8 return -1; /* Check errno for cause of error */

9

10 /* Fill in the server’s IP address and port */

11 if ((hp = gethostbyname(hostname)) == NULL)

12 return -2; /* Check h_errno for cause of error */

13 bzero((char *) &serveraddr, sizeof(serveraddr));

14 serveraddr.sin_family = AF_INET;

15 bcopy((char *)hp->h_addr_list[0],

16 (char *)&serveraddr.sin_addr.s_addr, hp->h_length);

17 serveraddr.sin_port = htons(port);

18

19 /* Establish a connection with the server */

20 if (connect(clientfd, (SA *) &serveraddr, sizeof(serveraddr)) < 0)

21 return -1;

22 return clientfd;

23 }

code/src/csapp.c

Figure 11.16 open_clientfd: helper function that establishes a connection with
a server.

network byte order) to the server’s socket address structure (lines 11–16). After
initializing the socket address structure with the server’s well-known port number
in network byte order (line 17), we initiate the connection request to the server
(line 20). When the connect function returns, we return the socket descriptor to
the client, which can immediately begin using Unix I/O to communicate with the
server.

11.4.5 The bind Function

The remaining sockets functions—bind, listen, and accept—are used by servers
to establish connections with clients.

#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

Returns: 0 if OK, −1 on error

Section 11.4 The Sockets Interface 905

The bind function tells the kernel to associate the server’s socket address
in my_addr with the socket descriptor sockfd. The addrlen argument is
sizeof(sockaddr_in).

11.4.6 The listen Function

Clients are active entities that initiate connection requests. Servers are passive
entities that wait for connection requests from clients. By default, the kernel
assumes that a descriptor created by the socket function corresponds to an active
socket that will live on the client end of a connection. A server calls the listen
function to tell the kernel that the descriptor will be used by a server instead of a
client.

#include <sys/socket.h>

int listen(int sockfd, int backlog);

Returns: 0 if OK, −1 on error

The listen function converts sockfd from an active socket to a listening
socket that can accept connection requests from clients. The backlog argument is a
hint about the number of outstanding connection requests that the kernel should
queue up before it starts to refuse requests. The exact meaning of the backlog
argument requires an understanding of TCP/IP that is beyond our scope. We will
typically set it to a large value, such as 1024.

11.4.7 The open_listenfd Function

We find it helpful to combine the socket, bind, and listen functions into a
helper function called open_listenfd that a server can use to create a listening
descriptor.

#include "csapp.h"

int open_listenfd(int port);

Returns: descriptor if OK, −1 on Unix error

The open_listenfd function opens and returns a listening descriptor that is
ready to receive connection requests on the well-known port port. Figure 11.17
shows the code for open_listenfd. After we create the listenfd socket descrip-
tor, we use the setsockopt function (not described here) to configure the server
so that it can be terminated and restarted immediately. By default, a restarted

906 Chapter 11 Network Programming

code/src/csapp.c

1 int open_listenfd(int port)

2 {

3 int listenfd, optval=1;

4 struct sockaddr_in serveraddr;

5

6 /* Create a socket descriptor */

7 if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

8 return -1;

9

10 /* Eliminates "Address already in use" error from bind */

11 if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,

12 (const void *)&optval , sizeof(int)) < 0)

13 return -1;

14

15 /* Listenfd will be an end point for all requests to port

16 on any IP address for this host */

17 bzero((char *) &serveraddr, sizeof(serveraddr));

18 serveraddr.sin_family = AF_INET;

19 serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);

20 serveraddr.sin_port = htons((unsigned short)port);

21 if (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)

22 return -1;

23

24 /* Make it a listening socket ready to accept connection requests */

25 if (listen(listenfd, LISTENQ) < 0)

26 return -1;

27 return listenfd;

28 }

code/src/csapp.c

Figure 11.17 open_listenfd: helper function that opens and returns a listening
socket.

server will deny connection requests from clients for approximately 30 seconds,
which seriously hinders debugging.

Next, we initialize the server’s socket address structure in preparation for
calling the bind function. In this case, we have used the INADDR_ANY wild-
card address to tell the kernel that this server will accept requests to any of the IP
addresses for this host (line 19), and to well-known port port (line 20). Notice that
we use the htonl and htons functions to convert the IP address and port number
from host byte order to network byte order. Finally, we convert listenfd to a
listening descriptor (line 25) and return it to the caller.

Section 11.4 The Sockets Interface 907

11.4.8 The accept Function

Servers wait for connection requests from clients by calling the accept function:

#include <sys/socket.h>

int accept(int listenfd, struct sockaddr *addr, int *addrlen);

Returns: nonnegative connected descriptor if OK, −1 on error

The accept function waits for a connection request from a client to arrive on
the listening descriptor listenfd, then fills in the client’s socket address in addr,
and returns a connected descriptor that can be used to communicate with the client
using Unix I/O functions.

The distinction between a listening descriptor and a connected descriptor
confuses many students. The listening descriptor serves as an end point for client
connection requests. It is typically created once and exists for the lifetime of
the server. The connected descriptor is the end point of the connection that is
established between the client and the server. It is created each time the server
accepts a connection request and exists only as long as it takes the server to service
a client.

Figure 11.18 outlines the roles of the listening and connected descriptors.
In Step 1, the server calls accept, which waits for a connection request to ar-
rive on the listening descriptor, which for concreteness we will assume is de-
scriptor 3. Recall that descriptors 0–2 are reserved for the standard files. In
Step 2, the client calls the connect function, which sends a connection re-
quest to listenfd. In Step 3, the accept function opens a new connected

Client

Connection
request

clientfd

Client

clientfd

listenfd(3)

connfd(4)

listenfd(3)

listenfd(3)

Client

Server

Server

Server

clientfd

1. Server blocks in accept,
waiting for connection request on
listening descriptor listenfd.

2. Client makes connection request by
calling and blocking in connect.

3. Server returns connfd from accept.
Client returns from connect. Connection
is now established between clientfd
and connfd.

Figure 11.18 The roles of the listening and connected descriptors.

908 Chapter 11 Network Programming

descriptor connfd (which we will assume is descriptor 4), establishes the connec-
tion between clientfd and connfd, and then returns connfd to the application.
The client also returns from the connect, and from this point, the client and
server can pass data back and forth by reading and writing clientfd and connfd,
respectively.

Aside Why the distinction between listening and connected descriptors?

You might wonder why the sockets interface makes a distinction between listening and connected
descriptors. At first glance, it appears to be an unnecessary complication. However, distinguishing
between the two turns out to be quite useful, because it allows us to build concurrent servers that can
process many client connections simultaneously. For example, each time a connection request arrives
on the listening descriptor, we might fork a new process that communicates with the client over its
connected descriptor. You’ll learn more about concurrent servers in Chapter 12.

11.4.9 Example Echo Client and Server

The best way to learn the sockets interface is to study example code. Figure 11.19
shows the code for an echo client. After establishing a connection with the server,
the client enters a loop that repeatedly reads a text line from standard input, sends
the text line to the server, reads the echo line from the server, and prints the result
to standard output. The loop terminates when fgets encounters EOF on standard
input, either because the user typed ctrl-d at the keyboard or because it has
exhausted the text lines in a redirected input file.

After the loop terminates, the client closes the descriptor. This results in an
EOF notification being sent to the server, which it detects when it receives a
return code of zero from its rio_readlineb function. After closing its descrip-
tor, the client terminates. Since the client’s kernel automatically closes all open
descriptors when a process terminates, the close in line 24 is not necessary. How-
ever, it is good programming practice to explicitly close any descriptors we have
opened.

Figure 11.20 shows the main routine for the echo server. After opening the
listening descriptor, it enters an infinite loop. Each iteration waits for a con-
nection request from a client, prints the domain name and IP address of the
connected client, and calls the echo function that services the client. After the
echo routine returns, the main routine closes the connected descriptor. Once
the client and server have closed their respective descriptors, the connection is
terminated.

Notice that our simple echo server can only handle one client at a time.
A server of this type that iterates through clients, one at a time, is called an iterative
server. In Chapter 12, we will learn how to build more sophisticated concurrent
servers that can handle multiple clients simultaneously.

Section 11.4 The Sockets Interface 909

code/netp/echoclient.c

1 #include "csapp.h"

2

3 int main(int argc, char **argv)

4 {

5 int clientfd, port;

6 char *host, buf[MAXLINE];

7 rio_t rio;

8

9 if (argc != 3) {

10 fprintf(stderr, "usage: %s <host> <port>\n", argv[0]);

11 exit(0);

12 }

13 host = argv[1];

14 port = atoi(argv[2]);

15

16 clientfd = Open_clientfd(host, port);

17 Rio_readinitb(&rio, clientfd);

18

19 while (Fgets(buf, MAXLINE, stdin) != NULL) {

20 Rio_writen(clientfd, buf, strlen(buf));

21 Rio_readlineb(&rio, buf, MAXLINE);

22 Fputs(buf, stdout);

23 }

24 Close(clientfd);

25 exit(0);

26 }

code/netp/echoclient.c

Figure 11.19 Echo client main routine.

Finally, Figure 11.21 shows the code for the echo routine, which repeatedly
reads and writes lines of text until the rio_readlineb function encounters EOF
in line 10.

Aside What does EOF on a connection mean?

The idea of EOF is often confusing to students, especially in the context of Internet connections. First,
we need to understand that there is no such thing as an EOF character. Rather, EOF is a condition that
is detected by the kernel. An application finds out about the EOF condition when it receives a zero
return code from the read function. For disk files, EOF occurs when the current file position exceeds
the file length. For Internet connections, EOF occurs when a process closes its end of the connection.
The process at the other end of the connection detects the EOF when it attempts to read past the last
byte in the stream.

910 Chapter 11 Network Programming

code/netp/echoserveri.c

1 #include "csapp.h"

2

3 void echo(int connfd);

4

5 int main(int argc, char **argv)

6 {

7 int listenfd, connfd, port, clientlen;

8 struct sockaddr_in clientaddr;

9 struct hostent *hp;

10 char *haddrp;

11 if (argc != 2) {

12 fprintf(stderr, "usage: %s <port>\n", argv[0]);

13 exit(0);

14 }

15 port = atoi(argv[1]);

16

17 listenfd = Open_listenfd(port);

18 while (1) {

19 clientlen = sizeof(clientaddr);

20 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

21

22 /* Determine the domain name and IP address of the client */

23 hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s_addr,

24 sizeof(clientaddr.sin_addr.s_addr), AF_INET);

25 haddrp = inet_ntoa(clientaddr.sin_addr);

26 printf("server connected to %s (%s)\n", hp->h_name, haddrp);

27

28 echo(connfd);

29 Close(connfd);

30 }

31 exit(0);

32 }

code/netp/echoserveri.c

Figure 11.20 Iterative echo server main routine.

Section 11.5 Web Servers 911

code/netp/echo.c

1 #include "csapp.h"

2

3 void echo(int connfd)

4 {

5 size_t n;

6 char buf[MAXLINE];

7 rio_t rio;

8

9 Rio_readinitb(&rio, connfd);

10 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

11 printf("server received %d bytes\n", n);

12 Rio_writen(connfd, buf, n);

13 }

14 }

code/netp/echo.c

Figure 11.21 echo function that reads and echoes text lines.

11.5 Web Servers

So far we have discussed network programming in the context of a simple echo
server. In this section, we will show you how to use the basic ideas of network
programming to build your own small, but quite functional, Web server.

11.5.1 Web Basics

Web clients and servers interact using a text-based application-level protocol
known as HTTP (Hypertext Transfer Protocol). HTTP is a simple protocol. A
Web client (known as a browser) opens an Internet connection to a server and
requests some content. The server responds with the requested content and then
closes the connection. The browser reads the content and displays it on the screen.

What distinguishes Web services from conventional file retrieval services such
as FTP? The main difference is that Web content can be written in a language
known as HTML (Hypertext Markup Language). An HTML program (page)
contains instructions (tags) that tell the browser how to display various text and
graphical objects in the page. For example, the code

 Make me bold!

tells the browser to print the text between the and tags in boldface type.
However, the real power of HTML is that a page can contain pointers (hyperlinks)
to content stored on any Internet host. For example, an HTML line of the form

Carnegie Mellon

912 Chapter 11 Network Programming

tells the browser to highlight the text object “Carnegie Mellon” and to create a
hyperlink to an HTML file called index.html that is stored on the CMU Web
server. If the user clicks on the highlighted text object, the browser requests the
corresponding HTML file from the CMU server and displays it.

Aside Origins of the World Wide Web

The World Wide Web was invented by Tim Berners-Lee, a software engineer working at CERN, a
Swiss physics lab. In 1989, Berners-Lee wrote an internal memo proposing a distributed hypertext
system that would connect a “web of notes with links.” The intent of the proposed system was to help
CERN scientists share and manage information. Over the next 2 years, after Berners-Lee implemented
the first Web server and Web browser, the Web developed a small following within CERN and a few
other sites. A pivotal event occurred in 1993, when Marc Andreesen (who later founded Netscape) and
his colleagues at NCSA released a graphical browser called mosaic for all three major platforms: Unix,
Windows, and Macintosh. After the release of mosaic, interest in the Web exploded, with the number
of Web sites increasing by a factor of 10 or more each year. By 2009, there were over 225,000,000 Web
sites worldwide (source: Netcraft Web Survey).

11.5.2 Web Content

To Web clients and servers, content is a sequence of bytes with an associated MIME
(Multipurpose Internet Mail Extensions) type. Figure 11.22 shows some common
MIME types.

Web servers provide content to clients in two different ways:

. Fetch a disk file and return its contents to the client. The disk file is known
as static content and the process of returning the file to the client is known as
serving static content.

. Run an executable file and return its output to the client. The output produced
by the executable at run time is known as dynamic content, and the process of
running the program and returning its output to the client is known as serving
dynamic content.

MIME type Description

text/html HTML page
text/plain Unformatted text
application/postscript Postscript document
image/gif Binary image encoded in GIF format
image/jpeg Binary image encoded in JPEG format

Figure 11.22 Example MIME types.

Section 11.5 Web Servers 913

Every piece of content returned by a Web server is associated with some file
that it manages. Each of these files has a unique name known as a URL (Universal
Resource Locator). For example, the URL

http://www.google.com:80/index.html

identifies an HTML file called /index.html on Internet host www.google.com
that is managed by a Web server listening on port 80. The port number is optional
and defaults to the well-known HTTP port 80. URLs for executable files can
include program arguments after the file name. A ‘?’ character separates the file
name from the arguments, and each argument is separated by an ‘&’ character. For
example, the URL

http://bluefish.ics.cs.cmu.edu:8000/cgi-bin/adder?15000&213

identifies an executable called /cgi-bin/adder that will be called with two argu-
ment strings: 15000 and 213. Clients and servers use different parts of the URL
during a transaction. For instance, a client uses the prefix

http://www.google.com:80

to determine what kind of server to contact, where the server is, and what port it
is listening on. The server uses the suffix

/index.html

to find the file on its file system and to determine whether the request is for static
or dynamic content.

There are several points to understand about how servers interpret the suffix
of a URL:

. There are no standard rules for determining whether a URL refers to static
or dynamic content. Each server has its own rules for the files it manages. A
common approach is to identify a set of directories, such as cgi-bin, where
all executables must reside.

. The initial ‘/’ in the suffix does not denote the Unix root directory. Rather, it
denotes the home directory for whatever kind of content is being requested.
For example, a server might be configured so that all static content is stored
in directory /usr/httpd/html and all dynamic content is stored in directory
/usr/httpd/cgi-bin.

. The minimal URL suffix is the ‘/’ character, which all servers expand to some
default home page such as /index.html. This explains why it is possible to
fetch the home page of a site by simply typing a domain name into the browser.
The browser appends the missing ‘/’ to the URL and passes it to the server,
which expands the ‘/’ to some default file name.

http://www.google.com:80/index.html
www.google.com
http://bluefish.ics.cs.cmu.edu:8000/cgi-bin/adder?15000&213
http://www.google.com:80

914 Chapter 11 Network Programming

1 unix> telnet www.aol.com 80 Client: open connection to server

2 Trying 205.188.146.23... Telnet prints 3 lines to the terminal

3 Connected to aol.com.

4 Escape character is ’^]’.

5 GET / HTTP/1.1 Client: request line

6 Host: www.aol.com Client: required HTTP/1.1 header

7 Client: empty line terminates headers

8 HTTP/1.0 200 OK Server: response line

9 MIME-Version: 1.0 Server: followed by five response headers

10 Date: Mon, 8 Jan 2010 4:59:42 GMT

11 Server: Apache-Coyote/1.1

12 Content-Type: text/html Server: expect HTML in the response body

13 Content-Length: 42092 Server: expect 42,092 bytes in the response body

14 Server: empty line terminates response headers

15 <html> Server: first HTML line in response body

16 ... Server: 766 lines of HTML not shown

17 </html> Server: last HTML line in response body

18 Connection closed by foreign host. Server: closes connection

19 unix> Client: closes connection and terminates

Figure 11.23 Example of an HTTP transaction that serves static content.

11.5.3 HTTP Transactions

Since HTTP is based on text lines transmitted over Internet connections, we can
use the Unix telnet program to conduct transactions with any Web server on the
Internet. The telnet program is very handy for debugging servers that talk to
clients with text lines over connections. For example, Figure 11.23 uses telnet to
request the home page from the AOL Web server.

In line 1, we run telnet from a Unix shell and ask it to open a connection to
the AOL Web server. Telnet prints three lines of output to the terminal, opens
the connection, and then waits for us to enter text (line 5). Each time we enter
a text line and hit the enter key, telnet reads the line, appends carriage return
and line feed characters (“\r\n” in C notation), and sends the line to the server.
This is consistent with the HTTP standard, which requires every text line to be
terminated by a carriage return and line feed pair. To initiate the transaction, we
enter an HTTP request (lines 5–7). The server replies with an HTTP response
(lines 8–17) and then closes the connection (line 18).

HTTP Requests

An HTTP request consists of a request line (line 5), followed by zero or more
request headers (line 6), followed by an empty text line that terminates the list of
headers (line 7). A request line has the form

<method> <uri> <version>

Section 11.5 Web Servers 915

HTTP supports a number of different methods, including GET, POST, OP-
TIONS, HEAD, PUT, DELETE, and TRACE. We will only discuss the workhorse
GET method, which according to one study accounts for over 99% of HTTP re-
quests [107]. The GET method instructs the server to generate and return the
content identified by the URI (Uniform Resource Identifier). The URI is the suf-
fix of the corresponding URL that includes the file name and optional arguments.1

The <version> field in the request line indicates the HTTP version to which
the request conforms. The most recent HTTP version is HTTP/1.1 [41]. HTTP/1.0
is a previous version from 1996 that is still in use [6]. HTTP/1.1 defines additional
headers that provide support for advanced features such as caching and security,
as well as a mechanism that allows a client and server to perform multiple trans-
actions over the same persistent connection. In practice, the two versions are com-
patible because HTTP/1.0 clients and servers simply ignore unknown HTTP/1.1
headers.

To summarize, the request line in line 5 asks the server to fetch and return
the HTML file /index.html. It also informs the server that the remainder of the
request will be in HTTP/1.1 format.

Request headers provide additional information to the server, such as the
brand name of the browser or the MIME types that the browser understands.
Request headers have the form

<header name>: <header data>

For our purposes, the only header to be concerned with is the Host header (line 6),
which is required in HTTP/1.1 requests, but not in HTTP/1.0 requests. The Host
header is used by proxy caches, which sometimes serve as intermediaries between
a browser and the origin server that manages the requested file. Multiple proxies
can exist between a client and an origin server in a so-called proxy chain. The data
in the Host header, which identifies the domain name of the origin server, allows a
proxy in the middle of a proxy chain to determine if it might have a locally cached
copy of the requested content.

Continuing with our example in Figure 11.23, the empty text line in line 7
(generated by hitting enteron our keyboard) terminates the headers and instructs
the server to send the requested HTML file.

HTTP Responses

HTTP responses are similar to HTTP requests. An HTTP response consists of
a response line (line 8), followed by zero or more response headers (lines 9–13),
followed by an empty line that terminates the headers (line 14), followed by the
response body (lines 15–17). A response line has the form

<version> <status code> <status message>

1. Actually, this is only true when a browser requests content. If a proxy server requests content, then
the URI must be the complete URL.

916 Chapter 11 Network Programming

Status code Status message Description

200 OK Request was handled without error.
301 Moved permanently Content has moved to the hostname in the Location header.
400 Bad request Request could not be understood by the server.
403 Forbidden Server lacks permission to access the requested file.
404 Not found Server could not find the requested file.
501 Not implemented Server does not support the request method.
505 HTTP version not supported Server does not support version in request.

Figure 11.24 Some HTTP status codes.

The version field describes the HTTP version that the response conforms to.
The status code is a three-digit positive integer that indicates the disposition of
the request. The status message gives the English equivalent of the error code.
Figure 11.24 lists some common status codes and their corresponding messages.
The response headers in lines 9–13 provide additional information about the
response. For our purposes, the two most important headers are Content-Type
(line 12), which tells the client the MIME type of the content in the response body,
and Content-Length (line 13), which indicates its size in bytes.

The empty text line in line 14 that terminates the response headers is followed
by the response body, which contains the requested content.

11.5.4 Serving Dynamic Content

If we stop to think for a moment how a server might provide dynamic content
to a client, certain questions arise. For example, how does the client pass any
program arguments to the server? How does the server pass these arguments
to the child process that it creates? How does the server pass other information
to the child that it might need to generate the content? Where does the child
send its output? These questions are addressed by a de facto standard called CGI
(Common Gateway Interface).

How Does the Client Pass Program Arguments to the Server?

Arguments for GET requests are passed in the URI. As we have seen, a ‘?’
character separates the file name from the arguments, and each argument is
separated by an ‘&’ character. Spaces are not allowed in arguments and must
be represented with the “%20” string. Similar encodings exist for other special
characters.

Aside Passing arguments in HTTP POST requests

Arguments for HTTP POST requests are passed in the request body rather than in the URI.

Section 11.5 Web Servers 917

Environment variable Description

QUERY_STRING Program arguments
SERVER_PORT Port that the parent is listening on
REQUEST_METHOD GET or POST
REMOTE_HOST Domain name of client
REMOTE_ADDR Dotted-decimal IP address of client
CONTENT_TYPE POST only: MIME type of the request body
CONTENT_LENGTH POST only: Size in bytes of the request body

Figure 11.25 Examples of CGI environment variables.

How Does the Server Pass Arguments to the Child?

After a server receives a request such as

GET /cgi-bin/adder?15000&213 HTTP/1.1

it calls fork to create a child process and calls execve to run the /cgi-bin/adder
program in the context of the child. Programs like the adder program are often
referred to as CGI programs because they obey the rules of the CGI standard.
And since many CGI programs are written as Perl scripts, CGI programs are
often called CGI scripts. Before the call to execve, the child process sets the
CGI environment variable QUERY_STRING to “15000&213”, which the adder
program can reference at run time using the Unix getenv function.

How Does the Server Pass Other Information to the Child?

CGI defines a number of other environment variables that a CGI program can
expect to be set when it runs. Figure 11.25 shows a subset.

Where Does the Child Send Its Output?

A CGI program sends its dynamic content to the standard output. Before the
child process loads and runs the CGI program, it uses the Unix dup2 function
to redirect standard output to the connected descriptor that is associated with
the client. Thus, anything that the CGI program writes to standard output goes
directly to the client.

Notice that since the parent does not know the type or size of the content that
the child generates, the child is responsible for generating the Content-type and
Content-length response headers, as well as the empty line that terminates the
headers.

918 Chapter 11 Network Programming

code/netp/tiny/cgi-bin/adder.c

1 #include "csapp.h"

2

3 int main(void) {

4 char *buf, *p;

5 char arg1[MAXLINE], arg2[MAXLINE], content[MAXLINE];

6 int n1=0, n2=0;

7

8 /* Extract the two arguments */

9 if ((buf = getenv("QUERY_STRING")) != NULL) {

10 p = strchr(buf, ’&’);

11 *p = ’\0’;

12 strcpy(arg1, buf);

13 strcpy(arg2, p+1);

14 n1 = atoi(arg1);

15 n2 = atoi(arg2);

16 }

17

18 /* Make the response body */

19 sprintf(content, "Welcome to add.com: ");

20 sprintf(content, "%sTHE Internet addition portal.\r\n<p>", content);

21 sprintf(content, "%sThe answer is: %d + %d = %d\r\n<p>",

22 content, n1, n2, n1 + n2);

23 sprintf(content, "%sThanks for visiting!\r\n", content);

24

25 /* Generate the HTTP response */

26 printf("Content-length: %d\r\n", (int)strlen(content));

27 printf("Content-type: text/html\r\n\r\n");

28 printf("%s", content);

29 fflush(stdout);

30 exit(0);

31 }

code/netp/tiny/cgi-bin/adder.c

Figure 11.26 CGI program that sums two integers.

Figure 11.26 shows a simple CGI program that sums its two arguments and
returns an HTML file with the result to the client. Figure 11.27 shows an HTTP
transaction that serves dynamic content from the adder program.

Aside Passing arguments in HTTP POST requests to CGI programs

For POST requests, the child would also need to redirect standard input to the connected descriptor.
The CGI program would then read the arguments in the request body from standard input.

Section 11.6 Putting It Together: The Tiny Web Server 919

1 unix> telnet kittyhawk.cmcl.cs.cmu.edu 8000 Client: open connection

2 Trying 128.2.194.242...

3 Connected to kittyhawk.cmcl.cs.cmu.edu.

4 Escape character is ’^]’.

5 GET /cgi-bin/adder?15000&213 HTTP/1.0 Client: request line

6 Client: empty line terminates headers

7 HTTP/1.0 200 OK Server: response line

8 Server: Tiny Web Server Server: identify server

9 Content-length: 115 Adder: expect 115 bytes in response body

10 Content-type: text/html Adder: expect HTML in response body

11 Adder: empty line terminates headers

12 Welcome to add.com: THE Internet addition portal. Adder: first HTML line

13 <p>The answer is: 15000 + 213 = 15213 Adder: second HTML line in response body

14 <p>Thanks for visiting! Adder: third HTML line in response body

15 Connection closed by foreign host. Server: closes connection

16 unix> Client: closes connection and terminates

Figure 11.27 An HTTP transaction that serves dynamic HTML content.

Practice Problem 11.5
In Section 10.9, we warned you about the dangers of using the C standard I/O
functions in network applications. Yet the CGI program in Figure 11.26 is able to
use standard I/O without any problems. Why?

11.6 Putting It Together: The Tiny Web Server

We conclude our discussion of network programming by developing a small but
functioning Web server called Tiny. Tiny is an interesting program. It combines
many of the ideas that we have learned about, such as process control, Unix I/O,
the sockets interface, and HTTP, in only 250 lines of code. While it lacks the
functionality, robustness, and security of a real server, it is powerful enough to
serve both static and dynamic content to real Web browsers. We encourage you
to study it and implement it yourself. It is quite exciting (even for the authors!) to
point a real browser at your own server and watch it display a complicated Web
page with text and graphics.

The Tiny main Routine

Figure 11.28 shows Tiny’s main routine. Tiny is an iterative server that listens
for connection requests on the port that is passed in the command line. After
opening a listening socket by calling the open_listenfd function, Tiny executes
the typical infinite server loop, repeatedly accepting a connection request (line 31),
performing a transaction (line 32), and closing its end of the connection (line 33).

920 Chapter 11 Network Programming

code/netp/tiny/tiny.c

1 /*

2 * tiny.c - A simple, iterative HTTP/1.0 Web server that uses the

3 * GET method to serve static and dynamic content.

4 */

5 #include "csapp.h"

6

7 void doit(int fd);

8 void read_requesthdrs(rio_t *rp);

9 int parse_uri(char *uri, char *filename, char *cgiargs);

10 void serve_static(int fd, char *filename, int filesize);

11 void get_filetype(char *filename, char *filetype);

12 void serve_dynamic(int fd, char *filename, char *cgiargs);

13 void clienterror(int fd, char *cause, char *errnum,

14 char *shortmsg, char *longmsg);

15

16 int main(int argc, char **argv)

17 {

18 int listenfd, connfd, port, clientlen;

19 struct sockaddr_in clientaddr;

20

21 /* Check command line args */

22 if (argc != 2) {

23 fprintf(stderr, "usage: %s <port>\n", argv[0]);

24 exit(1);

25 }

26 port = atoi(argv[1]);

27

28 listenfd = Open_listenfd(port);

29 while (1) {

30 clientlen = sizeof(clientaddr);

31 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

32 doit(connfd);

33 Close(connfd);

34 }

35 }

code/netp/tiny/tiny.c

Figure 11.28 The Tiny Web server.

The doit Function

The doit function in Figure 11.29 handles one HTTP transaction. First, we
read and parse the request line (lines 11–12). Notice that we are using the rio_
readlineb function from Figure 10.7 to read the request line.

code/netp/tiny/tiny.c

1 void doit(int fd)

2 {

3 int is_static;

4 struct stat sbuf;

5 char buf[MAXLINE], method[MAXLINE], uri[MAXLINE], version[MAXLINE];

6 char filename[MAXLINE], cgiargs[MAXLINE];

7 rio_t rio;

8

9 /* Read request line and headers */

10 Rio_readinitb(&rio, fd);

11 Rio_readlineb(&rio, buf, MAXLINE);

12 sscanf(buf, "%s %s %s", method, uri, version);

13 if (strcasecmp(method, "GET")) {

14 clienterror(fd, method, "501", "Not Implemented",

15 "Tiny does not implement this method");

16 return;

17 }

18 read_requesthdrs(&rio);

19

20 /* Parse URI from GET request */

21 is_static = parse_uri(uri, filename, cgiargs);

22 if (stat(filename, &sbuf) < 0) {

23 clienterror(fd, filename, "404", "Not found",

24 "Tiny couldn’t find this file");

25 return;

26 }

27

28 if (is_static) { /* Serve static content */

29 if (!(S_ISREG(sbuf.st_mode)) || !(S_IRUSR & sbuf.st_mode)) {

30 clienterror(fd, filename, "403", "Forbidden",

31 "Tiny couldn’t read the file");

32 return;

33 }

34 serve_static(fd, filename, sbuf.st_size);

35 }

36 else { /* Serve dynamic content */

37 if (!(S_ISREG(sbuf.st_mode)) || !(S_IXUSR & sbuf.st_mode)) {

38 clienterror(fd, filename, "403", "Forbidden",

39 "Tiny couldn’t run the CGI program");

40 return;

41 }

42 serve_dynamic(fd, filename, cgiargs);

43 }

44 }

code/netp/tiny/tiny.c

Figure 11.29 Tiny doit: Handles one HTTP transaction.

922 Chapter 11 Network Programming

Tiny only supports the GET method. If the client requests another method
(such as POST), we send it an error message and return to the main routine
(lines 13–17), which then closes the connection and awaits the next connection
request. Otherwise, we read and (as we shall see) ignore any request headers
(line 18).

Next, we parse the URI into a file name and a possibly empty CGI argument
string, and we set a flag that indicates whether the request is for static or dynamic
content (line 21). If the file does not exist on disk, we immediately send an error
message to the client and return.

Finally, if the request is for static content, we verify that the file is a regular
file and that we have read permission (line 29). If so, we serve the static content
(line 34) to the client. Similarly, if the request is for dynamic content, we verify
that the file is executable (line 37), and if so we go ahead and serve the dynamic
content (line 42).

The clienterror Function

Tiny lacks many of the error handling features of a real server. However, it does
check for some obvious errors and reports them to the client. The clienterror
function in Figure 11.30 sends an HTTP response to the client with the appropriate

code/netp/tiny/tiny.c

1 void clienterror(int fd, char *cause, char *errnum,

2 char *shortmsg, char *longmsg)

3 {

4 char buf[MAXLINE], body[MAXBUF];

5

6 /* Build the HTTP response body */

7 sprintf(body, "<html><title>Tiny Error</title>");

8 sprintf(body, "%s<body bgcolor=""ffffff"">\r\n", body);

9 sprintf(body, "%s%s: %s\r\n", body, errnum, shortmsg);

10 sprintf(body, "%s<p>%s: %s\r\n", body, longmsg, cause);

11 sprintf(body, "%s<hr>The Tiny Web server\r\n", body);

12

13 /* Print the HTTP response */

14 sprintf(buf, "HTTP/1.0 %s %s\r\n", errnum, shortmsg);

15 Rio_writen(fd, buf, strlen(buf));

16 sprintf(buf, "Content-type: text/html\r\n");

17 Rio_writen(fd, buf, strlen(buf));

18 sprintf(buf, "Content-length: %d\r\n\r\n", (int)strlen(body));

19 Rio_writen(fd, buf, strlen(buf));

20 Rio_writen(fd, body, strlen(body));

21 }

code/netp/tiny/tiny.c

Figure 11.30 Tiny clienterror: Sends an error message to the client.

Section 11.6 Putting It Together: The Tiny Web Server 923

code/netp/tiny/tiny.c

1 void read_requesthdrs(rio_t *rp)

2 {

3 char buf[MAXLINE];

4

5 Rio_readlineb(rp, buf, MAXLINE);

6 while(strcmp(buf, "\r\n")) {

7 Rio_readlineb(rp, buf, MAXLINE);

8 printf("%s", buf);

9 }

10 return;

11 }

code/netp/tiny/tiny.c

Figure 11.31 Tiny read_requesthdrs: Reads and ignores request headers.

status code and status message in the response line, along with an HTML file in the
response body that explains the error to the browser’s user. Recall that an HTML
response should indicate the size and type of the content in the body. Thus, we
have opted to build the HTML content as a single string so that we can easily
determine its size. Also, notice that we are using the robust rio_writen function
from Figure 10.3 for all output.

The read_requesthdrs Function

Tiny does not use any of the information in the request headers. It simply reads and
ignores them by calling the read_requesthdrs function in Figure 11.31. Notice
that the empty text line that terminates the request headers consists of a carriage
return and line feed pair, which we check for in line 6.

The parse_uri Function

Tiny assumes that the home directory for static content is its current directory, and
that the home directory for executables is ./cgi-bin. Any URI that contains the
string cgi-bin is assumed to denote a request for dynamic content. The default
file name is ./home.html.

The parse_uri function in Figure 11.32 implements these policies. It parses
the URI into a file name and an optional CGI argument string. If the request
is for static content (line 5), we clear the CGI argument string (line 6) and then
convert the URI into a relative Unix pathname such as ./index.html (lines 7–
8). If the URI ends with a ‘/’ character (line 9), then we append the default file
name (line 10). On the other hand, if the request is for dynamic content (line 13),
we extract any CGI arguments (lines 14–20) and convert the remaining portion
of the URI to a relative Unix file name (lines 21–22).

924 Chapter 11 Network Programming

code/netp/tiny/tiny.c

1 int parse_uri(char *uri, char *filename, char *cgiargs)

2 {

3 char *ptr;

4

5 if (!strstr(uri, "cgi-bin")) { /* Static content */

6 strcpy(cgiargs, "");

7 strcpy(filename, ".");

8 strcat(filename, uri);

9 if (uri[strlen(uri)-1] == ’/’)

10 strcat(filename, "home.html");

11 return 1;

12 }

13 else { /* Dynamic content */

14 ptr = index(uri, ’?’);

15 if (ptr) {

16 strcpy(cgiargs, ptr+1);

17 *ptr = ’\0’;

18 }

19 else

20 strcpy(cgiargs, "");

21 strcpy(filename, ".");

22 strcat(filename, uri);

23 return 0;

24 }

25 }

code/netp/tiny/tiny.c

Figure 11.32 Tiny parse_uri: Parses an HTTP URI.

The serve_static Function

Tiny serves four different types of static content: HTML files, unformatted text
files, and images encoded in GIF and JPEG formats. These file types account for
the majority of static content served over the Web.

The serve_static function in Figure 11.33 sends an HTTP response whose
body contains the contents of a local file. First, we determine the file type by
inspecting the suffix in the file name (line 7) and then send the response line and
response headers to the client (lines 8–12). Notice that a blank line terminates the
headers.

Next, we send the response body by copying the contents of the requested file
to the connected descriptor fd. The code here is somewhat subtle and needs to be
studied carefully. Line 15 opens filename for reading and gets its descriptor. In
line 16, the Unix mmap function maps the requested file to a virtual memory area.
Recall from our discussion of mmap in Section 9.8 that the call to mmap maps the

Section 11.6 Putting It Together: The Tiny Web Server 925

code/netp/tiny/tiny.c

1 void serve_static(int fd, char *filename, int filesize)

2 {

3 int srcfd;

4 char *srcp, filetype[MAXLINE], buf[MAXBUF];

5

6 /* Send response headers to client */

7 get_filetype(filename, filetype);

8 sprintf(buf, "HTTP/1.0 200 OK\r\n");

9 sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);

10 sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);

11 sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);

12 Rio_writen(fd, buf, strlen(buf));

13

14 /* Send response body to client */

15 srcfd = Open(filename, O_RDONLY, 0);

16 srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);

17 Close(srcfd);

18 Rio_writen(fd, srcp, filesize);

19 Munmap(srcp, filesize);

20 }

21

22 /*

23 * get_filetype - derive file type from file name

24 */

25 void get_filetype(char *filename, char *filetype)

26 {

27 if (strstr(filename, ".html"))

28 strcpy(filetype, "text/html");

29 else if (strstr(filename, ".gif"))

30 strcpy(filetype, "image/gif");

31 else if (strstr(filename, ".jpg"))

32 strcpy(filetype, "image/jpeg");

33 else

34 strcpy(filetype, "text/plain");

35 }

code/netp/tiny/tiny.c

Figure 11.33 Tiny serve_static: Serves static content to a client.

first filesize bytes of file srcfd to a private read-only area of virtual memory
that starts at address srcp.

Once we have mapped the file to memory, we no longer need its descriptor,
so we close the file (line 17). Failing to do this would introduce a potentially fatal
memory leak. Line 18 performs the actual transfer of the file to the client. The

926 Chapter 11 Network Programming

code/netp/tiny/tiny.c

1 void serve_dynamic(int fd, char *filename, char *cgiargs)

2 {

3 char buf[MAXLINE], *emptylist[] = { NULL };

4

5 /* Return first part of HTTP response */

6 sprintf(buf, "HTTP/1.0 200 OK\r\n");

7 Rio_writen(fd, buf, strlen(buf));

8 sprintf(buf, "Server: Tiny Web Server\r\n");

9 Rio_writen(fd, buf, strlen(buf));

10

11 if (Fork() == 0) { /* child */

12 /* Real server would set all CGI vars here */

13 setenv("QUERY_STRING", cgiargs, 1);

14 Dup2(fd, STDOUT_FILENO); /* Redirect stdout to client */

15 Execve(filename, emptylist, environ); /* Run CGI program */

16 }

17 Wait(NULL); /* Parent waits for and reaps child */

18 }

code/netp/tiny/tiny.c

Figure 11.34 Tiny serve_dynamic: Serves dynamic content to a client.

rio_writen function copies the filesize bytes starting at location srcp (which
of course is mapped to the requested file) to the client’s connected descriptor.
Finally, line 19 frees the mapped virtual memory area. This is important to avoid
a potentially fatal memory leak.

The serve_dynamic Function

Tiny serves any type of dynamic content by forking a child process, and then
running a CGI program in the context of the child.

The serve_dynamic function in Figure 11.34 begins by sending a response line
indicating success to the client, along with an informational Server header. The
CGI program is responsible for sending the rest of the response. Notice that this
is not as robust as we might wish, since it doesn’t allow for the possibility that the
CGI program might encounter some error.

After sending the first part of the response, we fork a new child process
(line 11). The child initializes the QUERY_STRING environment variable with
the CGI arguments from the request URI (line 13). Notice that a real server would
set the other CGI environment variables here as well. For brevity, we have omitted
this step. Also, we note that Solaris systems use the putenv function instead of the
setenv function.

Section 11.7 Summary 927

Next, the child redirects the child’s standard output to the connected file
descriptor (line 14), and then loads and runs the CGI program (line 15). Since
the CGI program runs in the context of the child, it has access to the same open
files and environment variables that existed before the call to the execve function.
Thus, everything that the CGI program writes to standard output goes directly to
the client process, without any intervention from the parent process.

Meanwhile, the parent blocks in a call to wait, waiting to reap the child when
it terminates (line 17).

Aside Dealing with prematurely closed connections

Although the basic functions of a Web server are quite simple, we don’t want to give you the false
impression that writing a real Web server is easy. Building a robust Web server that runs for extended
periods without crashing is a difficult task that requires a deeper understanding of Unix systems
programming than we’ve learned here. For example, if a server writes to a connection that has already
been closed by the client (say, because you clicked the “Stop” button on your browser), then the first
such write returns normally, but the second write causes the delivery of a SIGPIPE signal whose default
behavior is to terminate the process. If the SIGPIPE signal is caught or ignored, then the second write
operation returns −1 with errno set to EPIPE. The strerr and perror functions report the EPIPE
error as a “Broken pipe”, a non-intuitive message that has confused generations of students. The bottom
line is that a robust server must catch these SIGPIPE signals and check write function calls for EPIPE
errors.

11.7 Summary

Every network application is based on the client-server model. With this model,
an application consists of a server and one or more clients. The server manages
resources, providing a service for its clients by manipulating the resources in some
way. The basic operation in the client-server model is a client-server transaction,
which consists of a request from a client, followed by a response from the server.

Clients and servers communicate over a global network known as the Internet.
From a programmer’s point of view, we can think of the Internet as a worldwide
collection of hosts with the following properties: (1) Each Internet host has a
unique 32-bit name called its IP address. (2) The set of IP addresses is mapped
to a set of Internet domain names. (3) Processes on different Internet hosts can
communicate with each other over connections.

Clients and servers establish connections by using the sockets interface. A
socket is an end point of a connection that is presented to applications in the
form of a file descriptor. The sockets interface provides functions for opening and
closing socket descriptors. Clients and servers communicate with each other by
reading and writing these descriptors.

Web servers and their clients (such as browsers) communicate with each other
using the HTTP protocol. A browser requests either static or dynamic content
from the server. A request for static content is served by fetching a file from the

928 Chapter 11 Network Programming

server’s disk and returning it to the client. A request for dynamic content is served
by running a program in the context of a child process on the server and returning
its output to the client. The CGI standard provides a set of rules that govern how
the client passes program arguments to the server, how the server passes these
arguments and other information to the child process, and how the child sends its
output back to the client.

A simple but functioning Web server that serves both static and dynamic
content can be implemented in a few hundred lines of C code.

Bibliographic Notes

The official source of information for the Internet is contained in a set of freely
available numbered documents known as RFCs (Requests for Comments). A
searchable index of RFCs is available on the Web at

http://rfc-editor.org

RFCs are typically written for developers of Internet infrastructure, and thus
are usually too detailed for the casual reader. However, for authoritative infor-
mation, there is no better source. The HTTP/1.1 protocol is documented in RFC
2616. The authoritative list of MIME types is maintained at

http://www.iana.org/assignments/media-types

There are a number of good general texts on computer networking [62, 80,
113]. The great technical writer W. Richard Stevens developed a series of classic
texts on such topics as advanced Unix programming [110], the Internet proto-
cols [105, 106, 107], and Unix network programming [108, 109]. Serious students
of Unix systems programming will want to study all of them. Tragically, Stevens
died on September 1, 1999. His contributions will be greatly missed.

Homework Problems

11.6 ◆◆
A. Modify Tiny so that it echoes every request line and request header.

B. Use your favorite browser to make a request to Tiny for static content.
Capture the output from Tiny in a file.

C. Inspect the output from Tiny to determine the version of HTTP your browser
uses.

D. Consult the HTTP/1.1 standard in RFC 2616 to determine the meaning
of each header in the HTTP request from your browser. You can obtain
RFC 2616 from www.rfc-editor.org/rfc.html.

http://www.iana.org/assignments/media-types
www.rfc-editor.org/rfc.html
http://rfc-editor.org

Solutions to Practice Problems 929

11.7 ◆◆
Extend Tiny so that it serves MPG video files. Check your work using a real
browser.

11.8 ◆◆
Modify Tiny so that it reaps CGI children inside a SIGCHLD handler instead of
explicitly waiting for them to terminate.

11.9 ◆◆
Modify Tiny so that when it serves static content, it copies the requested file to the
connected descriptor using malloc, rio_readn, and rio_writen, instead of mmap
and rio_writen.

11.10 ◆◆
A. Write an HTML form for the CGI adder function in Figure 11.26. Your form

should include two text boxes that users fill in with the two numbers to be
added together. Your form should request content using the GET method.

B. Check your work by using a real browser to request the form from Tiny,
submit the filled-in form to Tiny, and then display the dynamic content
generated by adder.

11.11 ◆◆
Extend Tiny to support the HTTP HEAD method. Check your work using telnet
as a Web client.

11.12 ◆◆◆
Extend Tiny so that it serves dynamic content requested by the HTTP POST
method. Check your work using your favorite Web browser.

11.13 ◆◆◆
Modify Tiny so that it deals cleanly (without terminating) with the SIGPIPE
signals and EPIPE errors that occur when the write function attempts to write to
a prematurely closed connection.

Solutions to Practice Problems

Solution to Problem 11.1 (page 894)

Hex address Dotted-decimal address

0x0 0.0.0.0

0xffffffff 255.255.255.255

0x7f000001 127.0.0.1

0xcdbca079 205.188.160.121

0x400c950d 64.12.149.13

0xcdbc9217 205.188.146.23

930 Chapter 11 Network Programming

Solution to Problem 11.2 (page 894)

code/netp/hex2dd.c

1 #include "csapp.h"

2

3 int main(int argc, char **argv)

4 {

5 struct in_addr inaddr; /* addr in network byte order */

6 unsigned int addr; /* addr in host byte order */

7

8 if (argc != 2) {

9 fprintf(stderr, "usage: %s <hex number>\n", argv[0]);

10 exit(0);

11 }

12 sscanf(argv[1], "%x", &addr);

13 inaddr.s_addr = htonl(addr);

14 printf("%s\n", inet_ntoa(inaddr));

15

16 exit(0);

17 }

code/netp/hex2dd.c

Solution to Problem 11.3 (page 895)

code/netp/dd2hex.c

1 #include "csapp.h"

2

3 int main(int argc, char **argv)

4 {

5 struct in_addr inaddr; /* addr in network byte order */

6 unsigned int addr; /* addr in host byte order */

7

8 if (argc != 2) {

9 fprintf(stderr, "usage: %s <dotted-decimal>\n", argv[0]);

10 exit(0);

11 }

12

13 if (inet_aton(argv[1], &inaddr) == 0)

14 app_error("inet_aton error");

15 addr = ntohl(inaddr.s_addr);

16 printf("0x%x\n", addr);

17

18 exit(0);

19 }

code/netp/dd2hex.c

Solutions to Practice Problems 931

Solution to Problem 11.4 (page 899)
Each time we request the host entry for google.com, the list of corresponding
Internet addresses is returned in a different round-robin order.

unix> ./hostinfo google.com

official hostname: google.com

address: 74.125.127.100

address: 74.125.45.100

address: 74.125.67.100

unix> ./hostinfo google.com

official hostname: google.com

address: 74.125.67.100

address: 74.125.127.100

address: 74.125.45.100

unix> ./hostinfo google.com

official hostname: google.com

address: 74.125.45.100

address: 74.125.67.100

address: 74.125.127.100

The different ordering of the addresses in different DNS queries is known as DNS
round-robin. It can be used to load-balance requests to a heavily used domain
name.

Solution to Problem 11.5 (page 919)
The reason that standard I/O works in CGI programs is that the CGI program
running in the child process does not need to explicitly close any of its input
or output streams. When the child terminates, the kernel closes all descriptors
automatically.

This page intentionally left blank

C H A P T E R 12
Concurrent Programming

12.1 Concurrent Programming with Processes 935

12.2 Concurrent Programming with I/O Multiplexing 939

12.3 Concurrent Programming with Threads 947

12.4 Shared Variables in Threaded Programs 954

12.5 Synchronizing Threads with Semaphores 957

12.6 Using Threads for Parallelism 974

12.7 Other Concurrency Issues 979

12.8 Summary 988

Bibliographic Notes 989

Homework Problems 989

Solutions to Practice Problems 994

933

934 Chapter 12 Concurrent Programming

As we learned in Chapter 8, logical control flows are concurrent if they overlap
in time. This general phenomenon, known as concurrency, shows up at many
different levels of a computer system. Hardware exception handlers, processes,
and Unix signal handlers are all familiar examples.

Thus far, we have treated concurrency mainly as a mechanism that the oper-
ating system kernel uses to run multiple application programs. But concurrency is
not just limited to the kernel. It can play an important role in application programs
as well. For example, we have seen how Unix signal handlers allow applications
to respond to asynchronous events such as the user typing ctrl-c or the program
accessing an undefined area of virtual memory. Application-level concurrency is
useful in other ways as well:

. Accessing slow I/O devices. When an application is waiting for data to arrive
from a slow I/O device such as a disk, the kernel keeps the CPU busy by
running other processes. Individual applications can exploit concurrency in a
similar way by overlapping useful work with I/O requests.

. Interacting with humans.People who interact with computers demand the abil-
ity to perform multiple tasks at the same time. For example, they might want
to resize a window while they are printing a document. Modern windowing
systems use concurrency to provide this capability. Each time the user requests
some action (say, by clicking the mouse), a separate concurrent logical flow is
created to perform the action.

. Reducing latency by deferring work. Sometimes, applications can use concur-
rency to reduce the latency of certain operations by deferring other operations
and performing them concurrently. For example, a dynamic storage allocator
might reduce the latency of individual free operations by deferring coalesc-
ing to a concurrent “coalescing” flow that runs at a lower priority, soaking up
spare CPU cycles as they become available.

. Servicing multiple network clients. The iterative network servers that we stud-
ied in Chapter 11 are unrealistic because they can only service one client at
a time. Thus, a single slow client can deny service to every other client. For a
real server that might be expected to service hundreds or thousands of clients
per second, it is not acceptable to allow one slow client to deny service to the
others. A better approach is to build a concurrent server that creates a separate
logical flow for each client. This allows the server to service multiple clients
concurrently, and precludes slow clients from monopolizing the server.

. Computing in parallel on multi-core machines. Many modern systems are
equipped with multi-core processors that contain multiple CPUs. Applica-
tions that are partitioned into concurrent flows often run faster on multi-core
machines than on uniprocessor machines because the flows execute in parallel
rather than being interleaved.

Applications that use application-level concurrency are known as concurrent
programs. Modern operating systems provide three basic approaches for building
concurrent programs:

Section 12.1 Concurrent Programming with Processes 935

. Processes. With this approach, each logical control flow is a process that is
scheduled and maintained by the kernel. Since processes have separate virtual
address spaces, flows that want to communicate with each other must use some
kind of explicit interprocess communication (IPC) mechanism.

. I/O multiplexing.This is a form of concurrent programming where applications
explicitly schedule their own logical flows in the context of a single process.
Logical flows are modeled as state machines that the main program explicitly
transitions from state to state as a result of data arriving on file descriptors.
Since the program is a single process, all flows share the same address space.

. Threads. Threads are logical flows that run in the context of a single process
and are scheduled by the kernel. You can think of threads as a hybrid of the
other two approaches, scheduled by the kernel like process flows, and sharing
the same virtual address space like I/O multiplexing flows.

This chapter investigates these three different concurrent programming tech-
niques. To keep our discussion concrete, we will work with the same motivating
application throughout—a concurrent version of the iterative echo server from
Section 11.4.9.

12.1 Concurrent Programming with Processes

The simplest way to build a concurrent program is with processes, using familiar
functions such as fork, exec, and waitpid. For example, a natural approach for
building a concurrent server is to accept client connection requests in the parent,
and then create a new child process to service each new client.

To see how this might work, suppose we have two clients and a server that is
listening for connection requests on a listening descriptor (say, 3). Now suppose
that the server accepts a connection request from client 1 and returns a connected
descriptor (say, 4), as shown in Figure 12.1.

After accepting the connection request, the server forks a child, which gets a
complete copy of the server’s descriptor table. The child closes its copy of listening
descriptor 3, and the parent closes its copy of connected descriptor 4, since they
are no longer needed. This gives us the situation in Figure 12.2, where the child
process is busy servicing the client. Since the connected descriptors in the parent
and child each point to the same file table entry, it is crucial for the parent to close

Figure 12.1
Step 1: Server accepts
connection request from
client.

Client 1

clientfd

Client 2

clientfd

connfd(4)

listenfd(3)

Server

Connection
request

936 Chapter 12 Concurrent Programming

Figure 12.2
Step 2: Server forks a
child process to service
the client.

Client 1

clientfd

Client 2

clientfd

connfd(4)

Child 1

listenfd(3)

Server

Data
transfers

Figure 12.3
Step 3: Server accepts
another connection
request. Client 1

clientfd

Client 2

clientfd

connfd(4)

connfd(5)

Child 1

listenfd(3)

Server

Data
transfers

Connection
request

its copy of the connected descriptor. Otherwise, the file table entry for connected
descriptor 4 will never be released, and the resulting memory leak will eventually
consume the available memory and crash the system.

Now suppose that after the parent creates the child for client 1, it accepts
a new connection request from client 2 and returns a new connected descriptor
(say, 5), as shown in Figure 12.3. The parent then forks another child, which begins
servicing its client using connected descriptor 5, as shown in Figure 12.4. At this
point, the parent is waiting for the next connection request and the two children
are servicing their respective clients concurrently.

12.1.1 A Concurrent Server Based on Processes

Figure 12.5 shows the code for a concurrent echo server based on processes.
The echo function called in line 29 comes from Figure 11.21. There are several
important points to make about this server:

. First, servers typically run for long periods of time, so we must include a
SIGCHLD handler that reaps zombie children (lines 4–9). Since SIGCHLD
signals are blocked while the SIGCHLD handler is executing, and since Unix
signals are not queued, the SIGCHLD handler must be prepared to reap
multiple zombie children.

Section 12.1 Concurrent Programming with Processes 937

Figure 12.4
Step 4: Server forks
another child to service
the new client.

Client 1

clientfd

Client 2

clientfd

connfd(4)

Child 1

connfd(5)

Child 2

listenfd(3)

Server

Data
transfers

Data
transfers

. Second, the parent and the child must close their respective copies of connfd
(lines 33 and 30, respectively). As we have mentioned, this is especially im-
portant for the parent, which must close its copy of the connected descriptor
to avoid a memory leak.

. Finally, because of the reference count in the socket’s file table entry, the
connection to the client will not be terminated until both the parent’s and
child’s copies of connfd are closed.

12.1.2 Pros and Cons of Processes

Processes have a clean model for sharing state information between parents and
children: file tables are shared and user address spaces are not. Having separate
address spaces for processes is both an advantage and a disadvantage. It is im-
possible for one process to accidentally overwrite the virtual memory of another
process, which eliminates a lot of confusing failures—an obvious advantage.

On the other hand, separate address spaces make it more difficult for pro-
cesses to share state information. To share information, they must use explicit
IPC (interprocess communications) mechanisms. (See Aside.) Another disadvan-
tage of process-based designs is that they tend to be slower because the overhead
for process control and IPC is high.

Aside Unix IPC

You have already encountered several examples of IPC in this text. The waitpid function and Unix
signals from Chapter 8 are primitive IPC mechanisms that allow processes to send tiny messages to
processes running on the same host. The sockets interface from Chapter 11 is an important form of
IPC that allows processes on different hosts to exchange arbitrary byte streams. However, the term
Unix IPC is typically reserved for a hodge-podge of techniques that allow processes to communicate
with other processes that are running on the same host. Examples include pipes, FIFOs, System V
shared memory, and System V semaphores. These mechanisms are beyond our scope. The book by
Stevens [108] is a good reference.

938 Chapter 12 Concurrent Programming

code/conc/echoserverp.c

1 #include "csapp.h"

2 void echo(int connfd);

3

4 void sigchld_handler(int sig)

5 {

6 while (waitpid(-1, 0, WNOHANG) > 0)

7 ;

8 return;

9 }

10

11 int main(int argc, char **argv)

12 {

13 int listenfd, connfd, port;

14 socklen_t clientlen=sizeof(struct sockaddr_in);

15 struct sockaddr_in clientaddr;

16

17 if (argc != 2) {

18 fprintf(stderr, "usage: %s <port>\n", argv[0]);

19 exit(0);

20 }

21 port = atoi(argv[1]);

22

23 Signal(SIGCHLD, sigchld_handler);

24 listenfd = Open_listenfd(port);

25 while (1) {

26 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

27 if (Fork() == 0) {

28 Close(listenfd); /* Child closes its listening socket */

29 echo(connfd); /* Child services client */

30 Close(connfd); /* Child closes connection with client */

31 exit(0); /* Child exits */

32 }

33 Close(connfd); /* Parent closes connected socket (important!) */

34 }

35 }

code/conc/echoserverp.c

Figure 12.5 Concurrent echo server based on processes. The parent forks a child to
handle each new connection request.

Section 12.2 Concurrent Programming with I/O Multiplexing 939

Practice Problem 12.1
After the parent closes the connected descriptor in line 33 of the concurrent server
in Figure 12.5, the child is still able to communicate with the client using its copy
of the descriptor. Why?

Practice Problem 12.2
If we were to delete line 30 of Figure 12.5, which closes the connected descriptor,
the code would still be correct, in the sense that there would be no memory leak.
Why?

12.2 Concurrent Programming with I/O Multiplexing

Suppose you are asked to write an echo server that can also respond to interactive
commands that the user types to standard input. In this case, the server must
respond to two independent I/O events: (1) a network client making a connection
request, and (2) a user typing a command line at the keyboard. Which event do we
wait for first? Neither option is ideal. If we are waiting for a connection request in
accept, then we cannot respond to input commands. Similarly, if we are waiting
for an input command in read, then we cannot respond to any connection requests.

One solution to this dilemma is a technique called I/O multiplexing. The basic
idea is to use the select function to ask the kernel to suspend the process, return-
ing control to the application only after one or more I/O events have occurred, as
in the following examples:

. Return when any descriptor in the set {0, 4} is ready for reading.

. Return when any descriptor in the set {1, 2, 7} is ready for writing.

. Timeout if 152.13 seconds have elapsed waiting for an I/O event to occur.

Select is a complicated function with many different usage scenarios. We
will only discuss the first scenario: waiting for a set of descriptors to be ready for
reading. See [109, 110] for a complete discussion.

#include <unistd.h>

#include <sys/types.h>

int select(int n, fd_set *fdset, NULL, NULL, NULL);

Returns nonzero count of ready descriptors, −1 on error

FD_ZERO(fd_set *fdset); /* Clear all bits in fdset */

FD_CLR(int fd, fd_set *fdset); /* Clear bit fd in fdset */

FD_SET(int fd, fd_set *fdset); /* Turn on bit fd in fdset */

FD_ISSET(int fd, fd_set *fdset); /* Is bit fd in fdset on? */

Macros for manipulating descriptor sets

940 Chapter 12 Concurrent Programming

The select function manipulates sets of type fd_set, which are known as
descriptor sets. Logically, we think of a descriptor set as a bit vector (introduced
in Section 2.1) of size n:

bn−1, . . . , b1, b0

Each bit bk corresponds to descriptor k. Descriptor k is a member of the descriptor
set if and only if bk = 1. You are only allowed to do three things with descriptor
sets: (1) allocate them, (2) assign one variable of this type to another, and (3) mod-
ify and inspect them using the FD_ZERO, FD_SET, FD_CLR, and FD_ISSET
macros.

For our purposes, the select function takes two inputs: a descriptor set
(fdset) called the read set, and the cardinality (n) of the read set (actually the
maximum cardinality of any descriptor set). The select function blocks until at
least one descriptor in the read set is ready for reading. A descriptor k is ready
for reading if and only if a request to read 1 byte from that descriptor would not
block. As a side effect, selectmodifies the fd_set pointed to by argument fdset
to indicate a subset of the read set called the ready set, consisting of the descriptors
in the read set that are ready for reading. The value returned by the function
indicates the cardinality of the ready set. Note that because of the side effect, we
must update the read set every time select is called.

The best way to understand select is to study a concrete example. Figure 12.6
shows how we might use select to implement an iterative echo server that also
accepts user commands on the standard input. We begin by using the open_
listenfd function from Figure 11.17 to open a listening descriptor (line 17), and
then using FD_ZERO to create an empty read set (line 19):

listenfd stdin

3 2 1 0
read_set (∅) : 0 0 0 0

Next, in lines 20 and 21, we define the read set to consist of descriptor 0
(standard input) and descriptor 3 (the listening descriptor), respectively:

listenfd stdin

3 2 1 0
read_set ({0, 3}) : 1 0 0 1

At this point, we begin the typical server loop. But instead of waiting for a
connection request by calling the accept function, we call the select function,
which blocks until either the listening descriptor or standard input is ready for
reading (line 25). For example, here is the value of ready_set that select would
return if the user hit the enter key, thus causing the standard input descriptor to
become ready for reading:

listenfd stdin

3 2 1 0
read_set ({0}) : 0 0 0 1

code/conc/select.c

1 #include "csapp.h"

2 void echo(int connfd);

3 void command(void);

4

5 int main(int argc, char **argv)

6 {

7 int listenfd, connfd, port;

8 socklen_t clientlen = sizeof(struct sockaddr_in);

9 struct sockaddr_in clientaddr;

10 fd_set read_set, ready_set;

11

12 if (argc != 2) {

13 fprintf(stderr, "usage: %s <port>\n", argv[0]);

14 exit(0);

15 }

16 port = atoi(argv[1]);

17 listenfd = Open_listenfd(port);

18

19 FD_ZERO(&read_set); /* Clear read set */

20 FD_SET(STDIN_FILENO, &read_set); /* Add stdin to read set */

21 FD_SET(listenfd, &read_set); /* Add listenfd to read set */

22

23 while (1) {

24 ready_set = read_set;

25 Select(listenfd+1, &ready_set, NULL, NULL, NULL);

26 if (FD_ISSET(STDIN_FILENO, &ready_set))

27 command(); /* Read command line from stdin */

28 if (FD_ISSET(listenfd, &ready_set)) {

29 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

30 echo(connfd); /* Echo client input until EOF */

31 Close(connfd);

32 }

33 }

34 }

35

36 void command(void) {

37 char buf[MAXLINE];

38 if (!Fgets(buf, MAXLINE, stdin))

39 exit(0); /* EOF */

40 printf("%s", buf); /* Process the input command */

41 }

code/conc/select.c

Figure 12.6 An iterative echo server that uses I/O multiplexing. The server uses
select to wait for connection requests on a listening descriptor and commands on
standard input.

942 Chapter 12 Concurrent Programming

Once select returns, we use the FD_ISSET macro to determine which de-
scriptors are ready for reading. If standard input is ready (line 26), we call the
command function, which reads, parses, and responds to the command before re-
turning to the main routine. If the listening descriptor is ready (line 28), we call
accept to get a connected descriptor, and then call the echo function from Fig-
ure 11.21, which echoes each line from the client until the client closes its end of
the connection.

While this program is a good example of using select, it still leaves something
to be desired. The problem is that once it connects to a client, it continues echoing
input lines until the client closes its end of the connection. Thus, if you type a
command to standard input, you will not get a response until the server is finished
with the client. A better approach would be to multiplex at a finer granularity,
echoing (at most) one text line each time through the server loop.

Practice Problem 12.3
In most Unix systems, typing ctrl-d indicates EOF on standard input. What
happens if you type ctrl-d to the program in Figure 12.6 while it is blocked in the
call to select?

12.2.1 A Concurrent Event-Driven Server Based on I/O Multiplexing

I/O multiplexing can be used as the basis for concurrent event-driven programs,
where flows make progress as a result of certain events. The general idea is to
model logical flows as state machines. Informally, a state machine is a collection of
states, input events, and transitions that map states and input events to states. Each
transition maps an (input state, input event) pair to an output state. A self-loop is
a transition between the same input and output state. State machines are typically
drawn as directed graphs, where nodes represent states, directed arcs represent
transitions, and arc labels represent input events. A state machine begins execution
in some initial state. Each input event triggers a transition from the current state
to the next state.

For each new client k, a concurrent server based on I/O multiplexing creates
a new state machine sk and associates it with connected descriptor dk. As shown
in Figure 12.7, each state machine sk has one state (“waiting for descriptor dk to
be ready for reading”), one input event (“descriptor dk is ready for reading”), and
one transition (“read a text line from descriptor dk”).

The server uses the I/O multiplexing, courtesy of the select function, to
detect the occurrence of input events. As each connected descriptor becomes
ready for reading, the server executes the transition for the corresponding state
machine, in this case reading and echoing a text line from the descriptor.

Figure 12.8 shows the complete example code for a concurrent event-driven
server based on I/O multiplexing. The set of active clients is maintained in a pool
structure (lines 3–11). After initializing the pool by calling init_pool (line 29),
the server enters an infinite loop. During each iteration of this loop, the server calls

Section 12.2 Concurrent Programming with I/O Multiplexing 943

Figure 12.7
State machine for
a logical flow in a
concurrent event-driven
echo server.

Input event:
“descriptor dk

is ready for reading”

Transition:
“read a text line from

descriptor dk”

State:
“waiting for descriptor dk to

be ready for reading”

the select function to detect two different kinds of input events: (a) a connection
request arriving from a new client, and (b) a connected descriptor for an existing
client being ready for reading. When a connection request arrives (line 36), the
server opens the connection (line 37) and calls the add_client function to add the
client to the pool (line 38). Finally, the server calls the check_clients function to
echo a single text line from each ready connected descriptor (line 42).

The init_pool function (Figure 12.9) initializes the client pool. The clientfd
array represents a set of connected descriptors, with the integer −1 denoting an
available slot. Initially, the set of connected descriptors is empty (lines 5–7), and
the listening descriptor is the only descriptor in the select read set (lines 10–12).

The add_client function (Figure 12.10) adds a new client to the pool of active
clients. After finding an empty slot in the clientfd array, the server adds the
connected descriptor to the array and initializes a corresponding Rio read buffer
so that we can call rio_readlineb on the descriptor (lines 8–9). We then add
the connected descriptor to the select read set (line 12), and we update some
global properties of the pool. The maxfd variable (lines 15–16) keeps track of the
largest file descriptor for select. The maxi variable (lines 17–18) keeps track of
the largest index into the clientfd array so that the check_clients functions
does not have to search the entire array.

The check_clients function echoes a text line from each ready connected
descriptor (Figure 12.11). If we are successful in reading a text line from the
descriptor, then we echo that line back to the client (lines 15–18). Notice that
in line 15 we are maintaining a cumulative count of total bytes received from all
clients. If we detect EOF because the client has closed its end of the connection,
then we close our end of the connection (line 23) and remove the descriptor from
the pool (lines 24–25).

In terms of the finite state model in Figure 12.7, the select function detects
input events, and the add_client function creates a new logical flow (state ma-
chine). The check_clients function performs state transitions by echoing input
lines, and it also deletes the state machine when the client has finished sending
text lines.

944 Chapter 12 Concurrent Programming

code/conc/echoservers.c

1 #include "csapp.h"

2

3 typedef struct { /* Represents a pool of connected descriptors */

4 int maxfd; /* Largest descriptor in read_set */

5 fd_set read_set; /* Set of all active descriptors */

6 fd_set ready_set; /* Subset of descriptors ready for reading */

7 int nready; /* Number of ready descriptors from select */

8 int maxi; /* Highwater index into client array */

9 int clientfd[FD_SETSIZE]; /* Set of active descriptors */

10 rio_t clientrio[FD_SETSIZE]; /* Set of active read buffers */

11 } pool;

12

13 int byte_cnt = 0; /* Counts total bytes received by server */

14

15 int main(int argc, char **argv)

16 {

17 int listenfd, connfd, port;

18 socklen_t clientlen = sizeof(struct sockaddr_in);

19 struct sockaddr_in clientaddr;

20 static pool pool;

21

22 if (argc != 2) {

23 fprintf(stderr, "usage: %s <port>\n", argv[0]);

24 exit(0);

25 }

26 port = atoi(argv[1]);

27

28 listenfd = Open_listenfd(port);

29 init_pool(listenfd, &pool);

30 while (1) {

31 /* Wait for listening/connected descriptor(s) to become ready */

32 pool.ready_set = pool.read_set;

33 pool.nready = Select(pool.maxfd+1, &pool.ready_set, NULL, NULL, NULL);

34

35 /* If listening descriptor ready, add new client to pool */

36 if (FD_ISSET(listenfd, &pool.ready_set)) {

37 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

38 add_client(connfd, &pool);

39 }

40

41 /* Echo a text line from each ready connected descriptor */

42 check_clients(&pool);

43 }

44 }

code/conc/echoservers.c

Figure 12.8 Concurrent echo server based on I/O multiplexing. Each server iteration
echoes a text line from each ready descriptor.

Section 12.2 Concurrent Programming with I/O Multiplexing 945

code/conc/echoservers.c

1 void init_pool(int listenfd, pool *p)

2 {

3 /* Initially, there are no connected descriptors */

4 int i;

5 p->maxi = -1;

6 for (i=0; i< FD_SETSIZE; i++)

7 p->clientfd[i] = -1;

8

9 /* Initially, listenfd is only member of select read set */

10 p->maxfd = listenfd;

11 FD_ZERO(&p->read_set);

12 FD_SET(listenfd, &p->read_set);

13 }

code/conc/echoservers.c

Figure 12.9 init_pool: Initializes the pool of active clients.

code/conc/echoservers.c

1 void add_client(int connfd, pool *p)

2 {

3 int i;

4 p->nready--;

5 for (i = 0; i < FD_SETSIZE; i++) /* Find an available slot */

6 if (p->clientfd[i] < 0) {

7 /* Add connected descriptor to the pool */

8 p->clientfd[i] = connfd;

9 Rio_readinitb(&p->clientrio[i], connfd);

10

11 /* Add the descriptor to descriptor set */

12 FD_SET(connfd, &p->read_set);

13

14 /* Update max descriptor and pool highwater mark */

15 if (connfd > p->maxfd)

16 p->maxfd = connfd;

17 if (i > p->maxi)

18 p->maxi = i;

19 break;

20 }

21 if (i == FD_SETSIZE) /* Couldn’t find an empty slot */

22 app_error("add_client error: Too many clients");

23 }

code/conc/echoservers.c

Figure 12.10 add_client: Adds a new client connection to the pool.

946 Chapter 12 Concurrent Programming

code/conc/echoservers.c

1 void check_clients(pool *p)

2 {

3 int i, connfd, n;

4 char buf[MAXLINE];

5 rio_t rio;

6

7 for (i = 0; (i <= p->maxi) && (p->nready > 0); i++) {

8 connfd = p->clientfd[i];

9 rio = p->clientrio[i];

10

11 /* If the descriptor is ready, echo a text line from it */

12 if ((connfd > 0) && (FD_ISSET(connfd, &p->ready_set))) {

13 p->nready--;

14 if ((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

15 byte_cnt += n;

16 printf("Server received %d (%d total) bytes on fd %d\n",

17 n, byte_cnt, connfd);

18 Rio_writen(connfd, buf, n);

19 }

20

21 /* EOF detected, remove descriptor from pool */

22 else {

23 Close(connfd);

24 FD_CLR(connfd, &p->read_set);

25 p->clientfd[i] = -1;

26 }

27 }

28 }

29 }

code/conc/echoservers.c

Figure 12.11 check_clients: Services ready client connections.

12.2.2 Pros and Cons of I/O Multiplexing

The server in Figure 12.8 provides a nice example of the advantages and disad-
vantages of event-driven programming based on I/O multiplexing. One advantage
is that event-driven designs give programmers more control over the behavior of
their programs than process-based designs. For example, we can imagine writ-
ing an event-driven concurrent server that gives preferred service to some clients,
which would be difficult for a concurrent server based on processes.

Another advantage is that an event-driven server based on I/O multiplexing
runs in the context of a single process, and thus every logical flow has access to
the entire address space of the process. This makes it easy to share data between

Section 12.3 Concurrent Programming with Threads 947

flows. A related advantage of running as a single process is that you can debug
your concurrent server as you would any sequential program, using a familiar
debugging tool such as gdb. Finally, event-driven designs are often significantly
more efficient than process-based designs because they do not require a process
context switch to schedule a new flow.

A significant disadvantage of event-driven designs is coding complexity. Our
event-driven concurrent echo server requires three times more code than the
process-based server. Unfortunately, the complexity increases as the granularity
of the concurrency decreases. By granularity, we mean the number of instructions
that each logical flow executes per time slice. For instance, in our example concur-
rent server, the granularity of concurrency is the number of instructions required
to read an entire text line. As long as some logical flow is busy reading a text line,
no other logical flow can make progress. This is fine for our example, but it makes
our event-driver server vulnerable to a malicious client that sends only a partial
text line and then halts. Modifying an event-driven server to handle partial text
lines is a nontrivial task, but it is handled cleanly and automatically by a process-
based design. Another significant disadvantage of event-based designs is that they
cannot fully utilize multi-core processors.

Practice Problem 12.4
In the server in Figure 12.8, we are careful to reinitialize the pool.ready_set
variable immediately before every call to select. Why?

12.3 Concurrent Programming with Threads

To this point, we have looked at two approaches for creating concurrent logical
flows. With the first approach, we use a separate process for each flow. The kernel
schedules each process automatically. Each process has its own private address
space, which makes it difficult for flows to share data. With the second approach,
we create our own logical flows and use I/O multiplexing to explicitly schedule
the flows. Because there is only one process, flows share the entire address space.
This section introduces a third approach—based on threads—that is a hybrid of
these two.

A thread is a logical flow that runs in the context of a process. Thus far
in this book, our programs have consisted of a single thread per process. But
modern systems also allow us to write programs that have multiple threads running
concurrently in a single process. The threads are scheduled automatically by the
kernel. Each thread has its own thread context, including a unique integer thread
ID (TID), stack, stack pointer, program counter, general-purpose registers, and
condition codes. All threads running in a process share the entire virtual address
space of that process.

Logical flows based on threads combine qualities of flows based on processes
and I/O multiplexing. Like processes, threads are scheduled automatically by the
kernel and are known to the kernel by an integer ID. Like flows based on I/O

948 Chapter 12 Concurrent Programming

Figure 12.12
Concurrent thread
execution.

Thread 1
(main thread)

Thread 2
(peer thread)

Time

Thread context switch

Thread context switch

Thread context switch

multiplexing, multiple threads run in the context of a single process, and thus share
the entire contents of the process virtual address space, including its code, data,
heap, shared libraries, and open files.

12.3.1 Thread Execution Model

The execution model for multiple threads is similar in some ways to the execution
model for multiple processes. Consider the example in Figure 12.12. Each process
begins life as a single thread called the main thread. At some point, the main thread
creates a peer thread, and from this point in time the two threads run concurrently.
Eventually, control passes to the peer thread via a context switch, because the
main thread executes a slow system call such as read or sleep, or because it is
interrupted by the system’s interval timer. The peer thread executes for a while
before control passes back to the main thread, and so on.

Thread execution differs from processes in some important ways. Because a
thread context is much smaller than a process context, a thread context switch is
faster than a process context switch. Another difference is that threads, unlike pro-
cesses, are not organized in a rigid parent-child hierarchy. The threads associated
with a process form a pool of peers, independent of which threads were created
by which other threads. The main thread is distinguished from other threads only
in the sense that it is always the first thread to run in the process. The main impact
of this notion of a pool of peers is that a thread can kill any of its peers, or wait
for any of its peers to terminate. Further, each peer can read and write the same
shared data.

12.3.2 Posix Threads

Posix threads (Pthreads) is a standard interface for manipulating threads from C
programs. It was adopted in 1995 and is available on most Unix systems. Pthreads
defines about 60 functions that allow programs to create, kill, and reap threads,
to share data safely with peer threads, and to notify peers about changes in the
system state.

Section 12.3 Concurrent Programming with Threads 949

code/conc/hello.c

1 #include "csapp.h"

2 void *thread(void *vargp);

3

4 int main()

5 {

6 pthread_t tid;

7 Pthread_create(&tid, NULL, thread, NULL);

8 Pthread_join(tid, NULL);

9 exit(0);

10 }

11

12 void *thread(void *vargp) /* Thread routine */

13 {

14 printf("Hello, world!\n");

15 return NULL;

16 }

code/conc/hello.c

Figure 12.13 hello.c: The Pthreads “Hello, world!” program.

Figure 12.13 shows a simple Pthreads program. The main thread creates a
peer thread and then waits for it to terminate. The peer thread prints “Hello,
world!\n” and terminates. When the main thread detects that the peer thread
has terminated, it terminates the process by calling exit.

This is the first threaded program we have seen, so let us dissect it carefully.
The code and local data for a thread is encapsulated in a thread routine. As shown
by the prototype in line 2, each thread routine takes as input a single generic
pointer and returns a generic pointer. If you want to pass multiple arguments to
a thread routine, then you should put the arguments into a structure and pass a
pointer to the structure. Similarly, if you want the thread routine to return multiple
arguments, you can return a pointer to a structure.

Line 4 marks the beginning of the code for the main thread. The main thread
declares a single local variable tid, which will be used to store the thread ID of
the peer thread (line 6). The main thread creates a new peer thread by calling the
pthread_create function (line 7). When the call to pthread_create returns, the
main thread and the newly created peer thread are running concurrently, and tid
contains the ID of the new thread. The main thread waits for the peer thread
to terminate with the call to pthread_join in line 8. Finally, the main thread
calls exit (line 9), which terminates all threads (in this case just the main thread)
currently running in the process.

Lines 12–16 define the thread routine for the peer thread. It simply prints a
string and then terminates the peer thread by executing the return statement in
line 15.

950 Chapter 12 Concurrent Programming

12.3.3 Creating Threads

Threads create other threads by calling the pthread_create function.

#include <pthread.h>

typedef void *(func)(void *);

int pthread_create(pthread_t *tid, pthread_attr_t *attr,

func *f, void *arg);

Returns: 0 if OK, nonzero on error

The pthread_create function creates a new thread and runs the thread rou-
tine f in the context of the new thread and with an input argument of arg. The
attr argument can be used to change the default attributes of the newly created
thread. Changing these attributes is beyond our scope, and in our examples, we
will always call pthread_create with a NULL attr argument.

When pthread_create returns, argument tid contains the ID of the newly
created thread. The new thread can determine its own thread ID by calling the
pthread_self function.

#include <pthread.h>

pthread_t pthread_self(void);

Returns: thread ID of caller

12.3.4 Terminating Threads

A thread terminates in one of the following ways:

. The thread terminates implicitly when its top-level thread routine returns.

. The thread terminates explicitly by calling the pthread_exit function. If
the main thread calls pthread_exit, it waits for all other peer threads to
terminate, and then terminates the main thread and the entire process with a
return value of thread_return.

#include <pthread.h>

void pthread_exit(void *thread_return);

Returns: 0 if OK, nonzero on error

. Some peer thread calls the Unix exit function, which terminates the process
and all threads associated with the process.

. Another peer thread terminates the current thread by calling the pthread_
cancel function with the ID of the current thread.

Section 12.3 Concurrent Programming with Threads 951

#include <pthread.h>

int pthread_cancel(pthread_t tid);

Returns: 0 if OK, nonzero on error

12.3.5 Reaping Terminated Threads

Threads wait for other threads to terminate by calling the pthread_join function.

#include <pthread.h>

int pthread_join(pthread_t tid, void **thread_return);

Returns: 0 if OK, nonzero on error

The pthread_join function blocks until thread tid terminates, assigns the
generic (void *) pointer returned by the thread routine to the location pointed to
by thread_return, and then reaps any memory resources held by the terminated
thread.

Notice that, unlike the Unix wait function, the pthread_join function can
only wait for a specific thread to terminate. There is no way to instruct pthread_
wait to wait for an arbitrary thread to terminate. This can complicate our code by
forcing us to use other, less intuitive mechanisms to detect process termination.
Indeed, Stevens argues convincingly that this is a bug in the specification [109].

12.3.6 Detaching Threads

At any point in time, a thread is joinable or detached. A joinable thread can be
reaped and killed by other threads. Its memory resources (such as the stack) are
not freed until it is reaped by another thread. In contrast, a detached thread cannot
be reaped or killed by other threads. Its memory resources are freed automatically
by the system when it terminates.

By default, threads are created joinable. In order to avoid memory leaks, each
joinable thread should either be explicitly reaped by another thread, or detached
by a call to the pthread_detach function.

#include <pthread.h>

int pthread_detach(pthread_t tid);

Returns: 0 if OK, nonzero on error

952 Chapter 12 Concurrent Programming

The pthread_detach function detaches the joinable thread tid. Threads can
detach themselves by calling pthread_detach with an argument of pthread_
self().

Although some of our examples will use joinable threads, there are good rea-
sons to use detached threads in real programs. For example, a high-performance
Web server might create a new peer thread each time it receives a connection re-
quest from a Web browser. Since each connection is handled independently by a
separate thread, it is unnecessary—and indeed undesirable—for the server to ex-
plicitly wait for each peer thread to terminate. In this case, each peer thread should
detach itself before it begins processing the request so that its memory resources
can be reclaimed after it terminates.

12.3.7 Initializing Threads

The pthread_once function allows you to initialize the state associated with a
thread routine.

#include <pthread.h>

pthread_once_t once_control = PTHREAD_ONCE_INIT;

int pthread_once(pthread_once_t *once_control,

void (*init_routine)(void));

Always returns 0

The once_control variable is a global or static variable that is always initial-
ized to PTHREAD_ONCE_INIT. The first time you call pthread_once with an
argument of once_control, it invokes init_routine, which is a function with
no input arguments that returns nothing. Subsequent calls to pthread_once with
the same once_control variable do nothing. The pthread_once function is useful
whenever you need to dynamically initialize global variables that are shared by
multiple threads. We will look at an example in Section 12.5.5.

12.3.8 A Concurrent Server Based on Threads

Figure 12.14 shows the code for a concurrent echo server based on threads. The
overall structure is similar to the process-based design. The main thread repeat-
edly waits for a connection request and then creates a peer thread to handle the
request. While the code looks simple, there are a couple of general and somewhat
subtle issues we need to look at more closely. The first issue is how to pass the con-
nected descriptor to the peer thread when we call pthread_create. The obvious
approach is to pass a pointer to the descriptor, as in the following:

connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

Pthread_create(&tid, NULL, thread, &connfd);

Section 12.3 Concurrent Programming with Threads 953

code/conc/echoservert.c

1 #include "csapp.h"

2

3 void echo(int connfd);

4 void *thread(void *vargp);

5

6 int main(int argc, char **argv)

7 {

8 int listenfd, *connfdp, port;

9 socklen_t clientlen=sizeof(struct sockaddr_in);

10 struct sockaddr_in clientaddr;

11 pthread_t tid;

12

13 if (argc != 2) {

14 fprintf(stderr, "usage: %s <port>\n", argv[0]);

15 exit(0);

16 }

17 port = atoi(argv[1]);

18

19 listenfd = Open_listenfd(port);

20 while (1) {

21 connfdp = Malloc(sizeof(int));

22 *connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);

23 Pthread_create(&tid, NULL, thread, connfdp);

24 }

25 }

26

27 /* Thread routine */

28 void *thread(void *vargp)

29 {

30 int connfd = *((int *)vargp);

31 Pthread_detach(pthread_self());

32 Free(vargp);

33 echo(connfd);

34 Close(connfd);

35 return NULL;

36 }

code/conc/echoservert.c

Figure 12.14 Concurrent echo server based on threads.

954 Chapter 12 Concurrent Programming

Then we have the peer thread dereference the pointer and assign it to a local
variable, as follows:

void *thread(void *vargp) {

int connfd = *((int *)vargp);
.
.
.

}

This would be wrong, however, because it introduces a race between the as-
signment statement in the peer thread and the accept statement in the main
thread. If the assignment statement completes before the next accept, then the lo-
cal connfd variable in the peer thread gets the correct descriptor value. However,
if the assignment completes after the accept, then the local connfd variable in the
peer thread gets the descriptor number of the next connection. The unhappy result
is that two threads are now performing input and output on the same descriptor.
In order to avoid the potentially deadly race, we must assign each connected de-
scriptor returned by accept to its own dynamically allocated memory block, as
shown in lines 21–22. We will return to the issue of races in Section 12.7.4.

Another issue is avoiding memory leaks in the thread routine. Since we are
not explicitly reaping threads, we must detach each thread so that its memory
resources will be reclaimed when it terminates (line 31). Further, we must be
careful to free the memory block that was allocated by the main thread (line 32).

Practice Problem 12.5
In the process-based server in Figure 12.5, we were careful to close the connected
descriptor in two places: the parent and child processes. However, in the threads-
based server in Figure 12.14, we only closed the connected descriptor in one place:
the peer thread. Why?

12.4 Shared Variables in Threaded Programs

From a programmer’s perspective, one of the attractive aspects of threads is the
ease with which multiple threads can share the same program variables. However,
this sharing can be tricky. In order to write correctly threaded programs, we must
have a clear understanding of what we mean by sharing and how it works.

There are some basic questions to work through in order to understand
whether a variable in a C program is shared or not: (1) What is the underlying
memory model for threads? (2) Given this model, how are instances of the vari-
able mapped to memory? (3) Finally, how many threads reference each of these
instances? The variable is shared if and only if multiple threads reference some
instance of the variable.

To keep our discussion of sharing concrete, we will use the program in Fig-
ure 12.15 as a running example. Although somewhat contrived, it is nonetheless
useful to study because it illustrates a number of subtle points about sharing. The
example program consists of a main thread that creates two peer threads. The

Section 12.4 Shared Variables in Threaded Programs 955

code/conc/sharing.c

1 #include "csapp.h"

2 #define N 2

3 void *thread(void *vargp);

4

5 char **ptr; /* Global variable */

6

7 int main()

8 {

9 int i;

10 pthread_t tid;

11 char *msgs[N] = {

12 "Hello from foo",

13 "Hello from bar"

14 };

15

16 ptr = msgs;

17 for (i = 0; i < N; i++)

18 Pthread_create(&tid, NULL, thread, (void *)i);

19 Pthread_exit(NULL);

20 }

21

22 void *thread(void *vargp)

23 {

24 int myid = (int)vargp;

25 static int cnt = 0;

26 printf("[%d]: %s (cnt=%d)\n", myid, ptr[myid], ++cnt);

27 return NULL;

28 }

code/conc/sharing.c

Figure 12.15 Example program that illustrates different aspects of sharing.

main thread passes a unique ID to each peer thread, which uses the ID to print
a personalized message, along with a count of the total number of times that the
thread routine has been invoked.

12.4.1 Threads Memory Model

A pool of concurrent threads runs in the context of a process. Each thread has
its own separate thread context, which includes a thread ID, stack, stack pointer,
program counter, condition codes, and general-purpose register values. Each
thread shares the rest of the process context with the other threads. This includes
the entire user virtual address space, which consists of read-only text (code),
read/write data, the heap, and any shared library code and data areas. The threads
also share the same set of open files.

956 Chapter 12 Concurrent Programming

In an operational sense, it is impossible for one thread to read or write the
register values of another thread. On the other hand, any thread can access any
location in the shared virtual memory. If some thread modifies a memory location,
then every other thread will eventually see the change if it reads that location.
Thus, registers are never shared, whereas virtual memory is always shared.

The memory model for the separate thread stacks is not as clean. These
stacks are contained in the stack area of the virtual address space, and are usually
accessed independently by their respective threads. We say usually rather than
always, because different thread stacks are not protected from other threads. So
if a thread somehow manages to acquire a pointer to another thread’s stack, then
it can read and write any part of that stack. Our example program shows this in
line 26, where the peer threads reference the contents of the main thread’s stack
indirectly through the global ptr variable.

12.4.2 Mapping Variables to Memory

Variables in threaded C programs are mapped to virtual memory according to
their storage classes:

. Global variables. A global variable is any variable declared outside of a func-
tion. At run time, the read/write area of virtual memory contains exactly one
instance of each global variable that can be referenced by any thread. For ex-
ample, the global ptr variable declared in line 5 has one run-time instance in
the read/write area of virtual memory. When there is only one instance of a
variable, we will denote the instance by simply using the variable name—in
this case, ptr.

. Local automatic variables. A local automatic variable is one that is declared
inside a function without the static attribute. At run time, each thread’s
stack contains its own instances of any local automatic variables. This is true
even if multiple threads execute the same thread routine. For example, there
is one instance of the local variable tid, and it resides on the stack of the main
thread. We will denote this instance as tid.m. As another example, there are
two instances of the local variable myid, one instance on the stack of peer
thread 0, and the other on the stack of peer thread 1. We will denote these
instances as myid.p0 and myid.p1, respectively.

. Local static variables. A local static variable is one that is declared inside a
function with the static attribute. As with global variables, the read/write
area of virtual memory contains exactly one instance of each local static
variable declared in a program. For example, even though each peer thread
in our example program declares cnt in line 25, at run time there is only one
instance of cnt residing in the read/write area of virtual memory. Each peer
thread reads and writes this instance.

12.4.3 Shared Variables

We say that a variable v is shared if and only if one of its instances is referenced
by more than one thread. For example, variable cnt in our example program is

Section 12.5 Synchronizing Threads with Semaphores 957

shared because it has only one run-time instance and this instance is referenced by
both peer threads. On the other hand, myid is not shared because each of its two
instances is referenced by exactly one thread. However, it is important to realize
that local automatic variables such as msgs can also be shared.

Practice Problem 12.6
A. Using the analysis from Section 12.4, fill each entry in the following table

with “Yes” or “No” for the example program in Figure 12.15. In the first
column, the notation v.t denotes an instance of variable v residing on the
local stack for thread t , where t is either m (main thread), p0 (peer thread 0),
or p1 (peer thread 1).

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr

cnt

i.m

msgs.m

myid.p0

myid.p1

B. Given the analysis in Part A, which of the variables ptr, cnt, i, msgs, and
myid are shared?

12.5 Synchronizing Threads with Semaphores

Shared variables can be convenient, but they introduce the possibility of nasty
synchronization errors. Consider the badcnt.c program in Figure 12.16, which
creates two threads, each of which increments a global shared counter variable
called cnt. Since each thread increments the counter niters times, we expect its
final value to be 2 × niters. This seems quite simple and straightforward. However,
when we run badcnt.c on our Linux system, we not only get wrong answers, we
get different answers each time!

linux> ./badcnt 1000000

BOOM! cnt=1445085

linux> ./badcnt 1000000

BOOM! cnt=1915220

linux> ./badcnt 1000000

BOOM! cnt=1404746

code/conc/badcnt.c

1 #include "csapp.h"

2

3 void *thread(void *vargp); /* Thread routine prototype */

4

5 /* Global shared variable */

6 volatile int cnt = 0; /* Counter */

7

8 int main(int argc, char **argv)

9 {

10 int niters;

11 pthread_t tid1, tid2;

12

13 /* Check input argument */

14 if (argc != 2) {

15 printf("usage: %s <niters>\n", argv[0]);

16 exit(0);

17 }

18 niters = atoi(argv[1]);

19

20 /* Create threads and wait for them to finish */

21 Pthread_create(&tid1, NULL, thread, &niters);

22 Pthread_create(&tid2, NULL, thread, &niters);

23 Pthread_join(tid1, NULL);

24 Pthread_join(tid2, NULL);

25

26 /* Check result */

27 if (cnt != (2 * niters))

28 printf("BOOM! cnt=%d\n", cnt);

29 else

30 printf("OK cnt=%d\n", cnt);

31 exit(0);

32 }

33

34 /* Thread routine */

35 void *thread(void *vargp)

36 {

37 int i, niters = *((int *)vargp);

38

39 for (i = 0; i < niters; i++)

40 cnt++;

41

42 return NULL;

43 }

code/conc/badcnt.c

Figure 12.16 badcnt.c: An improperly synchronized counter program.

Section 12.5 Synchronizing Threads with Semaphores 959

C code for thread i

Asm code for thread i

for (i�0; i < niters; i��)
 cnt��;

 movl (%rdi),%ecx
 movl $0,%edx
 cmpl %ecx,%edx
 jge .L13

.L11:
 movl cnt(%rip),%eax
 incl %eax
 movl %eax,cnt(%rip)

 incl %edx
 cmpl %ecx,%edx
 jl .L11
.L13:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Figure 12.17 Assembly code for the counter loop (lines 39–40) in badcnt.c.

So what went wrong? To understand the problem clearly, we need to study
the assembly code for the counter loop (lines 39–40), as shown in Figure 12.17.
We will find it helpful to partition the loop code for thread i into five parts:

. Hi: The block of instructions at the head of the loop

. Li: The instruction that loads the shared variable cnt into register %eaxi,
where %eaxi denotes the value of register %eax in thread i

. Ui: The instruction that updates (increments) %eaxi

. Si: The instruction that stores the updated value of %eaxi back to the shared
variable cnt

. Ti: The block of instructions at the tail of the loop

Notice that the head and tail manipulate only local stack variables, while Li, Ui,
and Si manipulate the contents of the shared counter variable.

When the two peer threads in badcnt.c run concurrently on a uniprocessor,
the machine instructions are completed one after the other in some order. Thus,
each concurrent execution defines some total ordering (or interleaving) of the in-
structions in the two threads. Unfortunately, some of these orderings will produce
correct results, but others will not.

Here is the crucial point: In general, there is no way for you to predict whether
the operating system will choose a correct ordering for your threads. For example,
Figure 12.18(a) shows the step-by-step operation of a correct instruction ordering.
After each thread has updated the shared variable cnt, its value in memory is 2,
which is the expected result. On the other hand, the ordering in Figure 12.18(b)
produces an incorrect value for cnt. The problem occurs because thread 2 loads
cnt in step 5, after thread 1 loads cnt in step 2, but before thread 1 stores its up-
dated value in step 6. Thus, each thread ends up storing an updated counter value
of 1. We can clarify these notions of correct and incorrect instruction orderings
with the help of a device known as a progress graph, which we introduce in the
next section.

960 Chapter 12 Concurrent Programming

Step Thread Instr %eax1 %eax2 cnt

1 1 H1 — — 0
2 1 L1 0 — 0
3 1 U1 1 — 0
4 1 S1 1 — 1
5 2 H2 — — 1
6 2 L2 — 1 1
7 2 U2 — 2 1
8 2 S2 — 2 2
9 2 T2 — 2 2

10 1 T1 1 — 2

(a) Correct ordering

Step Thread Instr %eax1 %eax2 cnt

1 1 H1 — — 0
2 1 L1 0 — 0
3 1 U1 1 — 0
4 2 H2 — — 0
5 2 L2 — 0 0
6 1 S1 1 — 1
7 1 T1 1 — 1
8 2 U2 — 1 1
9 2 S2 — 1 1

10 2 T2 — 1 1

(b) Incorrect ordering

Figure 12.18 Instruction orderings for the first loop iteration in badcnt.c.

Practice Problem 12.7
Complete the table for the following instruction ordering of badcnt.c:

Step Thread Instr %eax1 %eax2 cnt

1 1 H1 — — 0
2 1 L1

3 2 H2

4 2 L2

5 2 U2

6 2 S2

7 1 U1

8 1 S1

9 1 T1

10 2 T2

Does this ordering result in a correct value for cnt?

12.5.1 Progress Graphs

A progress graph models the execution of n concurrent threads as a trajectory
through an n-dimensional Cartesian space. Each axis k corresponds to the progress
of thread k. Each point (I1, I2, . . . , In) represents the state where thread k (k =
1, . . . , n) has completed instruction Ik. The origin of the graph corresponds to the
initial state where none of the threads has yet completed an instruction.

Figure 12.19 shows the two-dimensional progress graph for the first loop
iteration of the badcnt.c program. The horizontal axis corresponds to thread 1,
the vertical axis to thread 2. Point (L1, S2) corresponds to the state where thread 1
has completed L1 and thread 2 has completed S2.

Section 12.5 Synchronizing Threads with Semaphores 961

Figure 12.19
Progress graph for the
first loop iteration of
badcnt.c.

Thread 2

Thread 1

T2

S2

U2

L2

H2

H1 L1 U1 S1 T1

(L1, S2)

Figure 12.20
An example trajectory.

Thread 2

Thread 1

T2

S2

U2

L2

H2

H1 L1 U1 S1 T1

A progress graph models instruction execution as a transition from one state
to another. A transition is represented as a directed edge from one point to an
adjacent point. Legal transitions move to the right (an instruction in thread 1
completes) or up (an instruction in thread 2 completes). Two instructions cannot
complete at the same time—diagonal transitions are not allowed. Programs never
run backwards, so transitions that move down or to the left are not legal either.

The execution history of a program is modeled as a trajectory through the
state space. Figure 12.20 shows the trajectory that corresponds to the following
instruction ordering:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

For thread i, the instructions (Li, Ui, Si) that manipulate the contents of the
shared variable cnt constitute a critical section (with respect to shared variable

962 Chapter 12 Concurrent Programming

Figure 12.21
Safe and unsafe trajec-
tories. The intersection of
the critical regions forms
an unsafe region. Trajec-
tories that skirt the unsafe
region correctly update the
counter variable.

Thread 2

Critical
section
wrt cnt

Critical section wrt cnt

Thread 1

T2

S2

U2

L2

H2

H1 L1 U1 S1 T1

Unsafe region Unsafe
trajectory

Safe trajectory

cnt) that should not be interleaved with the critical section of the other thread. In
other words, we want to ensure that each thread has mutually exclusive access to
the shared variable while it is executing the instructions in its critical section. The
phenomenon in general is known as mutual exclusion.

On the progress graph, the intersection of the two critical sections defines
a region of the state space known as an unsafe region. Figure 12.21 shows the
unsafe region for the variable cnt. Notice that the unsafe region abuts, but does
not include, the states along its perimeter. For example, states (H1, H2) and (S1, U2)

abut the unsafe region, but are not part of it. A trajectory that skirts the unsafe
region is known as a safe trajectory. Conversely, a trajectory that touches any part
of the unsafe region is an unsafe trajectory. Figure 12.21 shows examples of safe
and unsafe trajectories through the state space of our example badcnt.c program.
The upper trajectory skirts the unsafe region along its left and top sides, and thus
is safe. The lower trajectory crosses the unsafe region, and thus is unsafe.

Any safe trajectory will correctly update the shared counter. In order to
guarantee correct execution of our example threaded program—and indeed any
concurrent program that shares global data structures—we must somehow syn-
chronize the threads so that they always have a safe trajectory. A classic approach
is based on the idea of a semaphore, which we introduce next.

Practice Problem 12.8
Using the progress graph in Figure 12.21, classify the following trajectories as
either safe or unsafe.

A. H1, L1, U1, S1, H2, L2, U2, S2, T2, T1

B. H2, L2, H1, L1, U1, S1, T1, U2, S2, T2

C. H1, H2, L2, U2, S2, L1, U1, S1, T1, T2

Section 12.5 Synchronizing Threads with Semaphores 963

12.5.2 Semaphores

Edsger Dijkstra, a pioneer of concurrent programming, proposed a classic solution
to the problem of synchronizing different execution threads based on a special
type of variable called a semaphore. A semaphore, s, is a global variable with a
nonnegative integer value that can only be manipulated by two special operations,
called P and V :

. P(s): If s is nonzero, then P decrements s and returns immediately. If s is zero,
then suspend the thread until s becomes nonzero and the process is restarted
by a V operation. After restarting, the P operation decrements s and returns
control to the caller.

. V (s): The V operation increments s by 1. If there are any threads blocked
at a P operation waiting for s to become nonzero, then the V operation
restarts exactly one of these threads, which then completes its P operation
by decrementing s.

The test and decrement operations in P occur indivisibly, in the sense that
once the semaphore s becomes nonzero, the decrement of s occurs without in-
terruption. The increment operation in V also occurs indivisibly, in that it loads,
increments, and stores the semaphore without interruption. Notice that the defi-
nition of V does not define the order in which waiting threads are restarted. The
only requirement is that the V must restart exactly one waiting thread. Thus, when
several threads are waiting at a semaphore, you cannot predict which one will be
restarted as a result of the V .

The definitions of P and V ensure that a running program can never enter a
state where a properly initialized semaphore has a negative value. This property,
known as the semaphore invariant, provides a powerful tool for controlling the
trajectories of concurrent programs, as we shall see in the next section.

The Posix standard defines a variety of functions for manipulating sema-
phores.

#include <semaphore.h>

int sem_init(sem_t *sem, 0, unsigned int value);

int sem_wait(sem_t *s); /* P(s) */

int sem_post(sem_t *s); /* V(s) */

Returns: 0 if OK, −1 on error

The sem_init function initializes semaphore sem to value. Each semaphore
must be initialized before it can be used. For our purposes, the middle argument
is always 0. Programs perform P and V operations by calling the sem_wait and
sem_post functions, respectively. For conciseness, we prefer to use the following
equivalent P and V wrapper functions instead:

964 Chapter 12 Concurrent Programming

#include "csapp.h"

void P(sem_t *s); /* Wrapper function for sem_wait */

void V(sem_t *s); /* Wrapper function for sem_post */

Returns: nothing

Aside Origin of the names P and V

Edsger Dijkstra (1930–2002) was originally from the Netherlands. The names P and V come from the
Dutch words Proberen (to test) and Verhogen (to increment).

12.5.3 Using Semaphores for Mutual Exclusion

Semaphores provide a convenient way to ensure mutually exclusive access to
shared variables. The basic idea is to associate a semaphore s, initially 1, with
each shared variable (or related set of shared variables) and then surround the
corresponding critical section with P(s) and V (s) operations.

A semaphore that is used in this way to protect shared variables is called a
binary semaphore because its value is always 0 or 1. Binary semaphores whose
purpose is to provide mutual exclusion are often called mutexes. Performing a
P operation on a mutex is called locking the mutex. Similarly, performing the
V operation is called unlocking the mutex. A thread that has locked but not yet
unlocked a mutex is said to be holding the mutex. A semaphore that is used as a
counter for a set of available resources is called a counting semaphore.

The progress graph in Figure 12.22 shows how we would use binary sema-
phores to properly synchronize our example counter program. Each state is la-
beled with the value of semaphore s in that state. The crucial idea is that this
combination of P and V operations creates a collection of states, called a forbid-
den region, where s < 0. Because of the semaphore invariant, no feasible trajectory
can include one of the states in the forbidden region. And since the forbidden re-
gion completely encloses the unsafe region, no feasible trajectory can touch any
part of the unsafe region. Thus, every feasible trajectory is safe, and regardless of
the ordering of the instructions at run time, the program correctly increments the
counter.

In an operational sense, the forbidden region created by the P and V op-
erations makes it impossible for multiple threads to be executing instructions in
the enclosed critical region at any point in time. In other words, the semaphore
operations ensure mutually exclusive access to the critical region.

Putting it all together, to properly synchronize the example counter program
in Figure 12.16 using semaphores, we first declare a semaphore called mutex:

volatile int cnt = 0; /* Counter */

sem_t mutex; /* Semaphore that protects counter */

Section 12.5 Synchronizing Threads with Semaphores 965

Thread 2

Thread 1

S2

T2

U2

L2

P(s)

H2

H1 P(s) L1 U1 S1 V(s)

V(s)

T1

1

1

0

0

0

0

1

1

0

0

0

0

0

0

–1

–1

–1

–1

0

0

–1

–1

–1

–1

0

0

–1

–1

–1

–1

0

0

–1

–1

–1

–1

1

1

0

0

0

0

1

1

0

0

0

0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Unsafe region

Forbidden region

Initially
s�1

Figure 12.22 Using semaphores for mutual exclusion. The infeasible states where
s < 0 define a forbidden region that surrounds the unsafe region and prevents any feasible
trajectory from touching the unsafe region.

and then initialize it to unity in the main routine:

Sem_init(&mutex, 0, 1); /* mutex = 1 */

Finally, we protect the update of the shared cnt variable in the thread routine by
surrounding it with P and V operations:

for (i = 0; i < niters; i++) {

P(&mutex);

cnt++;

V(&mutex);

}

When we run the properly synchronized program, it now produces the correct
answer each time.

linux> ./goodcnt 1000000

OK cnt=2000000

linux> ./goodcnt 1000000

OK cnt=2000000

966 Chapter 12 Concurrent Programming

Aside Limitations of progress graphs

Progress graphs give us a nice way to visualize concurrent program execution on uniprocessors and to
understand why we need synchronization. However, they do have limitations, particularly with respect
to concurrent execution on multiprocessors, where a set of CPU/cache pairs share the same main
memory. Multiprocessors behave in ways that cannot be explained by progress graphs. In particular, a
multiprocessor memory system can be in a state that does not correspond to any trajectory in a progress
graph. Regardless, the message remains the same: always synchronize accesses to your shared variables,
regardless if you’re running on a uniprocessor or a multiprocessor.

12.5.4 Using Semaphores to Schedule Shared Resources

Another important use of semaphores, besides providing mutual exclusion, is to
schedule accesses to shared resources. In this scenario, a thread uses a semaphore
operation to notify another thread that some condition in the program state has
become true. Two classical and useful examples are the producer-consumer and
readers-writers problems.

Producer-Consumer Problem

The producer-consumer problem is shown in Figure 12.23. A producer and con-
sumer thread share a bounded buffer with n slots. The producer thread repeatedly
produces new items and inserts them in the buffer. The consumer thread repeat-
edly removes items from the buffer and then consumes (uses) them. Variants with
multiple producers and consumers are also possible.

Since inserting and removing items involves updating shared variables, we
must guarantee mutually exclusive access to the buffer. But guaranteeing mutual
exclusion is not sufficient. We also need to schedule accesses to the buffer. If the
buffer is full (there are no empty slots), then the producer must wait until a slot
becomes available. Similarly, if the buffer is empty (there are no available items),
then the consumer must wait until an item becomes available.

Producer-consumer interactions occur frequently in real systems. For exam-
ple, in a multimedia system, the producer might encode video frames while the
consumer decodes and renders them on the screen. The purpose of the buffer is to
reduce jitter in the video stream caused by data-dependent differences in the en-
coding and decoding times for individual frames. The buffer provides a reservoir of
slots to the producer and a reservoir of encoded frames to the consumer. Another
common example is the design of graphical user interfaces. The producer detects

Producer
thread

Consumer
thread

Bounded
buffer

Figure 12.23 Producer-consumer problem. The producer generates items and inserts
them into a bounded buffer. The consumer removes items from the buffer and then
consumes them.

Section 12.5 Synchronizing Threads with Semaphores 967

code/conc/sbuf.h

1 typedef struct {

2 int *buf; /* Buffer array */

3 int n; /* Maximum number of slots */

4 int front; /* buf[(front+1)%n] is first item */

5 int rear; /* buf[rear%n] is last item */

6 sem_t mutex; /* Protects accesses to buf */

7 sem_t slots; /* Counts available slots */

8 sem_t items; /* Counts available items */

9 } sbuf_t;

code/conc/sbuf.h

Figure 12.24 sbuf_t: Bounded buffer used by the Sbuf package.

mouse and keyboard events and inserts them in the buffer. The consumer removes
the events from the buffer in some priority-based manner and paints the screen.

In this section, we will develop a simple package, called Sbuf, for building
producer-consumer programs. In the next section, we look at how to use it to
build an interesting concurrent server based on prethreading. Sbuf manipulates
bounded buffers of type sbuf_t (Figure 12.24). Items are stored in a dynamically
allocated integer array (buf) with n items. The front and rear indices keep
track of the first and last items in the array. Three semaphores synchronize access
to the buffer. The mutex semaphore provides mutually exclusive buffer access.
Semaphores slots and items are counting semaphores that count the number of
empty slots and available items, respectively.

Figure 12.25 shows the implementation of Sbuf function. The sbuf_init
function allocates heap memory for the buffer, sets front and rear to indicate
an empty buffer, and assigns initial values to the three semaphores. This function
is called once, before calls to any of the other three functions. The sbuf_deinit
function frees the buffer storage when the application is through using it. The
sbuf_insert function waits for an available slot, locks the mutex, adds the item,
unlocks the mutex, and then announces the availability of a new item. The sbuf_
remove function is symmetric. After waiting for an available buffer item, it locks
the mutex, removes the item from the front of the buffer, unlocks the mutex, and
then signals the availability of a new slot.

Practice Problem 12.9
Let p denote the number of producers, c the number of consumers, and n the
buffer size in units of items. For each of the following scenarios, indicate whether
the mutex semaphore in sbuf_insert and sbuf_remove is necessary or not.

A. p = 1, c = 1, n > 1

B. p = 1, c = 1, n = 1

C. p > 1, c > 1, n = 1

968 Chapter 12 Concurrent Programming

code/conc/sbuf.c

1 #include "csapp.h"

2 #include "sbuf.h"

3

4 /* Create an empty, bounded, shared FIFO buffer with n slots */

5 void sbuf_init(sbuf_t *sp, int n)

6 {

7 sp->buf = Calloc(n, sizeof(int));

8 sp->n = n; /* Buffer holds max of n items */

9 sp->front = sp->rear = 0; /* Empty buffer iff front == rear */

10 Sem_init(&sp->mutex, 0, 1); /* Binary semaphore for locking */

11 Sem_init(&sp->slots, 0, n); /* Initially, buf has n empty slots */

12 Sem_init(&sp->items, 0, 0); /* Initially, buf has zero data items */

13 }

14

15 /* Clean up buffer sp */

16 void sbuf_deinit(sbuf_t *sp)

17 {

18 Free(sp->buf);

19 }

20

21 /* Insert item onto the rear of shared buffer sp */

22 void sbuf_insert(sbuf_t *sp, int item)

23 {

24 P(&sp->slots); /* Wait for available slot */

25 P(&sp->mutex); /* Lock the buffer */

26 sp->buf[(++sp->rear)%(sp->n)] = item; /* Insert the item */

27 V(&sp->mutex); /* Unlock the buffer */

28 V(&sp->items); /* Announce available item */

29 }

30

31 /* Remove and return the first item from buffer sp */

32 int sbuf_remove(sbuf_t *sp)

33 {

34 int item;

35 P(&sp->items); /* Wait for available item */

36 P(&sp->mutex); /* Lock the buffer */

37 item = sp->buf[(++sp->front)%(sp->n)]; /* Remove the item */

38 V(&sp->mutex); /* Unlock the buffer */

39 V(&sp->slots); /* Announce available slot */

40 return item;

41 }

code/conc/sbuf.c

Figure 12.25 Sbuf: A package for synchronizing concurrent access to bounded
buffers.

Section 12.5 Synchronizing Threads with Semaphores 969

Readers-Writers Problem

The readers-writers problem is a generalization of the mutual exclusion problem. A
collection of concurrent threads are accessing a shared object such as a data struc-
ture in main memory or a database on disk. Some threads only read the object,
while others modify it. Threads that modify the object are called writers. Threads
that only read it are called readers. Writers must have exclusive access to the ob-
ject, but readers may share the object with an unlimited number of other readers.
In general, there are an unbounded number of concurrent readers and writers.

Readers-writers interactions occur frequently in real systems. For example,
in an online airline reservation system, an unlimited number of customers are al-
lowed to concurrently inspect the seat assignments, but a customer who is booking
a seat must have exclusive access to the database. As another example, in a mul-
tithreaded caching Web proxy, an unlimited number of threads can fetch existing
pages from the shared page cache, but any thread that writes a new page to the
cache must have exclusive access.

The readers-writers problem has several variations, each based on the priori-
ties of readers and writers. The first readers-writers problem, which favors readers,
requires that no reader be kept waiting unless a writer has already been granted
permission to use the object. In other words, no reader should wait simply because
a writer is waiting. The second readers-writers problem, which favors writers, re-
quires that once a writer is ready to write, it performs its write as soon as possible.
Unlike the first problem, a reader that arrives after a writer must wait, even if the
writer is also waiting.

Figure 12.26 shows a solution to the first readers-writers problem. Like the
solutions to many synchronization problems, it is subtle and deceptively simple.
The w semaphore controls access to the critical sections that access the shared
object. The mutex semaphore protects access to the shared readcnt variable,
which counts the number of readers currently in the critical section. A writer
locks the wmutex each time it enters the critical section, and unlocks it each time it
leaves. This guarantees that there is at most one writer in the critical section at any
point in time. On the other hand, only the first reader to enter the critical section
locks w, and only the last reader to leave the critical section unlocks it. The wmutex
is ignored by readers who enter and leave while other readers are present. This
means that as long as a single reader holds the w mutex, an unbounded number
of readers can enter the critical section unimpeded.

A correct solution to either of the readers-writers problems can result in
starvation, where a thread blocks indefinitely and fails to make progress. For
example, in the solution in Figure 12.26, a writer could wait indefinitely while
a stream of readers arrived.

Practice Problem 12.10
The solution to the first readers-writers problem in Figure 12.26 gives priority to
readers, but this priority is weak in the sense that a writer leaving its critical section
might restart a waiting writer instead of a waiting reader. Describe a scenario
where this weak priority would allow a collection of writers to starve a reader.

970 Chapter 12 Concurrent Programming

/* Global variables */

int readcnt; /* Initially = 0 */

sem_t mutex, w; /* Both initially = 1 */

void reader(void)

{

while (1) {

P(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

P(&w);

V(&mutex);

/* Critical section */

/* Reading happens */

P(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

V(&w);

V(&mutex);

}

}

void writer(void)

{

while (1) {

P(&w);

/* Critical section */

/* Writing happens */

V(&w);

}

}

Figure 12.26 Solution to the first readers-writers problem. Favors readers over
writers.

Aside Other synchronization mechanisms

We have shown you how to synchronize threads using semaphores, mainly because they are simple, clas-
sical, and have a clean semantic model. But you should know that other synchronization techniques exist
as well. For example, Java threads are synchronized with a mechanism called a Java monitor [51], which
provides a higher level abstraction of the mutual exclusion and scheduling capabilities of semaphores;
in fact monitors can be implemented with semaphores. As another example, the Pthreads interface de-
fines a set of synchronization operations on mutex and condition variables. Pthreads mutexes are used
for mutual exclusion. Condition variables are used for scheduling accesses to shared resources, such as
the bounded buffer in a producer-consumer program.

12.5.5 Putting It Together: A Concurrent Server Based on Prethreading

We have seen how semaphores can be used to access shared variables and to
schedule accesses to shared resources. To help you understand these ideas more
clearly, let us apply them to a concurrent server based on a technique called
prethreading.

Section 12.5 Synchronizing Threads with Semaphores 971

Client

Client

Master
thread

Worker
thread

Pool of worker threads

Worker
thread

Buffer Remove
descriptors

Accept
connections

Insert
descriptors

Service client

Service client

. . .

. . .

Figure 12.27 Organization of a prethreaded concurrent server. A set of existing
threads repeatedly remove and process connected descriptors from a bounded buffer.

In the concurrent server in Figure 12.14, we created a new thread for each
new client. A disadvantage of this approach is that we incur the nontrivial cost
of creating a new thread for each new client. A server based on prethreading
tries to reduce this overhead by using the producer-consumer model shown in
Figure 12.27. The server consists of a main thread and a set of worker threads.
The main thread repeatedly accepts connection requests from clients and places
the resulting connected descriptors in a bounded buffer. Each worker thread
repeatedly removes a descriptor from the buffer, services the client, and then waits
for the next descriptor.

Figure 12.28 shows how we would use the Sbuf package to implement a
prethreaded concurrent echo server. After initializing buffer sbuf (line 23), the
main thread creates the set of worker threads (lines 26–27). Then it enters the
infinite server loop, accepting connection requests and inserting the resulting
connected descriptors in sbuf. Each worker thread has a very simple behavior.
It waits until it is able to remove a connected descriptor from the buffer (line 39),
and then calls the echo_cnt function to echo client input.

The echo_cnt function in Figure 12.29 is a version of the echo function
from Figure 11.21 that records the cumulative number of bytes received from
all clients in a global variable called byte_cnt. This is interesting code to study
because it shows you a general technique for initializing packages that are called
from thread routines. In our case, we need to initialize the byte_cnt counter
and the mutex semaphore. One approach, which we used for the Sbuf and Rio
packages, is to require the main thread to explicitly call an initialization function.
Another approach, shown here, uses the pthread_once function (line 19) to call
the initialization function the first time some thread calls the echo_cnt function.
The advantage of this approach is that it makes the package easier to use. The
disadvantage is that every call to echo_cntmakes a call to pthread_once, which
most times does nothing useful.

Once the package is initialized, the echo_cnt function initializes the Rio
buffered I/O package (line 20) and then echoes each text line that is received from
the client. Notice that the accesses to the shared byte_cnt variable in lines 23–25
are protected by P and V operations.

code/conc/echoservert_pre.c

1 #include "csapp.h"

2 #include "sbuf.h"

3 #define NTHREADS 4

4 #define SBUFSIZE 16

5

6 void echo_cnt(int connfd);

7 void *thread(void *vargp);

8

9 sbuf_t sbuf; /* Shared buffer of connected descriptors */

10

11 int main(int argc, char **argv)

12 {

13 int i, listenfd, connfd, port;

14 socklen_t clientlen=sizeof(struct sockaddr_in);

15 struct sockaddr_in clientaddr;

16 pthread_t tid;

17

18 if (argc != 2) {

19 fprintf(stderr, "usage: %s <port>\n", argv[0]);

20 exit(0);

21 }

22 port = atoi(argv[1]);

23 sbuf_init(&sbuf, SBUFSIZE);

24 listenfd = Open_listenfd(port);

25

26 for (i = 0; i < NTHREADS; i++) /* Create worker threads */

27 Pthread_create(&tid, NULL, thread, NULL);

28

29 while (1) {

30 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

31 sbuf_insert(&sbuf, connfd); /* Insert connfd in buffer */

32 }

33 }

34

35 void *thread(void *vargp)

36 {

37 Pthread_detach(pthread_self());

38 while (1) {

39 int connfd = sbuf_remove(&sbuf); /* Remove connfd from buffer */

40 echo_cnt(connfd); /* Service client */

41 Close(connfd);

42 }

43 }

code/conc/echoservert_pre.c

Figure 12.28 A prethreaded concurrent echo server. The server uses a producer-
consumer model with one producer and multiple consumers.

Section 12.5 Synchronizing Threads with Semaphores 973

code/conc/echo_cnt.c

1 #include "csapp.h"

2

3 static int byte_cnt; /* Byte counter */

4 static sem_t mutex; /* and the mutex that protects it */

5

6 static void init_echo_cnt(void)

7 {

8 Sem_init(&mutex, 0, 1);

9 byte_cnt = 0;

10 }

11

12 void echo_cnt(int connfd)

13 {

14 int n;

15 char buf[MAXLINE];

16 rio_t rio;

17 static pthread_once_t once = PTHREAD_ONCE_INIT;

18

19 Pthread_once(&once, init_echo_cnt);

20 Rio_readinitb(&rio, connfd);

21 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

22 P(&mutex);

23 byte_cnt += n;

24 printf("thread %d received %d (%d total) bytes on fd %d\n",

25 (int) pthread_self(), n, byte_cnt, connfd);

26 V(&mutex);

27 Rio_writen(connfd, buf, n);

28 }

29 }

code/conc/echo_cnt.c

Figure 12.29 echo_cnt: A version of echo that counts all bytes received from
clients.

Aside Event-driven programs based on threads

I/O multiplexing is not the only way to write an event-driven program. For example, you might have
noticed that the concurrent prethreaded server that we just developed is really an event-driven server
with simple state machines for the main and worker threads. The main thread has two states (“waiting
for connection request” and “waiting for available buffer slot”), two I/O events (“connection request
arrives” and “buffer slot becomes available”), and two transitions (“accept connection request” and
“insert buffer item”). Similarly, each worker thread has one state (“waiting for available buffer item”),
one I/O event (“buffer item becomes available”), and one transition (“remove buffer item”).

974 Chapter 12 Concurrent Programming

12.6 Using Threads for Parallelism

Thus far in our study of concurrency, we have assumed concurrent threads execut-
ing on uniprocessor systems. However, many modern machines have multi-core
processors. Concurrent programs often run faster on such machines because the
operating system kernel schedules the concurrent threads in parallel on multi-
ple cores, rather than sequentially on a single core. Exploiting such parallelism
is critically important in applications such as busy Web servers, database servers,
and large scientific codes, and it is becoming increasingly useful in mainstream
applications such as Web browsers, spreadsheets, and document processors.

Figure 12.30 shows the set relationships between sequential, concurrent, and
parallel programs. The set of all programs can be partitioned into the disjoint
sets of sequential and concurrent programs. A sequential program is written as a
single logical flow. A concurrent program is written as multiple concurrent flows.
A parallel program is a concurrent program running on multiple processors. Thus,
the set of parallel programs is a proper subset of the set of concurrent programs.

A detailed treatment of parallel programs is beyond our scope, but studying a
very simple example program will help you understand some important aspects of
parallel programming. For example, consider how we might sum the sequence of
integers 0, . . . , n − 1 in parallel. Of course, there is a closed-form solution for this
particular problem, but nonetheless it is a concise and easy-to-understand exem-
plar that will allow us to make some interesting points about parallel programs.

The most straightforward approach is to partition the sequence into t disjoint
regions, and then assign each of t different threads to work on its own region. For
simplicity, assume that n is a multiple of t , such that each region has n/t elements.
The main thread creates t peer threads, where each peer thread k runs in parallel
on its own processor core and computes sk, which is the sum of the elements in
region k. Once the peer threads have completed, the main thread computes the
final result by summing each sk.

Figure 12.31 shows how we might implement this simple parallel sum algo-
rithm. In lines 27–32, the main thread creates the peer threads and then waits for
them to terminate. Notice that the main thread passes a small integer to each peer
thread that serves as a unique thread ID. Each peer thread will use its thread ID to
determine which portion of the sequence it should work on. This idea of passing
a small unique thread ID to the peer threads is a general technique that is used in
many parallel applications. After the peer threads have terminated, the psum vec-
tor contains the partial sums computed by each peer thread. The main thread then

Figure 12.30
Relationships between
the sets of sequential,
concurrent, and parallel
programs.

All programs

Concurrent programs

Sequential programsParallel
programs

code/conc/psum.c

1 #include "csapp.h"

2 #define MAXTHREADS 32

3

4 void *sum(void *vargp);

5

6 /* Global shared variables */

7 long psum[MAXTHREADS]; /* Partial sum computed by each thread */

8 long nelems_per_thread; /* Number of elements summed by each thread */

9

10 int main(int argc, char **argv)

11 {

12 long i, nelems, log_nelems, nthreads, result = 0;

13 pthread_t tid[MAXTHREADS];

14 int myid[MAXTHREADS];

15

16 /* Get input arguments */

17 if (argc != 3) {

18 printf("Usage: %s <nthreads> <log_nelems>\n", argv[0]);

19 exit(0);

20 }

21 nthreads = atoi(argv[1]);

22 log_nelems = atoi(argv[2]);

23 nelems = (1L << log_nelems);

24 nelems_per_thread = nelems / nthreads;

25

26 /* Create peer threads and wait for them to finish */

27 for (i = 0; i < nthreads; i++) {

28 myid[i] = i;

29 Pthread_create(&tid[i], NULL, sum, &myid[i]);

30 }

31 for (i = 0; i < nthreads; i++)

32 Pthread_join(tid[i], NULL);

33

34 /* Add up the partial sums computed by each thread */

35 for (i = 0; i < nthreads; i++)

36 result += psum[i];

37

38 /* Check final answer */

39 if (result != (nelems * (nelems-1))/2)

40 printf("Error: result=%ld\n", result);

41

42 exit(0);

43 }

code/conc/psum.c

Figure 12.31 Simple parallel program that uses multiple threads to sum the
elements of a sequence.

976 Chapter 12 Concurrent Programming

code/conc/psum.c

1 void *sum(void *vargp)

2 {

3 int myid = *((int *)vargp); /* Extract the thread ID */

4 long start = myid * nelems_per_thread; /* Start element index */

5 long end = start + nelems_per_thread; /* End element index */

6 long i, sum = 0;

7

8 for (i = start; i < end; i++) {

9 sum += i;

10 }

11 psum[myid] = sum;

12

13 return NULL;

14 }

code/conc/psum.c

Figure 12.32 Thread routine for the program in Figure 12.31.

sums up the elements of the psum vector (lines 35–36), and uses the closed-form
solution to verify the result (lines 39–40).

Figure 12.32 shows the function that each peer thread executes. In line 3,
the thread extracts the thread ID from the thread argument, and then uses this
ID to determine the region of the sequence it should work on (lines 4–5). In
lines 8–10, the thread operates on its portion of the sequence, and then updates
its entry in the partial sum vector (line 11). Notice that we are careful to give each
peer thread a unique memory location to update, and thus it is not necessary to
synchronize access to the psum array with semaphore mutexes. The only necessary
synchronization in this particular case is that the main thread must wait for each
of the children to finish so that it knows that each entry in psum is valid.

Figure 12.33 shows the total elapsed running time of the program in Fig-
ure 12.31 as a function of the number of threads. In each case, the program runs
on a system with four processor cores and sums a sequence of n = 231 elements.
We see that running time decreases as we increase the number of threads, up to
four threads, at which point it levels off and even starts to increase a little. In the
ideal case, we would expect the running time to decrease linearly with the num-
ber of cores. That is, we would expect running time to drop by half each time we
double the number of threads. This is indeed the case until we reach the point
(t > 4) where each of the four cores is busy running at least one thread. Running
time actually increases a bit as we increase the number of threads because of the
overhead of context switching multiple threads on the same core. For this reason,
parallel programs are often written so that each core runs exactly one thread.

Although absolute running time is the ultimate measure of any program’s
performance, there are some useful relative measures, known as speedup and
efficiency, that can provide insight into how well a parallel program is exploiting

Section 12.6 Using Threads for Parallelism 977

Figure 12.33
Performance of the
program in Figure 12.31
on a multi-core machine
with four cores. Summing
a sequence of 231 elements.

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
1

1.56

Threads

E
la

p
se

d
 t

im
e

(s
)

2

0.81

4

0.4 0.4

8 16

0.45

potential parallelism. The speedup of a parallel program is typically defined as

Sp = T1

Tp

where p is the number of processor cores and Tk is the running time on k cores. This
formulation is sometimes referred to as strong scaling. When T1 is the execution
time of a sequential version of the program, then Sp is called the absolute speedup.
When T1 is the execution time of the parallel version of the program running on
one core, then Sp is called the relative speedup. Absolute speedup is a truer mea-
sure of the benefits of parallelism than relative speedup. Parallel programs often
suffer from synchronization overheads, even when they run on one processor, and
these overheads can artificially inflate the relative speedup numbers because they
increase the size of the numerator. On the other hand, absolute speedup is more
difficult to measure than relative speedup because measuring absolute speedup
requires two different versions of the program. For complex parallel codes, creat-
ing a separate sequential version might not be feasible, either because the code is
too complex or the source code is not available.

A related measure, known as efficiency, is defined as

Ep = Sp

p
= T1

pTp

and is typically reported as a percentage in the range (0, 100]. Efficiency is a mea-
sure of the overhead due to parallelization. Programs with high efficiency are
spending more time doing useful work and less time synchronizing and commu-
nicating than programs with low efficiency.

978 Chapter 12 Concurrent Programming

Threads (t) 1 2 4 8 16
Cores (p) 1 2 4 4 4

Running time (Tp) 1.56 0.81 0.40 0.40 0.45
Speedup (Sp) 1 1.9 3.9 3.9 3.5
Efficiency (Ep) 100% 95% 98% 98% 88%

Figure 12.34 Speedup and parallel efficiency for the execution times in Figure 12.33.

Figure 12.34 shows the different speedup and efficiency measures for our
example parallel sum program. Efficiencies over 90% such as these are very good,
but do not be fooled. We were able to achieve high efficiency because our problem
was trivially easy to parallelize. In practice, this is not usually the case. Parallel
programming has been an active area of research for decades. With the advent
of commodity multi-core machines whose core count is doubling every few years,
parallel programming continues to be a deep, difficult, and active area of research.

There is another view of speedup, known as weak scaling, which increases
the problem size along with the number of processors, such that the amount of
work performed on each processor is held constant as the number of processors
increases. With this formulation, speedup and efficiency are expressed in terms
of the total amount of work accomplished per unit time. For example, if we can
double the number of processors and do twice the amount of work per hour, then
we are enjoying linear speedup and 100% efficiency.

Weak scaling is often a truer measure than strong scaling because it more
accurately reflects our desire to use bigger machines to do more work. This is par-
ticularly true for scientific codes, where the problem size can be easily increased,
and where bigger problem sizes translate directly to better predictions of nature.
However, there exist applications whose sizes are not so easily increased, and for
these applications strong scaling is more appropriate. For example, the amount of
work performed by real-time signal processing applications is often determined by
the properties of the physical sensors that are generating the signals. Changing the
total amount of work requires using different physical sensors, which might not be
feasible or necessary. For these applications, we typically want to use parallelism
to accomplish a fixed amount of work as quickly as possible.

Practice Problem 12.11
Fill in the blanks for the parallel program in the following table. Assume strong
scaling.

Threads (t) 1 2 4
Cores (p) 1 2 4

Running time (Tp) 12 8 6
Speedup (Sp) 1.5
Efficiency (Ep) 100% 50%

Section 12.7 Other Concurrency Issues 979

12.7 Other Concurrency Issues

You probably noticed that life got much more complicated once we were asked
to synchronize accesses to shared data. So far, we have looked at techniques for
mutual exclusion and producer-consumer synchronization, but this is only the tip
of the iceberg. Synchronization is a fundamentally difficult problem that raises
issues that simply do not arise in ordinary sequential programs. This section is a
survey (by no means complete) of some of the issues you need to be aware of
when you write concurrent programs. To keep things concrete, we will couch our
discussion in terms of threads. Keep in mind, however, that these are typical of the
issues that arise when concurrent flows of any kind manipulate shared resources.

12.7.1 Thread Safety

When we program with threads, we must be careful to write functions that have a
property called thread safety. A function is said to be thread-safe if and only if it will
always produce correct results when called repeatedly from multiple concurrent
threads. If a function is not thread-safe, then we say it is thread-unsafe.

We can identify four (nondisjoint) classes of thread-unsafe functions:

. Class 1: Functions that do not protect shared variables. We have already en-
countered this problem with the thread function in Figure 12.16, which in-
crements an unprotected global counter variable. This class of thread-unsafe
function is relatively easy to make thread-safe: protect the shared variables
with synchronization operations such as P and V . An advantage is that it does
not require any changes in the calling program. A disadvantage is that the
synchronization operations will slow down the function.

. Class 2: Functions that keep state across multiple invocations. A pseudo-
random number generator is a simple example of this class of thread-unsafe
function. Consider the pseudo-random number generator package in Fig-
ure 12.35. The rand function is thread-unsafe because the result of the current
invocation depends on an intermediate result from the previous iteration.
When we call rand repeatedly from a single thread after seeding it with a call
to srand, we can expect a repeatable sequence of numbers. However, this
assumption no longer holds if multiple threads are calling rand.

The only way to make a function such as rand thread-safe is to rewrite it
so that it does not use any static data, relying instead on the caller to pass
the state information in arguments. The disadvantage is that the programmer
is now forced to change the code in the calling routine as well. In a large
program where there are potentially hundreds of different call sites, making
such modifications could be nontrivial and prone to error.

. Class 3: Functions that return a pointer to a static variable.Some functions, such
as ctime and gethostbyname, compute a result in a static variable and then
return a pointer to that variable. If we call such functions from concurrent
threads, then disaster is likely, as results being used by one thread are silently
overwritten by another thread.

980 Chapter 12 Concurrent Programming

code/conc/rand.c

1 unsigned int next = 1;

2

3 /* rand - return pseudo-random integer on 0..32767 */

4 int rand(void)

5 {

6 next = next*1103515245 + 12345;

7 return (unsigned int)(next/65536) % 32768;

8 }

9

10 /* srand - set seed for rand() */

11 void srand(unsigned int seed)

12 {

13 next = seed;

14 }

code/conc/rand.c

Figure 12.35 A thread-unsafe pseudo-random number generator [58].

There are two ways to deal with this class of thread-unsafe functions. One
option is to rewrite the function so that the caller passes the address of the
variable in which to store the results. This eliminates all shared data, but it
requires the programmer to have access to the function source code.

If the thread-unsafe function is difficult or impossible to modify (e.g., the
code is very complex or there is no source code available), then another option
is to use the lock-and-copy technique. The basic idea is to associate a mutex
with the thread-unsafe function. At each call site, lock the mutex, call the
thread-unsafe function, copy the result returned by the function to a private
memory location, and then unlock the mutex. To minimize changes to the
caller, you should define a thread-safe wrapper function that performs the
lock-and-copy, and then replace all calls to the thread-unsafe function with
calls to the wrapper. For example, Figure 12.36 shows a thread-safe wrapper
for ctime that uses the lock-and-copy technique.

. Class 4: Functions that call thread-unsafe functions. If a function f calls a
thread-unsafe function g, is f thread-unsafe? It depends. If g is a class 2
function that relies on state across multiple invocations, then f is also thread-
unsafe and there is no recourse short of rewriting g. However, if g is a class 1
or class 3 function, then f can still be thread-safe if you protect the call site
and any resulting shared data with a mutex. We see a good example of this in
Figure 12.36, where we use lock-and-copy to write a thread-safe function that
calls a thread-unsafe function.

12.7.2 Reentrancy

There is an important class of thread-safe functions, known as reentrant functions,
that are characterized by the property that they do not reference any shared data

Section 12.7 Other Concurrency Issues 981

code/conc/ctime_ts.c

1 char *ctime_ts(const time_t *timep, char *privatep)

2 {

3 char *sharedp;

4

5 P(&mutex);

6 sharedp = ctime(timep);

7 strcpy(privatep, sharedp); /* Copy string from shared to private */

8 V(&mutex);

9 return privatep;

10 }

code/conc/ctime_ts.c

Figure 12.36 Thread-safe wrapper function for the C standard library ctime
function. Uses the lock-and-copy technique to call a class 3 thread-unsafe function.

Figure 12.37
Relationships between
the sets of reentrant,
thread-safe, and non-
thread-safe functions.

All functions

Thread-safe
functions

Thread-unsafe
functionsReentrant

functions

when they are called by multiple threads. Although the terms thread-safe and
reentrant are sometimes used (incorrectly) as synonyms, there is a clear technical
distinction that is worth preserving. Figure 12.37 shows the set relationships be-
tween reentrant, thread-safe, and thread-unsafe functions. The set of all functions
is partitioned into the disjoint sets of thread-safe and thread-unsafe functions. The
set of reentrant functions is a proper subset of the thread-safe functions.

Reentrant functions are typically more efficient than nonreentrant thread-
safe functions because they require no synchronization operations. Furthermore,
the only way to convert a class 2 thread-unsafe function into a thread-safe one is
to rewrite it so that it is reentrant. For example, Figure 12.38 shows a reentrant
version of the rand function from Figure 12.35. The key idea is that we have
replaced the static next variable with a pointer that is passed in by the caller.

Is it possible to inspect the code of some function and declare a priori that it is
reentrant? Unfortunately, it depends. If all function arguments are passed by value
(i.e., no pointers) and all data references are to local automatic stack variables (i.e.,
no references to static or global variables), then the function is explicitly reentrant,
in the sense that we can assert its reentrancy regardless of how it is called.

However, if we loosen our assumptions a bit and allow some parameters in
our otherwise explicitly reentrant function to be passed by reference (that is, we
allow them to pass pointers) then we have an implicitly reentrant function, in the
sense that it is only reentrant if the calling threads are careful to pass pointers

982 Chapter 12 Concurrent Programming

code/conc/rand_r.c

1 /* rand_r - a reentrant pseudo-random integer on 0..32767 */

2 int rand_r(unsigned int *nextp)

3 {

4 *nextp = *nextp * 1103515245 + 12345;

5 return (unsigned int)(*nextp / 65536) % 32768;

6 }

code/conc/rand_r.c

Figure 12.38 rand_r: A reentrant version of the rand function from Figure 12.35.

to nonshared data. For example, the rand_r function in Figure 12.38 is implicitly
reentrant.

We always use the term reentrant to include both explicit and implicit reen-
trant functions. However, it is important to realize that reentrancy is sometimes a
property of both the caller and the callee, and not just the callee alone.

Practice Problem 12.12
The ctime_ts function in Figure 12.36 is thread-safe, but not reentrant. Explain.

12.7.3 Using Existing Library Functions in Threaded Programs

Most Unix functions, including the functions defined in the standard C library
(such as malloc, free, realloc, printf, and scanf), are thread-safe, with only
a few exceptions. Figure 12.39 lists the common exceptions. (See [109] for a com-
plete list.) The asctime, ctime, and localtime functions are popular functions for
converting back and forth between different time and date formats. The gethost-
byname, gethostbyaddr, and inet_ntoa functions are frequently used network
programming functions that we encountered in Chapter 11. The strtok function
is a deprecated function (one whose use is discouraged) for parsing strings.

With the exceptions of rand and strtok, all of these thread-unsafe functions
are of the class 3 variety that return a pointer to a static variable. If we need to call
one of these functions in a threaded program, the least disruptive approach to the
caller is to lock-and-copy. However, the lock-and-copy approach has a number
of disadvantages. First, the additional synchronization slows down the program.
Second, functions such as gethostbyname that return pointers to complex struc-
tures of structures require a deep copy of the structures in order to copy the entire
structure hierarchy. Third, the lock-and-copy approach will not work for a class 2
thread-unsafe function such as rand that relies on static state across calls.

Therefore, Unix systems provide reentrant versions of most thread-unsafe
functions. The names of the reentrant versions always end with the “_r” suffix.
For example, the reentrant version of gethostbyname is called gethostbyname_r.
We recommend using these functions whenever possible.

Section 12.7 Other Concurrency Issues 983

Thread-unsafe function Thread-unsafe class Unix thread-safe version

rand 2 rand_r

strtok 2 strtok_r

asctime 3 asctime_r

ctime 3 ctime_r

gethostbyaddr 3 gethostbyaddr_r

gethostbyname 3 gethostbyname_r

inet_ntoa 3 (none)
localtime 3 localtime_r

Figure 12.39 Common thread-unsafe library functions.

12.7.4 Races

A race occurs when the correctness of a program depends on one thread reaching
point x in its control flow before another thread reaches point y. Races usually
occur because programmers assume that threads will take some particular trajec-
tory through the execution state space, forgetting the golden rule that threaded
programs must work correctly for any feasible trajectory.

An example is the easiest way to understand the nature of races. Consider the
simple program in Figure 12.40. The main thread creates four peer threads and
passes a pointer to a unique integer ID to each one. Each peer thread copies the
ID passed in its argument to a local variable (line 21), and then prints a message
containing the ID. It looks simple enough, but when we run this program on our
system, we get the following incorrect result:

unix> ./race

Hello from thread 1

Hello from thread 3

Hello from thread 2

Hello from thread 3

The problem is caused by a race between each peer thread and the main
thread. Can you spot the race? Here is what happens. When the main thread cre-
ates a peer thread in line 12, it passes a pointer to the local stack variable i. At this
point, the race is on between the next call to pthread_create in line 12 and the
dereferencing and assignment of the argument in line 21. If the peer thread exe-
cutes line 21 before the main thread executes line 12, then the myid variable gets
the correct ID. Otherwise, it will contain the ID of some other thread. The scary
thing is that whether we get the correct answer depends on how the kernel sched-
ules the execution of the threads. On our system it fails, but on other systems it
might work correctly, leaving the programmer blissfully unaware of a serious bug.

To eliminate the race, we can dynamically allocate a separate block for each
integer ID, and pass the thread routine a pointer to this block, as shown in

984 Chapter 12 Concurrent Programming

code/conc/race.c

1 #include "csapp.h"

2 #define N 4

3

4 void *thread(void *vargp);

5

6 int main()

7 {

8 pthread_t tid[N];

9 int i;

10

11 for (i = 0; i < N; i++)

12 Pthread_create(&tid[i], NULL, thread, &i);

13 for (i = 0; i < N; i++)

14 Pthread_join(tid[i], NULL);

15 exit(0);

16 }

17

18 /* Thread routine */

19 void *thread(void *vargp)

20 {

21 int myid = *((int *)vargp);

22 printf("Hello from thread %d\n", myid);

23 return NULL;

24 }

code/conc/race.c

Figure 12.40 A program with a race.

Figure 12.41 (lines 12–14). Notice that the thread routine must free the block in
order to avoid a memory leak.

When we run this program on our system, we now get the correct result:

unix> ./norace

Hello from thread 0

Hello from thread 1

Hello from thread 2

Hello from thread 3

Practice Problem 12.13
In Figure 12.41, we might be tempted to free the allocated memory block immedi-
ately after line 15 in the main thread, instead of freeing it in the peer thread. But
this would be a bad idea. Why?

Section 12.7 Other Concurrency Issues 985

code/conc/norace.c

1 #include "csapp.h"

2 #define N 4

3

4 void *thread(void *vargp);

5

6 int main()

7 {

8 pthread_t tid[N];

9 int i, *ptr;

10

11 for (i = 0; i < N; i++) {

12 ptr = Malloc(sizeof(int));

13 *ptr = i;

14 Pthread_create(&tid[i], NULL, thread, ptr);

15 }

16 for (i = 0; i < N; i++)

17 Pthread_join(tid[i], NULL);

18 exit(0);

19 }

20

21 /* Thread routine */

22 void *thread(void *vargp)

23 {

24 int myid = *((int *)vargp);

25 Free(vargp);

26 printf("Hello from thread %d\n", myid);

27 return NULL;

28 }

code/conc/norace.c

Figure 12.41 A correct version of the program in Figure 12.40 without a race.

Practice Problem 12.14

A. In Figure 12.41, we eliminated the race by allocating a separate block for
each integer ID. Outline a different approach that does not call the malloc
or free functions.

B. What are the advantages and disadvantages of this approach?

12.7.5 Deadlocks

Semaphores introduce the potential for a nasty kind of run-time error, called
deadlock, where a collection of threads are blocked, waiting for a condition that

986 Chapter 12 Concurrent Programming

. . .

.

. . .

. . .

. . .
. . .

. . .

Thread 2

Thread 1

A trajectory that deadlocks

A trajectory that does not deadlock

P(s)

P(t)

P(s) P(t) V(s) V(t)

V(t)

V(s)

Initially
s�1
t�1

Forbidden
region
for s

Forbidden
region

for t

Deadlock
state

d

Deadlock
region

Figure 12.42 Progress graph for a program that can deadlock.

will never be true. The progress graph is an invaluable tool for understanding
deadlock. For example, Figure 12.42 shows the progress graph for a pair of threads
that use two semaphores for mutual exclusion. From this graph, we can glean some
important insights about deadlock:

. The programmer has incorrectly ordered the P and V operations such that
the forbidden regions for the two semaphores overlap. If some execution
trajectory happens to reach the deadlock state d , then no further progress is
possible because the overlapping forbidden regions block progress in every
legal direction. In other words, the program is deadlocked because each
thread is waiting for the other to do a V operation that will never occur.

. The overlapping forbidden regions induce a set of states called the deadlock
region. If a trajectory happens to touch a state in the deadlock region, then
deadlock is inevitable. Trajectories can enter deadlock regions, but they can
never leave.

. Deadlock is an especially difficult issue because it is not always predictable.
Some lucky execution trajectories will skirt the deadlock region, while others
will be trapped by it. Figure 12.42 shows an example of each. The implications
for a programmer are scary. You might run the same program 1000 times

Section 12.7 Other Concurrency Issues 987

. . .

.

. . .
. . .

. . .

Thread 2

Thread 1

P(t)

P(s)

P(s) P(t) V(s) V(t)

V(t)

V(s)

Initially
s�1
t�1

Forbidden
region
for s

Forbidden
region for t

Figure 12.43 Progress graph for a deadlock-free program.

without any problem, but then the next time it deadlocks. Or the program
might work fine on one machine but deadlock on another. Worst of all,
the error is often not repeatable because different executions have different
trajectories.

Programs deadlock for many reasons and avoiding them is a difficult problem
in general. However, when binary semaphores are used for mutual exclusion, as
in Figure 12.42, then you can apply the following simple and effective rule to avoid
deadlocks:

Mutex lock ordering rule: A program is deadlock-free if, for each pair of mutexes
(s, t) in the program, each thread that holds both s and t simultaneously locks
them in the same order.

For example, we can fix the deadlock in Figure 12.42 by locking s first, then t in
each thread. Figure 12.43 shows the resulting progress graph.

Practice Problem 12.15
Consider the following program, which attempts to use a pair of semaphores for
mutual exclusion.

988 Chapter 12 Concurrent Programming

Initially: s = 1, t = 0.

Thread 1: Thread 2:

P(s); P(s);

V(s); V(s);

P(t); P(t);

V(t); V(t);

A. Draw the progress graph for this program.

B. Does it always deadlock?

C. If so, what simple change to the initial semaphore values will eliminate the
potential for deadlock?

D. Draw the progress graph for the resulting deadlock-free program.

12.8 Summary

A concurrent program consists of a collection of logical flows that overlap in time.
In this chapter, we have studied three different mechanisms for building concur-
rent programs: processes, I/O multiplexing, and threads. We used a concurrent
network server as the motivating application throughout.

Processes are scheduled automatically by the kernel, and because of their
separate virtual address spaces, they require explicit IPC mechanisms in order
to share data. Event-driven programs create their own concurrent logical flows,
which are modeled as state machines, and use I/O multiplexing to explicitly sched-
ule the flows. Because the program runs in a single process, sharing data between
flows is fast and easy. Threads are a hybrid of these approaches. Like flows based
on processes, threads are scheduled automatically by the kernel. Like flows based
on I/O multiplexing, threads run in the context of a single process, and thus can
share data quickly and easily.

Regardless of the concurrency mechanism, synchronizing concurrent accesses
to shared data is a difficult problem. The P and V operations on semaphores have
been developed to help deal with this problem. Semaphore operations can be used
to provide mutually exclusive access to shared data, as well as to schedule access to
resources such as the bounded buffers in producer-consumer systems and shared
objects in readers-writers systems. A concurrent prethreaded echo server provides
a compelling example of these usage scenarios for semaphores.

Concurrency introduces other difficult issues as well. Functions that are called
by threads must have a property known as thread safety. We have identified
four classes of thread-unsafe functions, along with suggestions for making them
thread-safe. Reentrant functions are the proper subset of thread-safe functions
that do not access any shared data. Reentrant functions are often more efficient
than nonreentrant functions because they do not require any synchronization
primitives. Some other difficult issues that arise in concurrent programs are races
and deadlocks. Races occur when programmers make incorrect assumptions about

Homework Problems 989

how logical flows are scheduled. Deadlocks occur when a flow is waiting for an
event that will never happen.

Bibliographic Notes

Semaphore operations were introduced by Dijkstra [37]. The progress graph
concept was introduced by Coffman [24] and later formalized by Carson and
Reynolds [17]. The readers-writers problem was introduced by Courtois et al. [31].
Operating systems texts describe classical synchronization problems such as the
dining philosophers, sleeping barber, and cigarette smokers problems in more de-
tail [98, 104, 112]. The book by Butenhof [16] is a comprehensive description of
the Posix threads interface. The paper by Birrell [7] is an excellent introduction to
threads programming and its pitfalls. The book by Reinders [86] describes a C/C++
library that simplifies the design and implementation of threaded programs. Sev-
eral texts cover the fundamentals of parallel programming on multi-core sys-
tems [50, 67]. Pugh identifies weaknesses with the way that Java threads interact
through memory and proposes replacement memory models [84]. Gustafson pro-
posed the weak scaling speedup model [46] as an alternative to strong scaling.

Homework Problems

12.16 ◆
Write a version of hello.c (Figure 12.13) that creates and reaps n joinable peer
threads, where n is a command line argument.

12.17 ◆
A. The program in Figure 12.44 has a bug. The thread is supposed to sleep for

1 second and then print a string. However, when we run it on our system,
nothing prints. Why?

B. You can fix this bug by replacing the exit function in line 9 with one of two
different Pthreads function calls. Which ones?

12.18 ◆
Using the progress graph in Figure 12.21, classify the following trajectories as
either safe or unsafe.

A. H2, L2, U2, H1, L1, S2, U1, S1, T1, T2

B. H2, H1, L1, U1, S1, L2, T1, U2, S2, T2

C. H1, L1, H2, L2, U2, S2, U1, S1, T1, T2

12.19 ◆◆
The solution to the first readers-writers problem in Figure 12.26 gives a somewhat
weak priority to readers because a writer leaving its critical section might restart
a waiting writer instead of a waiting reader. Derive a solution that gives stronger
priority to readers, where a writer leaving its critical section will always restart a
waiting reader if one exists.

990 Chapter 12 Concurrent Programming

code/conc/hellobug.c

1 #include "csapp.h"

2 void *thread(void *vargp);

3

4 int main()

5 {

6 pthread_t tid;

7

8 Pthread_create(&tid, NULL, thread, NULL);

9 exit(0);

10 }

11

12 /* Thread routine */

13 void *thread(void *vargp)

14 {

15 Sleep(1);

16 printf("Hello, world!\n");

17 return NULL;

18 }

code/conc/hellobug.c

Figure 12.44 Buggy program for Problem 12.17.

12.20 ◆◆◆
Consider a simpler variant of the readers-writers problem where there are at most
N readers. Derive a solution that gives equal priority to readers and writers, in the
sense that pending readers and writers have an equal chance of being granted
access to the resource. Hint: You can solve this problem using a single counting
semaphore and a single mutex.

12.21 ◆◆◆◆
Derive a solution to the second readers-writers problem, which favors writers
instead of readers.

12.22 ◆◆
Test your understanding of the select function by modifying the server in Fig-
ure 12.6 so that it echoes at most one text line per iteration of the main server
loop.

12.23 ◆◆
The event-driven concurrent echo server in Figure 12.8 is flawed because a mali-
cious client can deny service to other clients by sending a partial text line. Write
an improved version of the server that can handle these partial text lines without
blocking.

Homework Problems 991

12.24 ◆
The functions in the Rio I/O package (Section 10.4) are thread-safe. Are they
reentrant as well?

12.25 ◆
In the prethreaded concurrent echo server in Figure 12.28, each thread calls the
echo_cnt function (Figure 12.29). Is echo_cnt thread-safe? Is it reentrant? Why
or why not?

12.26 ◆◆◆
Use the lock-and-copy technique to implement a thread-safe nonreentrant version
of gethostbyname called gethostbyname_ts. A correct solution will use a deep
copy of the hostent structure protected by a mutex.

12.27 ◆◆
Some network programming texts suggest the following approach for reading and
writing sockets: Before interacting with the client, open two standard I/O streams
on the same open connected socket descriptor, one for reading and one for writing:

FILE *fpin, *fpout;

fpin = fdopen(sockfd, "r");

fpout = fdopen(sockfd, "w");

When the server has finished interacting with the client, close both streams as
follows:

fclose(fpin);

fclose(fpout);

However, if you try this approach in a concurrent server based on threads,
you will create a deadly race condition. Explain.

12.28 ◆
In Figure 12.43, does swapping the order of the two V operations have any effect
on whether or not the program deadlocks? Justify your answer by drawing the
progress graphs for the four possible cases:

Case 1 Case 2 Case 3 Case 4

Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2

P(s) P(s) P(s) P(s) P(s) P(s) P(s) P(s)

P(t) P(t) P(t) P(t) P(t) P(t) P(t) P(t)

V(s) V(s) V(s) V(t) V(t) V(s) V(t) V(t)

V(t) V(t) V(t) V(s) V(s) V(t) V(s) V(s)

992 Chapter 12 Concurrent Programming

12.29 ◆
Can the following program deadlock? Why or why not?

Initially: a = 1, b = 1, c = 1.

Thread 1: Thread 2:

P(a); P(c);

P(b); P(b);

V(b); V(b);

P(c); V(c);

V(c);

V(a);

12.30 ◆
Consider the following program that deadlocks.

Initially: a = 1, b = 1, c = 1.

Thread 1: Thread 2: Thread 3:

P(a); P(c); P(c);

P(b); P(b); V(c);

V(b); V(b); P(b);

P(c); V(c); P(a);

V(c); P(a); V(a);

V(a); V(a); V(b);

A. For each thread, list the pairs of mutexes that it holds simultaneously.

B. If a < b < c, which threads violate the mutex lock ordering rule?

C. For these threads, show a new lock ordering that guarantees freedom from
deadlock.

12.31 ◆◆◆
Implement a version of the standard I/O fgets function, called tfgets, that times
out and returns NULL if it does not receive an input line on standard input within
5 seconds. Your function should be implemented in a package called tfgets-
proc.cusing process, signals, and nonlocal jumps. It should not use the Unixalarm
function. Test your solution using the driver program in Figure 12.45.

12.32 ◆◆◆
Implement a version of the tfgets function from Problem 12.31 that uses the
select function. Your function should be implemented in a package called
tfgets-select.c. Test your solution using the driver program from Problem
12.31. You may assume that standard input is assigned to descriptor 0.

12.33 ◆◆◆
Implement a threaded version of the tfgets function from Problem 12.31. Your

Homework Problems 993

code/conc/tfgets-main.c

1 #include "csapp.h"

2

3 char *tfgets(char *s, int size, FILE *stream);

4

5 int main()

6 {

7 char buf[MAXLINE];

8

9 if (tfgets(buf, MAXLINE, stdin) == NULL)

10 printf("BOOM!\n");

11 else

12 printf("%s", buf);

13

14 exit(0);

15 }

code/conc/tfgets-main.c

Figure 12.45 Driver program for Problems 12.31–12.33.

function should be implemented in a package called tfgets-thread.c. Test your
solution using the driver program from Problem 12.31.

12.34 ◆◆◆
Write a parallel threaded version of an N × M matrix multiplication kernel. Com-
pare the performance to the sequential case.

12.35 ◆◆◆
Implement a concurrent version of the Tiny Web server based on processes. Your
solution should create a new child process for each new connection request. Test
your solution using a real Web browser.

12.36 ◆◆◆
Implement a concurrent version of the Tiny Web server based on I/O multiplexing.
Test your solution using a real Web browser.

12.37 ◆◆◆
Implement a concurrent version of the Tiny Web server based on threads. Your
solution should create a new thread for each new connection request. Test your
solution using a real Web browser.

12.38 ◆◆◆◆
Implement a concurrent prethreaded version of the Tiny Web server. Your solu-
tion should dynamically increase or decrease the number of threads in response to
the current load. One strategy is to double the number of threads when the buffer

994 Chapter 12 Concurrent Programming

becomes full, and halve the number of threads when the buffer becomes empty.
Test your solution using a real Web browser.

12.39 ◆◆◆◆
A Web proxy is a program that acts as a middleman between a Web server and
browser. Instead of contacting the server directly to get a Web page, the browser
contacts the proxy, which forwards the request on to the server. When the server
replies to the proxy, the proxy sends the reply on to the browser. For this lab, you
will write a simple Web proxy that filters and logs requests:

A. In the first part of the lab, you will set up the proxy to accept requests, parse
the HTTP, forward the requests to the server, and return the results back to
the browser. Your proxy should log the URLs of all requests in a log file on
disk, and it should also block requests to any URL contained in a filter file
on disk.

B. In the second part of the lab, you will upgrade your proxy to deal with
multiple open connections at once by spawning a separate thread to deal with
each request. While your proxy is waiting for a remote server to respond to
a request so that it can serve one browser, it should be working on a pending
request from another browser.

Check your proxy solution using a real Web browser.

Solutions to Practice Problems

Solution to Problem 12.1 (page 939)
When the parent forks the child, it gets a copy of the connected descriptor and the
reference count for the associated file table is incremented from 1 to 2. When the
parent closes its copy of the descriptor, the reference count is decremented from
2 to 1. Since the kernel will not close a file until the reference counter in its file
table goes to 0, the child’s end of the connection stays open.

Solution to Problem 12.2 (page 939)
When a process terminates for any reason, the kernel closes all open descriptors.
Thus, the child’s copy of the connected file descriptor will be closed automatically
when the child exits.

Solution to Problem 12.3 (page 942)
Recall that a descriptor is ready for reading if a request to read 1 byte from
that descriptor would not block. If EOF becomes true on a descriptor, then the
descriptor is ready for reading because the read operation will return immediately
with a zero return code indicating EOF. Thus, typing ctrl-d causes the select
function to return with descriptor 0 in the ready set.

Solution to Problem 12.4 (page 947)
We reinitialize the pool.ready_set variable before every call to select because
it serves as both an input and output argument. On input, it contains the read set.
On output, it contains the ready set.

Solutions to Practice Problems 995

Solution to Problem 12.5 (page 954)
Since threads run in the same process, they all share the same descriptor table. No
matter how many threads use the connected descriptor, the reference count for
the connected descriptor’s file table is equal to 1. Thus, a single close operation is
sufficient to free the memory resources associated with the connected descriptor
when we are through with it.

Solution to Problem 12.6 (page 957)
The main idea here is that stack variables are private, while global and static
variables are shared. Static variables such as cnt are a little tricky because the
sharing is limited to the functions within their scope—in this case, the thread
routine.

A. Here is the table:

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0 ? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.p0 no yes no
myid.p1 no no yes

Notes:

ptr: A global variable that is written by the main thread and read by the
peer threads.

cnt: A static variable with only one instance in memory that is read and
written by the two peer threads.

i.m: A local automatic variable stored on the stack of the main thread.
Even though its value is passed to the peer threads, the peer threads
never reference it on the stack, and thus it is not shared.

msgs.m: A local automatic variable stored on the main thread’s stack and
referenced indirectly through ptr by both peer threads.

myid.0 and myid.1: Instances of a local automatic variable residing on
the stacks of peer threads 0 and 1, respectively.

B. Variables ptr, cnt, and msgs are referenced by more than one thread, and
thus are shared.

Solution to Problem 12.7 (page 960)
The important idea here is that you cannot make any assumptions about the
ordering that the kernel chooses when it schedules your threads.

996 Chapter 12 Concurrent Programming

Step Thread Instr %eax1 %eax2 cnt

1 1 H1 — — 0
2 1 L1 0 — 0
3 2 H2 — — 0
4 2 L2 — 0 0
5 2 U2 — 1 0
6 2 S2 — 1 1
7 1 U1 1 — 1
8 1 S1 1 — 1
9 1 T1 1 — 1
10 2 T2 1 — 1

Variable cnt has a final incorrect value of 1.

Solution to Problem 12.8 (page 962)
This problem is a simple test of your understanding of safe and unsafe trajectories
in progress graphs. Trajectories such as A and C that skirt the critical region are
safe and will produce correct results.

A. H1, L1, U1, S1, H2, L2, U2, S2, T2, T1: safe

B. H2, L2, H1, L1, U1, S1, T1, U2, S2, T2: unsafe

C. H1, H2, L2, U2, S2, L1, U1, S1, T1, T2: safe

Solution to Problem 12.9 (page 967)

A. p = 1, c = 1, n > 1: Yes, the mutex semaphore is necessary because the
producer and consumer can concurrently access the buffer.

B. p = 1, c = 1, n = 1: No, the mutex semaphore is not necessary in this case,
because a nonempty buffer is equivalent to a full buffer. When the buffer
contains an item, the producer is blocked. When the buffer is empty, the
consumer is blocked. So at any point in time, only a single thread can access
the buffer, and thus mutual exclusion is guaranteed without using the mutex.

C. p > 1, c > 1, n = 1: No, the mutex semaphore is not necessary in this case
either, by the same argument as the previous case.

Solution to Problem 12.10 (page 969)
Suppose that a particular semaphore implementation uses a LIFO stack of threads
for each semaphore. When a thread blocks on a semaphore in a P operation, its ID
is pushed onto the stack. Similarly, the V operation pops the top thread ID from
the stack and restarts that thread. Given this stack implementation, an adversarial
writer in its critical section could simply wait until another writer blocks on the
semaphore before releasing the semaphore. In this scenario, a waiting reader
might wait forever as two writers passed control back and forth.

Notice that although it might seem more intuitive to use a FIFO queue rather
than a LIFO stack, using such a stack is not incorrect and does not violate the
semantics of the P and V operations.

Solutions to Practice Problems 997

Solution to Problem 12.11 (page 978)
This problem is a simple sanity check of your understanding of speedup and
parallel efficiency:

Threads (t) 1 2 4
Cores (p) 1 2 4

Running time (Tp) 12 8 6
Speedup (Sp) 1 1.5 2
Efficiency (Ep) 100% 75% 50%

Solution to Problem 12.12 (page 982)
The ctime_ts function is not reentrant because each invocation shares the same
static variable returned by the gethostbyname function. However, it is thread-
safe because the accesses to the shared variable are protected by P and V opera-
tions, and thus are mutually exclusive.

Solution to Problem 12.13 (page 984)
If we free the block immediately after the call to pthread_create in line 15, then
we will introduce a new race, this time between the call to free in the main thread,
and the assignment statement in line 25 of the thread routine.

Solution to Problem 12.14 (page 985)

A. Another approach is to pass the integer i directly, rather than passing a
pointer to i:

for (i = 0; i < N; i++)

Pthread_create(&tid[i], NULL, thread, (void *)i);

In the thread routine, we cast the argument back to an int and assign it to
myid:

int myid = (int) vargp;

B. The advantage is that it reduces overhead by eliminating the calls to malloc
and free. A significant disadvantage is that it assumes that pointers are at
least as large as ints. While this assumption is true for all modern systems,
it might not be true for legacy or future systems.

Solution to Problem 12.15 (page 987)

A. The progress graph for the original program is shown in Figure 12.46.

B. The program always deadlocks, since any feasible trajectory is eventually
trapped in a deadlock state.

C. To eliminate the deadlock potential, initialize the binary semaphore t to 1
instead of 0.

D. The progress graph for the corrected program is shown in Figure 12.47.

. . .

.

. . .

. .
 .

. . .
. . .

. . .

Thread 2

Thread 1

V(s)

P(s)

P(s) V(s) P(t) V(t)

P(t)

V(t)

Initially
s�1
t�0

Forbidden
region

for t

Forbidden
region
for s

Forbidden
region for t

Figure 12.46 Progress graph for a program that deadlocks.

. . .

.

. . .
. . .

. . .

Thread 2

Thread 1

V(s)

P(s)

P(s) V(s) P(t) V(t)

P(t)

V(t)

Initially
s�1
t�1

Forbidden
region

for s

Forbidden
region

for t

Figure 12.47 Progress graph for the corrected deadlock-free program.

APPENDIX A
Error Handling

Programmers should always check the error codes returned by system-level func-
tions. There are many subtle ways that things can go wrong, and it only makes sense
to use the status information that the kernel is able to provide us. Unfortunately,
programmers are often reluctant to do error checking because it clutters their
code, turning a single line of code into a multi-line conditional statement. Error
checking is also confusing because different functions indicate errors in different
ways.

We were faced with a similar problem when writing this text. On the one hand,
we would like our code examples to be concise and simple to read. On the other
hand, we do not want to give students the wrong impression that it is OK to skip
error checking. To resolve these issues, we have adopted an approach based on
error-handling wrappers that was pioneered by W. Richard Stevens in his network
programming text [109].

The idea is that given some base system-level function foo, we define a
wrapper function Foowith identical arguments, but with the first letter capitalized.
The wrapper calls the base function and checks for errors. If it detects an error, the
wrapper prints an informative message and terminates the process. Otherwise, it
returns to the caller. Notice that if there are no errors, the wrapper behaves exactly
like the base function. Put another way, if a program runs correctly with wrappers,
it will run correctly if we render the first letter of each wrapper in lowercase and
recompile.

The wrappers are packaged in a single source file (csapp.c) that is compiled
and linked into each program. A separate header file (csapp.h) contains the
function prototypes for the wrappers.

This appendix gives a tutorial on the different kinds of error handling in Unix
systems, and gives examples of the different styles of error-handling wrappers.
Copies of the csapp.h and csapp.c files are available on the CS:APP Web page.

999

1000 Appendix A Error Handling

A.1 Error Handling in Unix Systems

The systems-level function calls that we will encounter in this book use three
different styles for returning errors: Unix-style, Posix-style, and DNS-style.

Unix-Style Error Handling

Functions such as fork and wait that were developed in the early days of Unix (as
well as some older Posix functions) overload the function return value with both
error codes and useful results. For example, when the Unix-style wait function
encounters an error (e.g., there is no child process to reap) it returns −1 and sets
the global variable errno to an error code that indicates the cause of the error. If
wait completes successfully, then it returns the useful result, which is the PID of
the reaped child. Unix-style error-handling code is typically of the following form:

1 if ((pid = wait(NULL)) < 0) {

2 fprintf(stderr, "wait error: %s\n", strerror(errno));

3 exit(0);

4 }

The strerror function returns a text description for a particular value of errno.

Posix-Style Error Handling

Many of the newer Posix functions such as Pthreads use the return value only
to indicate success (0) or failure (nonzero). Any useful results are returned in
function arguments that are passed by reference. We refer to this approach as
Posix-style error handling. For example, the Posix-style pthread_create function
indicates success or failure with its return value and returns the ID of the newly
created thread (the useful result) by reference in its first argument. Posix-style
error-handling code is typically of the following form:

1 if ((retcode = pthread_create(&tid, NULL, thread, NULL)) != 0) {

2 fprintf(stderr, "pthread_create error: %s\n",

strerror(retcode));

3 exit(0);

4 }

DNS-Style Error Handling

The gethostbyname and gethostbyaddr functions that retrieve DNS (Domain
Name System) host entries have yet another approach for returning errors. These
functions return a NULL pointer on failure and set the global h_errno variable.
DNS-style error handling is typically of the following form:

1 if ((p = gethostbyname(name)) == NULL) {

2 fprintf(stderr, "gethostbyname error: %s\n:",

hstrerror(h_errno));

3 exit(0);

4 }

Section A.2 Error-Handling Wrappers 1001

Summary of Error-Reporting Functions

Thoughout this book, we use the following error-reporting functions to accommo-
date different error-handling styles.

#include "csapp.h"

void unix_error(char *msg);

void posix_error(int code, char *msg);

void dns_error(char *msg);

void app_error(char *msg);

Returns: nothing

As their names suggest, the unix_error, posix_error, and dns_error func-
tions report Unix-style, Posix-style, and DNS-style errors and then terminate. The
app_error function is included as a convenience for application errors. It simply
prints its input and then terminates. Figure A.1 shows the code for the error-
reporting functions.

A.2 Error-Handling Wrappers

Here are some examples of the different error-handling wrappers:

. Unix-style error-handling wrappers. Figure A.2 shows the wrapper for the
Unix-style wait function. If the wait returns with an error, the wrapper prints
an informative message and then exits. Otherwise, it returns a PID to the
caller. Figure A.3 shows the wrapper for the Unix-style kill function. Notice
that this function, unlike Wait, returns void on success.

. Posix-style error-handling wrappers. Figure A.4 shows the wrapper for the
Posix-style pthread_detach function. Like most Posix-style functions, it does
not overload useful results with error-return codes, so the wrapper returns
void on success.

. DNS-style error-handling wrappers. Figure A.5 shows the error-handling
wrapper for the DNS-style gethostbyname function.

1002 Appendix A Error Handling

code/src/csapp.c

1 void unix_error(char *msg) /* Unix-style error */

2 {

3 fprintf(stderr, "%s: %s\n", msg, strerror(errno));

4 exit(0);

5 }

6

7 void posix_error(int code, char *msg) /* Posix-style error */

8 {

9 fprintf(stderr, "%s: %s\n", msg, strerror(code));

10 exit(0);

11 }

12

13 void dns_error(char *msg) /* DNS-style error */

14 {

15 fprintf(stderr, "%s: DNS error %d\n", msg, h_errno);

16 exit(0);

17 }

18

19 void app_error(char *msg) /* Application error */

20 {

21 fprintf(stderr, "%s\n", msg);

22 exit(0);

23 }

code/src/csapp.c

Figure A.1 Error-reporting functions.

code/src/csapp.c

1 pid_t Wait(int *status)

2 {

3 pid_t pid;

4

5 if ((pid = wait(status)) < 0)

6 unix_error("Wait error");

7 return pid;

8 }

code/src/csapp.c

Figure A.2 Wrapper for Unix-style wait function.

Section A.2 Error-Handling Wrappers 1003

code/src/csapp.c

1 void Kill(pid_t pid, int signum)

2 {

3 int rc;

4

5 if ((rc = kill(pid, signum)) < 0)

6 unix_error("Kill error");

7 }

code/src/csapp.c

Figure A.3 Wrapper for Unix-style kill function.

code/src/csapp.c

1 void Pthread_detach(pthread_t tid) {

2 int rc;

3

4 if ((rc = pthread_detach(tid)) != 0)

5 posix_error(rc, "Pthread_detach error");

6 }

code/src/csapp.c

Figure A.4 Wrapper for Posix-style pthread_detach function.

code/src/csapp.c

1 struct hostent *Gethostbyname(const char *name)

2 {

3 struct hostent *p;

4

5 if ((p = gethostbyname(name)) == NULL)

6 dns_error("Gethostbyname error");

7 return p;

8 }

code/src/csapp.c

Figure A.5 Wrapper for DNS-style gethostbyname function.

This page intentionally left blank

References

[1] Advanced Micro Devices, Inc. Software Opti-
mization Guide for AMD64 Processors, 2005.
Publication Number 25112.

[2] Advanced Micro Devices, Inc. AMD64 Arch-
itecture Programmer’s Manual, Volume 1:
Application Programming, 2007. Publication
Number 24592.

[3] Advanced Micro Devices, Inc. AMD64 Ar-
chitecture Programmer’s Manual, Volume 3:
General-Purpose and System Instructions, 2007.
Publication Number 24594.

[4] K. Arnold, J. Gosling, and D. Holmes. The
Java Programming Language, Fourth Edition.
Prentice Hall, 2005.

[5] V. Bala, E. Duesterwald, and S. Banerjiia.
Dynamo: A transparent dynamic optimization
system. In Proceedings of the 1995 ACM
Conference on Programming Language Design
and Implementation (PLDI), pages 1–12, June
2000.

[6] T. Berners-Lee, R. Fielding, and H. Frystyk.
Hypertext transfer protocol - HTTP/1.0. RFC
1945, 1996.

[7] A. Birrell. An introduction to programming
with threads. Technical Report 35, Digital
Systems Research Center, 1989.

[8] A. Birrell, M. Isard, C. Thacker, and T. Wobber.
A design for high-performance flash disks.
SIGOPS Operating Systems Review, 41(2),
2007.

[9] R. Blum. Professional Assembly Language.
Wiley, 2005.

[10] S. Borkar. Thousand core chips—a technology
perspective. In Design Automation Conference,
pages 746–749. ACM, 2007.

[11] D. Bovet and M. Cesati. Understanding the
Linux Kernel, Third Edition. O’Reilly Media,
Inc, 2005.

[12] A. Demke Brown and T. Mowry. Taming the
memory hogs: Using compiler-inserted releases

to manage physical memory intelligently. In
Proceedings of the Fourth Symposium on
Operating Systems Design and Implementation
(OSDI), pages 31–44, October 2000.

[13] R. E. Bryant. Term-level verification of a
pipelined CISC microprocessor. Technical
Report CMU-CS-05-195, Carnegie Mellon
University, School of Computer Science, 2005.

[14] R. E. Bryant and D. R. O’Hallaron. Introduc-
ing computer systems from a programmer’s
perspective. In Proceedings of the Technical
Symposium on Computer Science Education
(SIGCSE). ACM, February 2001.

[15] B. R. Buck and J. K. Hollingsworth. An
API for runtime code patching. Journal of
High Performance Computing Applications,
14(4):317–324, June 2000.

[16] D. Butenhof. Programming with Posix Threads.
Addison-Wesley, 1997.

[17] S. Carson and P. Reynolds. The geometry of
semaphore programs. ACM Transactions on
Programming Languages and Systems, 9(1):25–
53, 1987.

[18] J. B. Carter, W. C. Hsieh, L. B. Stoller, M. R.
Swanson, L. Zhang, E. L. Brunvand, A. Davis,
C.-C. Kuo, R. Kuramkote, M. A. Parker,
L. Schaelicke, and T. Tateyama. Impulse:
Building a smarter memory controller. In Pro-
ceedings of the Fifth International Symposium
on High Performance Computer Architecture
(HPCA), pages 70–79, January 1999.

[19] S. Chellappa, F. Franchetti, and M. Püschel.
How to write fast numerical code: A small in-
troduction. In Generative and Transformational
Techniques in Software Engineering II , volume
5235, pages 196–259. Springer-Verlag Lecture
Notes in Computer Science, 2008.

[20] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Pat-
terson. RAID: High-performance, reliable
secondary storage. ACM Computing Surveys,
26(2), June 1994.

1005

1006 References

[21] S. Chen, P. Gibbons, and T. Mowry. Improving
index performance through prefetching. In
Proceedings of the 2001 ACM SIGMOD
Conference. ACM, May 2001.

[22] T. Chilimbi, M. Hill, and J. Larus. Cache-
conscious structure layout. In Proceedings of
the 1999 ACM Conference on Programming
Language Design and Implementation (PLDI),
pages 1–12. ACM, May 1999.

[23] B. Cmelik and D. Keppel. Shade: A fast
instruction-set simulator for execution pro-
filing. In Proceedings of the 1994 ACM SIG-
METRICS Conference on Measurement and
Modeling of Computer Systems, pages 128–137,
May 1994.

[24] E. Coffman, M. Elphick, and A. Shoshani.
System deadlocks. ACM Computing Surveys,
3(2):67–78, June 1971.

[25] D. Cohen. On holy wars and a plea for peace.
IEEE Computer, 14(10):48–54, October 1981.

[26] Intel Corporation. Intel 64 and IA-32 Archi-
tectures Optimization Reference Manual, 2009.
Order Number 248966.

[27] Intel Corporation. Intel 64 and IA-32 Archi-
tectures Software Developer’s Manual, Vol-
ume 1: Basic Architecture, 2009. Order Number
253665.

[28] Intel Corporation. Intel 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2:
Instruction Set Reference A–M, 2009. Order
Number 253667.

[29] Intel Corporation. Intel 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2:
Instruction Set Reference N–Z, 2009. Order
Number 253668.

[30] Intel Corporation. Intel 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3a:
System Programming Guide, Part 1, 2009. Order
Number 253669.

[31] P. J. Courtois, F. Heymans, and D. L. Parnas.
Concurrent control with “readers” and “writ-
ers.” Commun. ACM, 14(10):667–668, 1971.

[32] C. Cowan, P. Wagle, C. Pu, S. Beattie, and
J. Walpole. Buffer overflows: Attacks and
defenses for the vulnerability of the decade. In
DARPA Information Survivability Conference
and Expo (DISCEX), March 2000.

[33] J. H. Crawford. The i486 CPU: Executing
instructions in one clock cycle. IEEE Micro,
10(1):27–36, February 1990.

[34] V. Cuppu, B. Jacob, B. Davis, and T. Mudge.
A performance comparison of contemporary
DRAM architectures. In Proceedings of the
Twenty-Sixth International Symposium on
Computer Architecture (ISCA), Atlanta, GA,
May 1999. IEEE.

[35] B. Davis, B. Jacob, and T. Mudge. The new
DRAM interfaces: SDRAM, RDRAM, and
variants. In Proceedings of the Third Inter-
national Symposium on High Performance
Computing (ISHPC), Tokyo, Japan, October
2000.

[36] E. Demaine. Cache-oblivious algorithms and
data structures. In Lecture Notes in Computer
Science. Springer-Verlag, 2002.

[37] E. W. Dijkstra. Cooperating sequential pro-
cesses. Technical Report EWD-123, Technolog-
ical University, Eindhoven, The Netherlands,
1965.

[38] C. Ding and K. Kennedy. Improving cache
performance of dynamic applications through
data and computation reorganizations at
run time. In Proceedings of the 1999 ACM
Conference on Programming Language Design
and Implementation (PLDI), pages 229–241.
ACM, May 1999.

[39] M. Dowson. The Ariane 5 software failure. SIG-
SOFT Software Engineering Notes, 22(2):84,
1997.

[40] M. W. Eichen and J. A. Rochlis. With micro-
scope and tweezers: An analysis of the Internet
virus of November, 1988. In IEEE Symposium
on Research in Security and Privacy, 1989.

[41] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext transfer protocol - HTTP/1.1. RFC
2616, 1999.

[42] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms.
In Proceedings of the 40th IEEE Symposium on
Foundations of Computer Science (FOCS ’99),
pages 285–297. IEEE, August 1999.

[43] M. Frigo and V. Strumpen. The cache complex-
ity of multithreaded cache oblivious algorithms.

References 1007

In SPAA ’06: Proceedings of the Eighteenth
Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pages 271–280,
New York, NY, USA, 2006. ACM.

[44] G. Gibson, D. Nagle, K. Amiri, J. Butler,
F. Chang, H. Gobioff, C. Hardin, E. Riedel,
D. Rochberg, and J. Zelenka. A cost-effective,
high-bandwidth storage architecture. In Pro-
ceedings of the International Conference on
Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS).
ACM, October 1998.

[45] G. Gibson and R. Van Meter. Network attached
storage architecture. Communications of the
ACM, 43(11), November 2000.

[46] J. Gustafson. Reevaluating Amdahl’s law.
Communications of the ACM, 31(5), August
1988.

[47] L. Gwennap. New algorithm improves branch
prediction. Microprocessor Report, 9(4), March
1995.

[48] S. P. Harbison and G. L. Steele, Jr. C, A
Reference Manual, Fifth Edition. Prentice Hall,
2002.

[49] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach, Fourth
Edition. Morgan Kaufmann, 2007.

[50] M. Herlihy and N. Shavit. The Art of Multi-
processor Programming. Morgan Kaufmann,
2008.

[51] C. A. R. Hoare. Monitors: An operating system
structuring concept. Communications of the
ACM, 17(10):549–557, October 1974.

[52] Intel Corporation. Tool Interface Standards
Portable Formats Specification, Version 1.1,
1993. Order Number 241597.

[53] F. Jones, B. Prince, R. Norwood, J. Hartigan,
W. Vogley, C. Hart, and D. Bondurant. A new
era of fast dynamic RAMs. IEEE Spectrum,
pages 43–39, October 1992.

[54] R. Jones and R. Lins. Garbage Collection:
Algorithms for Automatic Dynamic Memory
Management. Wiley, 1996.

[55] M. Kaashoek, D. Engler, G. Ganger, H. Briceo,
R. Hunt, D. Maziers, T. Pinckney, R. Grimm,
J. Jannotti, and K. MacKenzie. Application per-
formance and flexibility on Exokernel systems.

In Proceedings of the Sixteenth Symposium on
Operating System Principles (SOSP), October
1997.

[56] R. Katz and G. Borriello. Contemporary Logic
Design, Second Edition. Prentice Hall, 2005.

[57] B. Kernighan and D. Ritchie. The C Program-
ming Language, First Edition. Prentice Hall,
1978.

[58] B. Kernighan and D. Ritchie. The C Program-
ming Language, Second Edition. Prentice Hall,
1988.

[59] B. W. Kernighan and R. Pike. The Practice of
Programming. Addison-Wesley, 1999.

[60] T. Kilburn, B. Edwards, M. Lanigan, and
F. Sumner. One-level storage system. IRE
Transactions on Electronic Computers, EC-
11:223–235, April 1962.

[61] D. Knuth. The Art of Computer Programming,
Volume 1: Fundamental Algorithms, Second
Edition. Addison-Wesley, 1973.

[62] J. Kurose and K. Ross. Computer Networking: A
Top-Down Approach, Fifth Edition. Addison-
Wesley, 2009.

[63] M. Lam, E. Rothberg, and M. Wolf. The cache
performance and optimizations of blocked al-
gorithms. In Proceedings of the International
Conference on Architectural Support for Pro-
gramming Languages and Operating Systems
(ASPLOS). ACM, April 1991.

[64] J. R. Larus and E. Schnarr. EEL: Machine-
independent executable editing. In Proceedings
of the 1995 ACM Conference on Programming
Language Design and Implementation (PLDI),
June 1995.

[65] C. E. Leiserson and J. B. Saxe. Retiming
synchronous circuitry. Algorithmica, 6(1–6),
June 1991.

[66] J. R. Levine. Linkers and Loaders. Morgan
Kaufmann, San Francisco, 1999.

[67] C. Lin and L. Snyder. Principles of Parallel
Programming. Addison-Wesley, 2008.

[68] Y. Lin and D. Padua. Compiler analysis of
irregular memory accesses. In Proceedings of
the 2000 ACM Conference on Programming
Language Design and Implementation (PLDI),
pages 157–168. ACM, June 2000.

1008 References

[69] J. L. Lions. Ariane 5 Flight 501 failure. Technical
report, European Space Agency, July 1996.

[70] S. Macguire. Writing Solid Code. Microsoft
Press, 1993.

[71] S. A. Mahlke, W. Y. Chen, J. C. Gyllenhal, and
W. W. Hwu. Compiler code transformations for
superscalar-based high-performance systems.
In Supercomputing. ACM, 1992.

[72] E. Marshall. Fatal error: How Patriot over-
looked a Scud. Science, page 1347, March 13,
1992.

[73] M. Matz, J. Hubička, A. Jaeger, and M. Mitchell.
System V application binary interface AMD64
architecture processor supplement. Technical
report, AMD64.org, 2009.

[74] J. Morris, M. Satyanarayanan, M. Conner,
J. Howard, D. Rosenthal, and F. Smith. Andrew:
A distributed personal computing environment.
Communications of the ACM, March 1986.

[75] T. Mowry, M. Lam, and A. Gupta. Design
and evaluation of a compiler algorithm for
prefetching. In Proceedings of the International
Conference on Architectural Support for Pro-
gramming Languages and Operating Systems
(ASPLOS). ACM, October 1992.

[76] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[77] S. Nath and P. Gibbons. Online maintenance of
very large random samples on flash storage. In
Proceedings of VLDB’08. ACM, August 2008.

[78] M. Overton. Numerical Computing with IEEE
Floating Point Arithmetic. SIAM, 2001.

[79] D. Patterson, G. Gibson, and R. Katz. A case for
redundant arrays of inexpensive disks (RAID).
In Proceedings of the 1998 ACM SIGMOD
Conference. ACM, June 1988.

[80] L. Peterson and B. Davie. Computer Networks:
A Systems Approach, Fourth Edition. Morgan
Kaufmann, 2007.

[81] J. Pincus and B. Baker. Beyond stack smashing:
Recent advances in exploiting buffer overruns.
IEEE Security and Privacy, 2(4):20–27, 2004.

[82] S. Przybylski. Cache and Memory Hierarchy
Design: A Performance-Directed Approach.
Morgan Kaufmann, 1990.

[83] W. Pugh. The Omega test: A fast and practical
integer programming algorithm for depen-
dence analysis. Communications of the ACM,
35(8):102–114, August 1992.

[84] W. Pugh. Fixing the Java memory model. In
Proceedings of the Java Grande Conference,
June 1999.

[85] J. Rabaey, A. Chandrakasan, and B. Nikolic.
Digital Integrated Circuits: A Design Perspec-
tive, Second Edition. Prentice Hall, 2003.

[86] J. Reinders. Intel Threading Building Blocks.
O’Reilly, 2007.

[87] D. Ritchie. The evolution of the Unix time-
sharing system. AT&T Bell Laboratories
Technical Journal, 63(6 Part 2):1577–1593,
October 1984.

[88] D. Ritchie. The development of the C language.
In Proceedings of the Second History of Pro-
gramming Languages Conference, Cambridge,
MA, April 1993.

[89] D. Ritchie and K. Thompson. The Unix time-
sharing system. Communications of the ACM,
17(7):365–367, July 1974.

[90] T. Romer, G. Voelker, D. Lee, A. Wolman,
W. Wong, H. Levy, B. Bershad, and B. Chen. In-
strumentation and optimization of Win32/Intel
executables using Etch. In Proceedings of the
USENIX Windows NT Workshop, Seattle,
Washington, August 1997.

[91] M. Satyanarayanan, J. Kistler, P. Kumar,
M. Okasaki, E. Siegel, and D. Steere. Coda:
A highly available file system for a distributed
workstation environment. IEEE Transactions
on Computers, 39(4):447–459, April 1990.

[92] J. Schindler and G. Ganger. Automated disk
drive characterization. Technical Report CMU-
CS-99-176, School of Computer Science,
Carnegie Mellon University, 1999.

[93] F. B. Schneider and K. P. Birman. The monocul-
ture risk put into context. IEEE Security and
Privacy, 7(1), January 2009.

[94] R. C. Seacord. Secure Coding in C and C++.
Addison-Wesley, 2006.

[95] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,
N. Modadugu, and D. Boneh. On the effec-
tiveness of address-space randomization. In
Proceedings of the 11th ACM Conference on

References 1009

Computer and Communications Security (CCS
’04), pages 298–307. ACM, 2004.

[96] J. P. Shen and M. Lipasti. Modern Processor De-
sign: Fundamentals of Superscalar Processors.
McGraw Hill, 2005.

[97] B. Shriver and B. Smith. The Anatomy of a
High-Performance Microprocessor: A Systems
Perspective. IEEE Computer Society, 1998.

[98] A. Silberschatz, P. Galvin, and G. Gagne.
Operating Systems Concepts, Eighth Edition.
Wiley, 2008.

[99] R. Singhal. Intel next generation Nehalem
microarchitecture. In Intel Developer’s Forum,
2008.

[100] R. Skeel. Roundoff error and the Patriot missile.
SIAM News, 25(4):11, July 1992.

[101] A. Smith. Cache memories. ACM Computing
Surveys, 14(3), September 1982.

[102] E. H. Spafford. The Internet worm program:
An analysis. Technical Report CSD-TR-823,
Department of Computer Science, Purdue
University, 1988.

[103] A. Srivastava and A. Eustace. ATOM: A sys-
tem for building customized program analysis
tools. In Proceedings of the 1994 ACM Confer-
ence on Programming Language Design and
Implementation (PLDI), June 1994.

[104] W. Stallings. Operating Systems: Internals and
Design Principles, Sixth Edition. Prentice Hall,
2008.

[105] W. R. Stevens. TCP/IP Illustrated, Volume 1:
The Protocols. Addison-Wesley, 1994.

[106] W. R. Stevens. TCP/IP Illustrated, Volume 2:
The Implementation. Addison-Wesley, 1995.

[107] W. R. Stevens. TCP/IP Illustrated, Volume 3:
TCP for Transactions, HTTP, NNTP and the
Unix domain protocols. Addison-Wesley, 1996.

[108] W. R. Stevens. Unix Network Programming:
Interprocess Communications, Second Edition,
volume 2. Prentice Hall, 1998.

[109] W. R. Stevens, B. Fenner, and A. M. Rudoff.
Unix Network Programming: The Sockets
Networking API, Third Edition, volume 1.
Prentice Hall, 2003.

[110] W. R. Stevens and S. A. Rago. Advanced
Programming in the Unix Environment, Second
Edition. Addison-Wesley, 2008.

[111] T. Stricker and T. Gross. Global address space,
non-uniform bandwidth: A memory system
performance characterization of parallel sys-
tems. In Proceedings of the Third International
Symposium on High Performance Computer
Architecture (HPCA), pages 168–179, San An-
tonio, TX, February 1997. IEEE.

[112] A. Tanenbaum. Modern Operating Systems,
Third Edition. Prentice Hall, 2007.

[113] A. Tanenbaum. Computer Networks, Fourth
Edition. Prentice Hall, 2002.

[114] K. P. Wadleigh and I. L. Crawford. Software
Optimization for High-Performance Comput-
ing: Creating Faster Applications. Prentice Hall,
2000.

[115] J. F. Wakerly. Digital Design Principles and
Practices, Fourth Edition. Prentice Hall, 2005.

[116] M. V. Wilkes. Slave memories and dynamic
storage allocation. IEEE Transactions on
Electronic Computers, EC-14(2), April 1965.

[117] P. Wilson, M. Johnstone, M. Neely, and D. Boles.
Dynamic storage allocation: A survey and
critical review. In International Workshop on
Memory Management, Kinross, Scotland, 1995.

[118] M. Wolf and M. Lam. A data locality algorithm.
In Conference on Programming Language
Design and Implementation (SIGPLAN), pages
30–44, June 1991.

[119] J. Wylie, M. Bigrigg, J. Strunk, G. Ganger,
H. Kiliccote, and P. Khosla. Survivable informa-
tion storage systems. IEEE Computer, August
2000.

[120] T.-Y. Yeh and Y. N. Patt. Alternative implemen-
tation of two-level adaptive branch prediction.
In International Symposium on Computer Ar-
chitecture, pages 451–461, 1998.

[121] X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and
M. D. Smith. System support for automatic
profiling and optimization. In Proceedings of
the Sixteenth ACM Symposium on Operating
Systems Principles (SOSP), pages 15–26,
October 1997.

This page intentionally left blank

Index

Page numbers of defining references are italicized. Entries that belong to a hard-
ware or software system are followed by a tag in brackets that identifies the system,
along with a brief description to jog your memory. Here is the list of tags and their
meanings.

[C] C language construct
[C Stdlib] C standard library function
[CS:APP] Program or function developed in this text
[HCL] HCL language construct
[IA32] IA32 machine language instruction
[Unix] Unix program, function, variable, or constant
[x86-64] x86-64 machine language instruction
[Y86] Y86 machine language instruction

& [C] address of operation
logic gates, 353
pointers, 44, 175, 234, 252

* [C] dereference pointer operation,
175

$ for immediate operands, 169
! [HCL] Not operation, 353
|| [HCL] Or operation, 353
< left hoinky, 878
<< [C] left shift operator, 54–56
<< “put to” operator (C++), 862
-> [C] dereference and select field

operator, 242
> right hoinky, 878
>> “get from” operator (C++), 862
>> [C] right shift operator, 54–56
. (periods) in dotted-decimal

notation, 893
+t

w
two’s-complement addition, 83

-t
w

two’s-complement negation, 87
*t

w
two’s-complement multiplication,

89
+u

w
unsigned addition, 82

-u
w

unsigned negation, 82
*u

w
unsigned multiplication, 88

.a archive files, 668

a.out files, 658
Abel, Niels Henrik, 82
abelian group, 82
ABI (Application Binary Interface),

294
abort exception class, 706
aborts, 708–709
absolute addressing relocation type,

673, 675–676
absolute speedup of parallel

programs, 977
abstract model of processor

operation, 502–508
abstractions, 24–25
accept [Unix] wait for client

connection request, 902, 907,
907–908

access
disks, 578–580
IA32 registers, 168–169

data movement, 171–177
operand specifiers, 169–170

main memory, 567–570
x86-64 registers, 273–277

access permission bits, 864
access time for disks, 573, 573–575
accumulators, multiple, 514–518

Acorn RISC Machines (ARM)
ISAs, 334
processor architecture, 344

actions, signal, 742
active sockets, 905
actuator arms, 573
acyclic networks, 354
adapters, 8, 577
add [IA32/x86-64] add, 178, 277
add-client [CS:APP] add client to

list, 943, 945
add every signal to signal set function,

753
add operation in execute stage, 387
add signal to signal set function,

753
addb [IA32/x86-64] instruction, 177,

277
adder [CS:APP] CGI adder, 918
addition

floating-point, 113–114
IA32, 177
two’s-complement, 83, 83–87
unsigned, 79–83, 82
x86-64, 277–278
Y86, 338

additive inverse, 49

1011

1012 Index

addl [IA32/x86-64] instruction, 177,
272, 277

addl [Y86] add, 338, 383
addq [x86-64] instruction, 272, 277
address exceptions, status code for,

384
address-of operator (&) [C] pointers,

44, 175, 234, 252
address order of free lists, 835
address partitioning in caches, 598
address-space layout randomization

(ASLR), 262
address spaces, 778

child processes, 721
private, 714
virtual, 778–779

address translation, 777, 787
caches and VM integration, 791
Core i7, 800–803
end-to-end, 794–799
multi-level page tables, 792–

794
optimizing, 802
overview, 787–790
TLBs for, 791–793

addresses and addressing
byte ordering, 39–42
effective, 170, 673
flat, 159
Internet, 890
invalid address status code, 344
I/O devices, 579
IP, 892, 893–895
machine-level programs, 160–161
operands, 170
out-of-bounds. See buffer overflow
physical vs. virtual, 777–778
pointers, 234, 252
procedure return, 220
segmented, 264
sockets, 899, 901–902
structures, 241–243
symbol relocation, 672–677
virtual, 777
virtual memory, 33
Y86, 337, 340

addressing modes, 170
addw [IA32/x86-64] instruction, 177,

277
adjacency matrices, 642
ADR [Y86] status code indicating

invalid address, 344

Advanced Micro Devices (AMD),
156, 159, 267

AMD64 microprocessors, 267, 269
Intel compatibility, 159
x86-64. See x86-64 microprocessors

Advanced Research Projects Agency
(ARPA), 900

AFS (Andrew File System), 591
aggregate data types, 161
aggregate payloads, 819
%ah [IA32] bits 8–15 of register %eax,

168
%ah [x86-64] bits 8–15 of register

%rax, 274
%al [IA32] bits 0–7 bits of register

%eax, 168, 170
%al [x86-64] bits 0–7 of register %rax,

274
alarm [Unix] schedule alarm to self,

742, 743
alarm.c [CS:APP] program, 743
algebra, Boolean, 48–51, 49
aliasing, memory, 477, 478, 494
.align directive, 346
alignment

data, 248, 248–251
memory blocks, 818
stack space, 226
x86-64, 291

alloca [Unix] stack storage
allocation function, 261

allocate and initialize bounded buffer
function, 968

allocate heap block function, 832,
834

allocate heap storage function, 814
allocated bit, 821
allocated blocks

vs. free, 813
placement, 822–823

allocation
blocks, 832
dynamic memory. See dynamic

memory allocation
pages, 783–784

allocators
block allocation, 832
block freeing and coalescing, 832
free list creation, 830–832
free list manipulation, 829–830
general design, 827–829
practice problems, 832–835

requirements and goals, 817–819
styles, 813–814

Alpha processors
introduction, 268
RISC, 343

alternate representations of signed
integers, 63

ALUADD [Y86] function code for
addition operation, 384

ALUs (Arithmetic/Logic Units), 9
combinational circuits, 359–360
in execute stage, 364
sequential Y86 implementation,

387–389
always taken branch prediction

strategy, 407
AMD (Advanced Micro Devices),

156, 159, 267
Intel compatibility, 159
x86-64. See x86-64 microprocessors

AMD64 microprocessors, 267, 269
Amdahl, Gene, 545
Amdahl’s law, 475, 540, 545, 545–547
American National Standards

Institute (ANSI), 4
C standards, 4, 32
static libraries, 667

ampersand (&)
logic gates, 353
pointers, 44, 175, 234, 252

monoand [IA32/x86-64] and, 178,
277

and operations
Boolean, 48–49
execute stage, 387
HCL expressions, 354–355
logic gates, 353
logical, 54

andl [Y86] and, 338
Andreesen, Marc, 912
Andrew File System (AFS), 591
anonymous files, 807
ANSI (American National Standards

Institute), 4
C standards, 4, 32
static libraries, 667

AOK [Y86] status code for normal
operation, 344

app_error [CS:APP] reports
application errors, 1001

Application Binary Interface (ABI),
294

Index 1013

applications, loading and linking
shared libraries from, 683–686

ar Unix archiver, 669, 690
Archimedes, 131
architecture

floating-point, 292
Y86. See Y86 instruction set

architecture
archives, 668
areal density of disks, 572
areas

shared, 808
swap, 807
virtual memory, 804

arguments
execve function, 730
IA32, 226–228
Web servers, 917–918
x86-64, 283–284

arithmetic, 31, 177
integer. See integer arithmetic
latency and issue time, 501–502
load effective address, 177–178
pointer, 233–234, 846
saturating, 125
shift operations, 55, 96–97, 178–180
special, 182–185, 278–279
unary and binary, 178–179
x86-64 instructions, 277–279

arithmetic/logic units (ALUs), 9
combinational circuits, 359–360
in execute stage, 364
sequential Y86 implementation,

387–389
ARM (Acorn RISC Machines)

ISAs, 334
processor architecture, 344

arms, actuator, 573
ARPA (Advanced Research Projects

Agency), 900
ARPANET, 900
arrays, 232

basic principles, 232–233
declarations, 232–233, 238
DRAM, 562
fixed-size, 237–238
machine-code representation, 161
nested, 235–236
pointer arithmetic, 233–234
pointer relationships, 43, 252
stride, 588
variable-sized, 238–241

ASCII standard, 3
character codes, 46
limitations, 47

asctime function, 982–983
ASLR (address-space layout

randomization), 262
asm directive, 267
assembler directives, 346
assemblers, 5, 154, 160
assembly code, 5, 154

with C programs, 266–267
formatting, 165–167
Y86, 340

assembly phase, 5
associate socket address with

descriptor function, 904, 904–
905

associative caches, 606–609
associative memory, 607
associativity

caches, 614–615
floating-point addition, 113–114
floating-point multiplication, 114
integer multiplication, 30
unsigned addition, 82

asterisk (*) dereference pointer
operation, 175, 234, 252

asymmetric ranges in two’s-
complement representation,
61–62, 71

asynchronous interrupts, 706
atexit function, 680
Atom system, 692
ATT assembly-code format, 166

arithmetic instructions, 279
cltd instruction, 184
gcc, 294
vs. Intel, 166–167
operands, 169, 178, 186
Y86 instructions, 337–338

automatic variables, 956
%ax [IA32] low-order 16 bits of

register %eax, 168, 170
%ax [x86-64] low-order 16 bits of

register %rax, 274

B2T (binary to two’s-complement
conversion), 60, 67, 89

B2U (binary to unsigned conversion),
59, 67, 76, 89

background processes, 733–734
backlogs for listening sockets, 905

backups for disks, 592
backward taken, forward not taken

(BTFNT) branch prediction
strategy, 407

bad pointers and virtual memory, 843
badcnt.c [CS:APP] improperly

synchronized program, 957–
960, 958

bandwidth, read, 621
base registers, 170
bash [Unix] Unix shell program, 733
basic blocks, 548
Bell Laboratories, 32
Berkeley sockets, 901
Berners-Lee, Tim, 912
best-fit block placement policy, 822,

823
%bh [IA32] bits 8–15 of register %ebx,

168
%bh [x86-64] bits 8–15 of register

%rbx, 274
bi-endian ordering convention, 40
biased number encoding, 103, 103–

106
biasing in division, 96–97
big endian byte ordering, 40
bigram statistics, 542
bijections, 59, 61
billions of floating-point operations

per second (gigaflops), 525
/bin/kill program, 739–740
binary files, 3
binary notation, 30
binary points, 100, 100–101
binary representations

conversions
with hexadecimal, 34–35
signed and unsigned, 65–69
to two’s-complement, 60, 67, 89
to unsigned, 59

fractional, 100–103
machine language, 178–179

binary semaphores, 964
binary translation, 691–692
binary tree structure, 245–246
bind [Unix] associate socket addr

with descriptor, 902, 904,
904–905

binding, lazy, 688, 689
binutils package, 690
bistable memory cells, 561
bit-level operations, 51–53

1014 Index

bit representation, expansion, 71–75
bit vectors, 48, 49–50
bits, 3

overview, 30
union access to, 246

%bl [IA32] bits 0–7 of register %ebx,
168

%bl [x86-64] bits 0–7 of register %rbx,
274

block and unblock signals function,
753

block offset bits, 598
block pointers, 829
block size

caches, 614
minimum, 822

blocked bit vectors, 739
blocked signals, 738, 739, 745
blocking

signals, 753–754
for temporal locality, 629

blocks
aligning, 818
allocated, 813, 822–823
vs. cache lines, 615
caches, 593, 596, 614
coalescing, 824, 832
epilogue, 829
free lists, 820–822
freeing, 832
heap, 813
logical disk, 575, 575–576, 582
prologue, 828
referencing data in, 847
splitting, 823
in SSDs, 582

bodies, response, 915
bool [HCL] bit-level signal, 354
Boole, George, 48
Boolean algebra and functions, 48

HCL, 354–355
logic gates, 353
properties, 49
working with, 48–51

Boolean rings, 49
bottlenecks, 540

Amdahl’s law, 545–547
program profiling, 540–545

bottom of stack, 173
boundary tags, 824–826, 825, 833
bounded buffers, 966, 966–967
bounds

latency, 496, 502

throughput, 497, 502
BoundsChecker product, 692
%bp [x86-64] low-order 16 bits of

register %rbp, 274
%bpl [x86-64] bits 0–7 of register

%rbp, 274
branch prediction, 208–209, 498, 499

misprediction handling, 434
performance, 526–531
Y86 pipelining, 407

branches, conditional, 161, 193,
193–197

break command in gdb, 255
break statements with switch, 215
breakpoints, 254–255
bridged Ethernet, 888, 889
bridges

Ethernet, 888
I/O, 568

browsers, 911, 912
BSD Unix, 658
.bss section, 659
BTFNT (backward taken, forward

not taken) branch prediction
strategy, 407

bubbles, pipeline, 414, 414–415,
437–438

buddies, 838
buddy systems, 837, 837–838
buffer overflow

execution code regions limits for,
266–267

memory-related bugs, 844
overview, 256–261
stack corruption detection for,

263–265
stack randomization for, 261–262
vulnerabilities, 7

buffered I/O functions, 868–872
buffers

bounded, 966, 966–967
read, 868, 870–871
store, 534–535
streams, 879–880

bus transactions, 567
buses, 8, 567

designs, 568
I/O, 576
memory, 568

%bx [IA32] low-order 16 bits of
register %ebx, 168

%bx [x86-64] low-order 16 bits of
register %rbx, 274

bypassing for data hazards, 416–418
byte order, 39–46

disassembled code, 193
network, 893
unions, 247

bytes, 3, 33
copying, 125
range, 34
register operations, 169
Y86 encoding, 340–341

C language
assembly code with, 266–267
bit-level operations, 51–53
floating-point representation,

114–117
history, 4, 32
logical operations, 54
shift operations, 54–56
static libraries, 667–670

C++ language, 661
linker symbols, 663–664
objects, 241–242
reference parameters, 226
software exceptions, 703–704, 760

.c source files, 4–5, 655
C standard library, 4–5, 5
C90 standard, 32
C99 standard, 32

integral data types, 58
long long integers, 39

cache block offset (CO), 797
cache blocks, 596
cache-friendly code, 616, 616–620
cache lines

cache sets, 596
vs. sets and blocks, 615

cache oblivious algorithms, 630
cache pollution, 717
cache set index (CI), 797
cache tags (CT), 797
cached pages, 780
caches and cache memory, 592, 596

address translation, 797
anatomy, 612–613
associativity, 614–615
cache-friendly code, 616, 616–620
data, 499, 612, 613
direct-mapped. See direct-mapped

caches
DRAM, 780
fully associative, 608–609
hits, 593

Index 1015

importance, 12–13
instruction, 498, 612, 613
locality in, 587, 625–629, 784
managing, 595
memory mountains, 621–625
misses, 448, 594, 594–595
overview, 592–593
page allocation, 783–784
page faults, 782, 782–783
page hits, 782
page tables, 780, 780–781
performance, 531, 614–615, 620–

629
practice problems, 609–611
proxy, 915
purpose, 560
set associative, 606, 606–608
size, 614
SRAM, 780
symbols, 598
virtual memory with, 779–784, 791
write issues, 611–612
write strategies, 615
Y86 pipelining, 447–448

call [IA32/1486] procedure call,
221–222, 339

call [Y86] instruction
definition, 339
instruction code for, 384
pipelined implementations, 407
processing steps, 372

callee procedures, 220, 223–224, 285
callee saved registers, 223, 287, 289
caller procedures, 220, 223–224, 285
caller saved registers, 223, 287
calling environments, 759
calloc function

dynamic memory allocation,
814–815

security vulnerability, 92
callq [x86-64] procedure call, 282
calls, 17, 707, 707–708

error handling, 717–718
Linux/IA32 systems, 710–711
performance, 490–491
slow, 745

canary values, 263–264
canceling mispredicted branch

handling, 434
capacity

caches, 597
disks, 571, 571–573

capacity misses, 595

cards, graphics, 577
carry flag condition code (CF), 185
CAS (Column Access Strobe)

requests, 563
case expressions in HCL, 357,

357–359
casting, 42

floating-point values, 115–116
pointers, 252–253, 827
signed values, 65–66

catching signals, 738, 740, 744
cells

DRAM, 562, 563
SRAM, 561

central processing units (CPUs), 9,
9–10, 497

Core i7. See Core i7 microproces-
sors

early instruction sets, 342
effective cycle time, 585
embedded, 344
Intel. See Intel microprocessors
logic design. See logic design
many-core, 449
multi-core, 16, 22, 158, 586, 934
overview, 334–336
pipelining. See pipelining
RAM, 363
sequential Y86 implementation.

See sequential Y86 implemen-
tation

superscalar, 24, 448–449, 497
trends, 584–585
Y86. See Y86 instruction set

architecture
Cerf, Vinton, 900
CERT (Computer Emergency

Response Team), 92
CF [IA32/x86-64] carry flag condition

code, 185
CGI (Common Gateway Interface)

program, 916–917
%ch [IA32] bits 8–15 of register %ecx,

168
%ch [x86-64] bits 8–15 of register

%rcx, 274
chains, proxy, 915
char data type, 57, 270
character codes, 46
check-clients function, 943, 946
child processes, 720

creating, 721–723
default behavior, 724

error conditions, 725–726
exit status, 725
reaping, 723, 723–729
waitpid function, 726–729

CI (cache set index), 797
circuits

combinational, 354, 354–360
retiming, 401
sequential, 361

CISC (complex instruction set
computers), 342, 342–344

%cl [IA32] bits 0–7 of register %ecx,
168

%cl [x86-64] bits 0–7 of register %rcx,
274

Clarke, Dave, 900
classes

data hazards, 412–413
exceptions, 706–708
instructions, 171
size, 836
storage, 956

clear signal set function, 753
client-server model, 886, 886–887
clienterror [CS:APP] Tiny helper

function, 922–923
clients

client-server model, 886
telnet, 20–21

clock signals, 361
clocked registers, 380–381
clocking in logic design, 361–363
close [Unix] close file, 865
close operations for files, 863, 865
close shared library function, 685
cltd [IA32] convert double word to

quad word, 182, 184
cltq [x86-64] convert double word

to quad word, 279
cmova [IA32/x86-64] move if

unsigned greater, 210
cmovae [IA32/x86-64] move if

unsigned greater or equal, 210
cmovb [IA32/x86-64] move if

unsigned less, 210
cmovbe [IA32/x86-64] move if

unsigned less or equal, 210
cmove [IA32/x86-64] move when

equal, 210, 339
cmovg [IA32/x86-64] move if greater,

210, 339
cmovge [IA32/x86-64] move if greater

or equal, 210, 339

1016 Index

cmovl [IA32/x86-64] move if less,
210, 339

cmovle [IA32/x86-64] move if less or
equal, 210, 339

cmovna [IA32/x86-64] move if not
unsigned greater, 210

cmovnae [IA32/x86-64] move if
unsigned greater or equal, 210

cmovnb [IA32/x86-64] move if not
unsigned less, 210

cmovnbe [IA32/x86-64] move if not
unsigned less or equal, 210

cmovne [IA32/x86-64] move if not
equal, 210, 339

cmovng [IA32/x86-64] move if not
greater, 210

cmovnge [IA32/x86-64] move if not
greater or equal, 210

cmovnl [IA32/x86-64] move if not
less, 210

cmovnle [IA32/x86-64] move if not
less or equal, 210

cmovns [IA32/x86-64] move if
nonnegative, 210

cmovnz [IA32/x86-64] move if not
zero, 210

cmovs [IA32/x86-64] move if
negative, 210

cmovz [IA32/x86-64] move if zero,
210

cmp [IA32/x86-64] compare, 186, 280
cmpb [IA32/x86-64] compare byte,

186
cmpl [IA32/x86-64] compare double

word, 186
cmpq [x86-64] compare quad word,

280
cmpw [IA32/x86-64] compare word,

186
cmtest script, 443
CO (cache block offset), 797
coalescing blocks, 832

with boundary tags, 824–826
free, 824
memory, 820

Cocke, John, 342
code

performance strategies, 539
profilers, 540–545
representing, 47
self-modifying, 413
Y86 instructions, 339, 341

code motion, 487

code segments, 678, 679–680
COFF (Common Object File format),

658
Cohen, Danny, 41
cold caches, 594
cold misses, 594
Cold War, 900
collectors, garbage, 813, 838

basics, 839–840
conservative, 839, 842
Mark&Sweep, 840–842

Column Access Strobe (CAS)
requests, 563

column-major sum function, 617
combinational circuits, 354, 354–360
Common Gateway Interface (CGI)

program, 916–917
Common Object File format (COFF),

658
Compaq Computer Corp. RISC

processors, 343
compare byte instruction (cmpb), 186
compare double word instruction

(cmpl), 186
compare instructions, 186, 280
compare quad word instruction

(cmpq), 280
compare word instruction (cmpw),

186
compilation phase, 5
compilation systems, 5, 6–7
compile time, 654
compiler drivers, 4, 655–657
compilers, 5, 154

optimizing capabilities and
limitations, 476–480

process, 159–160
purpose, 162

complement instruction (Not), 178
complex instruction set computers

(CISC), 342, 342–344
compulsory misses, 594
computation stages in pipelining,

400–401
computational pipelines, 392–393
computed goto, 216
Computer Emergency Response

Team (CERT), 92
computer systems, 2
concurrency, 934

ECF for, 703
flow synchronizing, 755–759
and parallelism, 21–22

run, 713
thread-level, 22–23

concurrent execution, 713
concurrent flow, 713, 713–714
concurrent processes, 16
concurrent programming, 934–935

deadlocks, 985–988
with I/O multiplexing, 939–947
library functions in, 982–983
with processes, 935–939
races, 983–985
reentrancy issues, 980–982
shared variables, 954–957
summary, 988–989
threads, 947–954

for parallelism, 974–978
safety issues, 979–980

concurrent programs, 934
concurrent servers, 934

based on I/O multiplexing, 939–947
based on prethreading, 970–973
based on processes, 936–937
based on threads, 952–954

condition code registers
definition, 185
hazards, 413
SEQ timing, 380–381

condition codes, 185, 185–187
accessing, 187–189
Y86, 337–338

condition variables, 970
conditional branches, 161, 193,

193–197
conditional move instructions, 206–

213, 373, 388-389, 527, 529–530
conditional x86-64 operations, 270
conflict misses, 594, 603–606
connect [Unix] establish connection

with server, 903
connected descriptors, 907, 908
connections

EOF on, 909
Internet, 892, 899–900
I/O devices, 576–578
persistent, 915

conservative garbage collectors, 839,
842

constant words, 340
constants

free lists, 829–830
maximum and minimum values, 63
multiplication, 92–95
for ranges, 62

Index 1017

Unix, 725
content

dynamic, 916–919
serving, 912
Web, 911, 912–914

context switches, 16, 716–717
contexts, 716

processes, 16, 712
thread, 947, 955

continue command in ADB, 255
Control Data Corporation 6600

processor, 500
control dependencies in pipelining,

399, 408
control flow

exceptional. See exceptional
control flow (ECF)

logical, 712, 712–713
control hazards, 408
control instructions for x86-64

processors, 279–282
control logic blocks, 377, 379, 383,

405
control logic in pipelining, 431

control mechanism combinations,
438–440

control mechanisms, 437–438
design testing and verifying,

442–444
implementation, 440–442
special control cases, 432–436
special control conditions, 436–437

control structures, 185
condition codes, 185–189
conditional branches, 193–197
conditional move instructions,

206–213
jumps, 189–193
loops. See loops
optimization levels, 254
switch statements, 213–219

control transfer, 221–223, 702
controllers

disk, 575, 575–576
I/O devices, 8
memory, 563, 564

conventional DRAMs, 562–564
conversions

binary
with hexadecimal, 34–35
signed and unsigned, 65–69
to two’s-complement, 60, 67, 89
to unsigned, 59

floating-point values, 115–116
lowercase, 487–489

convert active socket to listening
socket function, 905

convert application-to-network
function, 894

convert double word to quad word
instruction, 182, 279

convert host-to-network long
function, 893

convert host-to-network short
function, 893

convert network-to-application
function, 894

convert network-to-host long
function, 893

convert network-to-host short
function, 893

convert quad word to oct word
instruction (cqto), 279

coprocessors, 292
copy_elements function, 91–92
copy file descriptor function, 878
copy_from_kernel function, 78–79
copy-on-write technique, 808–809
copying

bytes in memory, 125
descriptor tables, 878
text files, 870

Core 2 microprocessors, 158, 568
Core i7 microprocessors, 22–23, 158

address translation, 800–803
branch misprediction penalty,

208–209
caches, 613
CPE performance, 485–486
functional unit performance,

500–502
load performance, 531
memory mountain, 623
operation, 497–500
out-of-order processing, 500
page table entries, 800–802
performance, 273
QuickPath interconnect, 568
virtual memory, 799–803

core memory, 737
cores in multi-core processors, 158,

586, 934
counting semaphores, 964
CPE (cycles per element) metric,

480, 482, 485–486
cpfile [CS:APP] text file copy, 870

CPI (cycles per instruction)
five-stage pipelines, 448–449
in performance analysis, 444–446

CPUs. See central processing units
(CPUs)

cqto [x86-64] convert quad word to
oct word, 279

CR3 register, 800
create/change environment variable

function, 732
create child process function, 720,

721–723
create thread function, 950
critical paths, 476, 502, 506–507, 513,

517, 521–522
critical sections in progress graphs,

961
CS:APP

header files, 725
wrapper functions, 718, 999

csapp.c [CS:APP] CS:APP wrapper
functions, 718, 999

csapp.h [CS:APP] CS:APP header
file, 718, 725, 999

csh [Unix] Unix shell program, 733
CT (cache tags), 797
ctest script, 443
ctime function, 982–983
ctime_ts [CS:APP] thread-safe non-

reentrant wrapper for ctime,
981

ctrl-c keys
nonlocal jumps, 760, 762
signals, 738, 740, 771

ctrl-z keys, 741, 771
%cx [IA32] low-order 16 bits of

register %ecx, 274
%cx [x86-64] low-order 16 bits of

register %rcx, 274
cycles per element (CPE) metric,

480, 482, 485–486
cycles per instruction (CPI)

five-stage pipelines, 448–449
in performance analysis, 444–446

cylinders
disk, 571
spare, 576, 581

d-caches (data caches), 499, 612, 613
data

conditional transfers, 206–213
forwarding, 415–418, 416
sizes, 38–39

1018 Index

data alignment, 248, 248–251
data caches (d-caches), 499, 612, 613
data dependencies in pipelining, 398,

408–410
data-flow graphs, 502–507
data formats in machine-level

programming, 167–168
data hazards

classes, 412–413
forwarding for, 415–418
load/use, 418–421
stalling, 413–415
Y86 pipelining, 408–412

data memory in SEQ timing, 380
data movement instructions, 171–

177, 275–277
data references

locality, 587–588
PIC, 687–688

.data section, 659
data segments, 679
data structures

heterogeneous. See heterogeneous
data structures

x86-64 processors, 290–291
data types. See types
database transactions, 887
datagrams, 892
ddd debugger, 254
DDR SDRAM (Double Data-Rate

Synchronous DRAM), 566
deadlocks, 985, 985–988
deallocate heap storage function, 815
.debug section, 659
debugging, 254–256
dec [IA32/x86-64] decrement, 178
decimal notation, 30
decimal system conversions, 35–37
declarations

arrays, 232–233, 238
pointers, 39
public and private, 661
structures, 241–244
unions, 244–245

decode stage
instruction processing, 364, 366,

368–377
PIPE processor, 426–429
SEQ, 385–387

decoding instructions, 498
decrement instruction (dec), 178–179
deep copies, 982
deep pipelining, 397–398

default actions with signal, 742
default behavior for child processes,

724
deferred coalescing, 824
#define preprocessor directive

constants, 237
macro expansion, 160

delete command in GDB, 255
delete environment variable

function, 732
DELETE method in HTTP, 915
delete signal from signal set function,

753
delivering signals, 738
delivery mechanisms for protocols,

890
demand paging, 783
demand-zero pages, 807
demangling process, 663, 663–664
DeMorgan’s laws, 461
denormalized floating-point value,

105, 105–110
dependencies

control in pipelining systems, 399,
408

data in pipelining systems, 398,
408–410

reassociation transformations, 521
write/read, 534–536

dereferencing pointers, 44, 175–176,
234, 252, 843

descriptor sets, 939, 940
descriptor tables, 875–876, 878
descriptors, 863

connected and listening, 907, 908
socket, 902

destination hosts, 889
detach thread function, 951
detached threads, 951
detaching threads, 951–952
%dh [IA32] bits 8–15 of register %edx,

168
%dh [x86-64] bits 8–15 of register

%rdx, 274
%di [x86-64] low-order 16 bits of

register %rdi, 274
diagrams

hardware, 377
pipeline, 392

Digital Equipment Corporation
Alpha processor, 268
VAX computer Boolean

operations, 53

Dijkstra, Edsger, 963–964
%dil [x86-64] bits 0–7 of register

%rdi, 274
DIMM (Dual Inline Memory

Module), 564
direct jumps, 190
direct-mapped caches, 599

conflict misses, 603–606
example, 601–603
line matching, 599–600
line replacement, 600–601
set selection, 599
word selection, 600

direct memory access (DMA), 10,
579

directives, assembler, 166, 346
directory files, 874
dirty bits

in cache, 612
Core i7, 801

dirty pages, 801
disassemble command in GDB,

255
disassemblers, 41, 64, 163, 164–165
disks, 570

accessing, 578–580
anatomy, 580–581
backups, 592
capacity, 571, 571–573
connecting, 576–578
controllers, 575, 575–576
geometry, 570–571
logical blocks, 575–576
operation, 573–575
trends, 584–585

distributing software, 684
division

instructions, 182–184, 279
Linux/IA32 system errors, 709
by powers of two, 95–98

divl [IA32/x86-64] unsigned divide,
182, 184

divq [x86-64] unsigned divide, 279
DIXtrac tool, 580, 580–581
%dl [IA32] bits 0–7 of register %edx,

168
%dl [x86-64] bits 0–7 of register %rdx,

274
dlclose [Unix] close shared library,

685
dlerror [Unix] report shared library

error, 685
DLLs (Dynamic Link Libraries), 682

Index 1019

dlopen [Unix] open shared libary,
684

dlsym [Unix] get address of shared
library symbol, 684

DMA (direct memory access), 10,
579

DMA transfer, 579
DNS (Domain Name System), 896
dns_error [CS:APP] reports DNS-

style errors, 1001
DNS-style error handling, 1000, 1001
do [C] variant of while loop, 197–200
doit [CS:APP] Tiny helper function,

920, 921
dollar signs ($) for immediate

operands, 169
domain names, 892, 895–899
Domain Name System (DNS), 896
dotprod [CS:APP] vector dot

product, 603
dots (.) in dotted-decimal notation,

893
dotted-decimal notation, 893, 894
double [C] double-precision floating

point, 114, 115
Double Data-Rate Synchronous

DRAM (DDR SDRAM), 566
double data type, 270–271
double-precision representation

C, 39, 114–117
IEEE, 103, 104
machine-level data, 168

double words, 167
DRAM. See Dynamic RAM

(DRAM)
DRAM arrays, 562
DRAM cells, 562, 563
drivers, compiler, 4, 655–657
Dual Inline Memory Module

(DIMM), 564
dup2 [Unix] copy file descriptor, 878
%dx [IA32] low-order 16 bits of

register %edx, 168
%dx [x86-64] low-order 16 bits of

register %rdx, 274
dynamically generated code, 266
dynamic content, 684, 916–919
Dynamic Link Libraries (DLLs), 682
dynamic linkers, 682
dynamic linking, 681–683, 682
dynamic memory allocation

allocated block placement, 822–
823

allocator design, 827–832
allocator requirements and goals,

817–819
coalescing with boundary tags,

824–826
coalescing free blocks, 824
explicit free lists, 835
fragmentation, 819–820
heap memory requests, 823
implementation issues, 820
implicit free lists, 820–822
malloc and free functions,

814–816
overview, 812–814
purpose, 816–817
segregated free lists, 836–838
splitting free blocks, 823

dynamic memory allocators, 813–
814

Dynamic RAM (DRAM), 9, 562
caches, 780, 782, 782–783
conventional, 562–564
enhanced, 565–566
historical popularity, 566
modules, 564, 565
vs. SRAM, 562
trends, 584–585

dynamic Web content, 912

E-way set associative caches, 606
%eax [x86-64] low-order 32 bits of

register %rax, 274
%eax [IA32/Y86] register, 168, 337
%ebp [x86-64] low-order 32 bits of

register %rbp, 274
%ebp [IA32/Y86] frame pointer

register, 168, 337
%ebx [x86-64] low-order 32 bits of

register %rbx, 274
%ebx [IA32/Y86] register, 168, 337
ECF. See exceptional control flow

(ECF)
ECHILD return code, 725, 727
echo function, 257–258, 263
echo [CS:APP] read and echo input

lines, 911
echo_cnt [CS:APP] counting version

of echo, 971, 973
echoclient.c [CS:APP] echo client,

908–909, 909
echoserveri.c [CS:APP] iterative

echo server, 908, 910
echoservers.c [CS:APP]

concurrent echo server based
on I/O multiplexing, 944

echoservert.c [CS:APP]
concurrent echo server based
on threads, 953

echoservert_pre.c [CS:APP]
prethreaded concurrent echo
server, 972

%ecx [x86-64] low-order 32 bits of
register %rcx, 274

%ecx [IA32/x86-64] register, 168, 274
%edi [x86-64] low-order 32 bits of

register %rdi, 274
%edi [IA32/x86-64] register, 168, 274
EDO DRAM (Extended Data Out

DRAM), 566
%edx [x86-64] low-order 32 bits of

register %rdx, 274
%edx [IA32/Y86] register, 168, 337
EEPROMs (Electrically Erasable

Programmable ROMs), 567
effective addresses, 170, 673
effective cycle time, 585
efficiency of parallel programs, 977,

978
EINTR return code, 725
%eip [IA32] program counter, 161
Electrically Erasable Programmable

ROMs (EEPROMs), 567
ELF. See Executable and Linkable

Format (ELF)
EM64T processor, 158
embedded processors, 344
encapsulation, 890
encodings in machine-level

programs, 159–160
code examples, 162–165
code overview, 160–161
Y86 instructions, 339–342

end-of-file (EOF) condition, 863,
909

entry points, 678, 679
environment variables lists, 731–732
EOF (end-of-file) condition, 863, 909
ephemeral ports, 899
epilogue blocks, 829
EPIPE error return code, 927
Erasable Programmable ROMs

(EPROMs), 567
errno [Unix] Unix error variable,

1000
error-correcting codes for memory,

562

1020 Index

error handling
system calls, 717–718
Unix systems, 1000–1001
wrappers, 718, 999, 1001–1003

error-reporting functions, 718
errors

child processes, 725–726
link-time, 7
off-by-one, 845
race, 755, 755–759
reporting, 1001
synchronization, 957

%esi [x86-64] low-order 32 bits of
register %rsi, 274

%esi [IA32/Y86] register, 168, 337
%esp [x86-64] low-order 32 bits of

stack pointer register %rsp, 274
%esp [IA32/Y86] stack pointer

register, 168, 337
establish connection with server

functions, 903–904
establish listening socket function,

905, 905–906
etest script, 443
Ethernet segments, 888, 889
Ethernet technology, 888
EUs (execution units), 497, 499
eval [CS:APP] shell helper routine,

734, 735
event-driven programs, 942

based on I/O multiplexing, 942–947
based on threads, 973

events, 703
scheduling, 743
state machines, 942

evicting blocks, 594
exabytes, 270
exact-size integer types, 62–63
excepting instructions, 421
exception handlers, 704, 705
exception handling

in instruction processing, 364–365
Y86, 344–345, 420–423, 435–436

exception numbers, 705
exception table base registers, 705
exception tables, 704, 705
exceptional control flow (ECF), 702

exceptions, 703–711
importance, 702–703
nonlocal jumps, 759–762
process control. See processes
signals. See signals
summary, 763

system call error handling, 717–718
exceptions, 703

anatomy, 703–704
classes, 706–708
data alignment, 249
handling, 704–706
Linux/IA32 systems, 708–711
status code for, 384
synchronous, 707
Y86, 337

exclamation points (!) for Not
operation, 54, 353

Exclusive-Or Boolean operation,
48

exclusive-or instruction (xor)
IA32, 178
Y86, 338

Executable and Linkable Format
(ELF), 658

executable object files, 678–679
headers, 658–659
relocation, 673
segment header tables, 678
symbol tables, 660–662

executable code, 160
executable object files, 4

creating, 656
description, 657
loading, 679–681
running, 7
segment header tables, 678–679

executable object programs, 4
execute access, 266
execute disable bit, 801
execute stage

instruction processing, 364, 366,
368–377

PIPE processor, 429–430
SEQ, 387–389

execution
concurrent, 713
parallel, 714
speculative, 498, 499, 527
tracing, 367, 369–370, 373–375, 382

executable code regions, 266–267
execution units (EUs), 497, 499
execve [Unix] load program, 730

arguments and environment
variables, 730–732

child processes, 681, 684
loading programs, 679
running programs, 733–736
virtual memory, 810

exit [C Stdlib] terminate process,
680, 719

exit status, 719, 725
expanding bit representation, 71–75
expansion slots, 577
explicit allocator requirements and

goals, 817–819
explicit dynamic memory allocators,

813
explicit free lists, 835
explicit thread termination, 950
explicitly reentrant functions, 981
exploit code, 260–261
exponents in floating-point

representation, 103
extend_heap [CS:APP] allocator:

extend heap, 830, 831
Extended Data Out DRAM (EDO

DRAM), 566
extended precision floating-point

representation, 128
IA32, 116
machine-level data, 168
x86-64 processors, 271

external exceptions in pipelining, 420
external fragmentation, 819, 819–820

fall through in switch statements,
215

false fragmentation, 824
Fast Page Mode DRAM (FPM

DRAM), 566
fault exception class, 706
faulting instructions, 707
faults, 708

Linux/IA32 systems, 709, 806–807
Y86 pipelining caches, 448

FD_CLR [Unix] clear bit in descriptor
set, 939, 940

FD_ISSET [Unix] bit turned on in
descriptor set?, 939, 940, 942

FD_SET [Unix] set bit in descriptor
set, 939, 940

FD_ZERO [Unix] clear descriptor set,
939, 940

feedback in pipelining, 398–400, 403
feedback paths, 375, 399
fetch file metadata function, 873–874
fetch stage

instruction processing, 364, 366,
368–377

PIPE processor, 424–425
SEQ, 383–385

Index 1021

fetches, locality, 588–589
fgets function, 258
Fibonacci (Pisano), 30
field-programmable gate arrays

(FPGAs), 444
FIFOs, 937
file descriptors, 863
file position, 863
file tables, 716, 875
file type, 879
files, 19

as abstraction, 25
anonymous, 807
binary, 3
metadata, 873–875
object. See object files
register, 9, 161, 339–340, 362–363,

380, 499
regular, 807, 874
sharing, 875–877
system-level I/O. See system-level

I/O
Unix, 862, 862–863

fingerd daemon, 260
finish command in GDB, 255
firmware, 567
first fit block placement policy, 822,

823
first-level domain names, 896
first readers-writers problem, 969
fits, segregated, 836, 837
five-stage pipelines, 448–449
fixed-size arrays, 237–238
flash memory, 567
flash translation layers, 582–583
flat addressing, 159
float [C] single-precision floating

point, 114, 270
floating-point representation and

programs, 99–100
architecture, 292
arithmetic, 31
C, 114–117
denormalized values, 105, 105–110
encodings, 30
extended precision, 116, 128
fractional binary numbers, 100–

103
IEEE, 103–105
machine-level representation,

292–293
normalized value, 103, 103–104
operations, 113–114

overflow, 116–117
pi, 131
rounding, 110–113
special values, 105
SSE architecture, 292
x86-64 processors, 270, 492
x87 architecture, 156–157, 292

flows
concurrent, 713, 713–714
control, 702
logical, 712, 712–713
parallel, 713–714
synchronizing, 755–759

flushed instructions, 499
FNONE [Y86] default function code,

384
footers of blocks, 825
for [C] general loop statement,

203–206
forbidden regions, 964
foreground processes, 734
fork [Unix] create child process, 720

child processes, 684
example, 721–723
running programs, 733–736
virtual memory, 809–810

fork.c [CS:APP] fork example, 721
formal verification, 443–444
format strings, 43
formats for machine-level data,

167–168
formatted disk capacity, 576
formatted printing, 43
formatting

disks, 576
machine-level code, 165–167

forwarding
for data hazards, 415–418
load, 456

forwarding priority, 427–428
FPGAs (field-programmable gate

arrays), 444
FPM DRAM (Fast Page Mode

DRAM), 566
fprintf [C Stdlib] function, 43
fractional binary numbers, 100–103
fractional floating-point representa-

tion, 103–110, 128
fragmentation, 819

dynamic memory allocation,
819–820

false, 824
frame pointer, 219

frames
Ethernet, 888
stack, 219, 219–221, 249, 284–287

free [C Stdlib] deallocate heap
storage, 815, 815–816

free blocks, 813
coalescing, 824
splitting, 823

free bounded buffer function, 968
free heap block function, 833
free heap blocks, referencing data in,

847
free lists

creating, 830–832
dynamic memory allocation,

820–822
explicit, 835
implicit, 822
manipulating, 829–830
segregated, 836–838

free software, 6
FreeBSD open source operating

system, 78–79
freeing blocks, 832
Freescale

processor family, 334
RISC design, 342

front side bus (FSB), 568
fstat [Unix] fetch file metadata,

873–874
full duplex connections, 899
full duplex streams, 880
fully associative caches, 608, 608–609
fully linked executable object files,

678
fully pipelined functional units, 501
function calls

performance strategies, 539
PIC, 688–690

function codes in Y86 instructions,
339–340

functional units, 499–502
functions

parameter passing to, 226
pointers to, 253
reentrant, 980
static libraries, 667–670
system-level, 710
thread-safe and thread-unsafe,

979, 979–981
-funroll-loops option, 512

gaps, disk sectors, 571, 576

1022 Index

garbage, 838
garbage collection, 814, 838

garbage collectors, 813, 838
basics, 839–840
conservative, 839, 842
Mark&Sweep, 840–842

overview, 838–839
gates, logic, 353
gcc (GNU Compiler Collection)

compiler
ATT format for, 294
code formatting, 165–166
inline substitution, 479
loop unrolling, 512
optimizations, 254–256
options, 32–33, 476
support for SIMD instructions,

524–525
working with, 159–160

gdb GNU debugger, 163, 254,
254–256

general protection faults, 709
general-purpose registers

IA32, 168–169
x86-64, 273–275
Y86, 336–337

geometry of disks, 570–571
get address of shared library symbol

function, 685
get DNS host entry functions, 896
“get from” operator (C++), 862
GET method in HTTP, 915
get parent process ID function, 719
get process group ID function, 739
get process ID function, 719
get thread ID function, 950
getenv [C Stdlib] read environment

variable, 732
gethostbyaddr [Unix] get DNS host

entry, 896, 982–983
gethostbyname [Unix] get DNS host

entry, 896, 982–983
getpeername function, 78–79
getpgrp [Unix] get process group

ID, 739
getpid [Unix] get process ID, 719
getppid [Unix] get parent process

ID, 719
getrusage [Unix] function, 784
gets function, 256–259
GHz (gigahertz), 480
giga-instructions per second (GIPS),

392

gigabytes, 572
gigaflops, 525
gigahertz (GHz), 480
GIPS (giga-instructions per second),

392
global IP Internet. See Internet
Global Offset Table (GOT), 687,

688–690
global symbols, 660, 664–667
global variable mapping, 956
GNU Compiler Collection. See gcc

(GNU Compiler Collection)
compiler

GNU project, 6
GOT (Global Offset Table), 687,

688–690
goto [C] control transfer statement,

193, 216
goto code, 193–194
gprof Unix profiler, 540, 541–542
gradual underflow, 105
granularity of concurrency, 947
graphic user interfaces for debuggers,

254
graphics adapters, 577
graphs

data-flow, 502–507
process, 721, 722
progress. See progress graphs
reachability, 839

greater than signs (>)
“get from” operator, 862
right hoinkies, 878

groups
abelian, 82
process, 739

guard values, 263

h_errno [Unix] DNS error variable,
1000

.h header files, 669
halt [Y86] halt instruction

execution, 339
exceptions, 344, 420–422
instruction code for, 384
in pipelining, 439
status code for, 384

handlers
exception, 704, 705
interrupt, 706
signal, 738, 742, 744

handling signals, 744
issues, 745–751

portable, 752–753
hardware caches. See caches and

cache memory
Hardware Control Language (HCL),

352
Boolean expressions, 354–355
integer expressions, 355–360
logic gates, 353

hardware description languages
(HDLs), 353, 444

hardware exceptions, 704
hardware interrupts, 706
hardware management, 14–15
hardware organization, 7–8

buses, 8
I/O devices, 8–9
main memory, 9
processors, 9–10

hardware registers, 361–362
hardware structure for Y86, 375–379
hardware units, 375–377, 380
hash tables, 544–545
hazards in pipelining, 336, 408

forwarding for, 415–418
load/use, 418–420
overview, 408–412
stalling for, 413–415

HCL (Hardware Control Language),
352

Boolean expressions, 354–355
integer expressions, 355–360
logic gates, 353

HDLs (hardware description
languages), 353, 444

head crashes, 573
HEAD method in HTTP, 915
header files

static libraries, 669
system, 725

header tables in ELF, 658, 678,
678–679

headers
blocks, 821
ELF, 658
Ethernet, 888
request, 914
response, 915

heap, 18, 813
dynamic memory allocation,

813–814
Linux systems, 679
referencing data in, 847
requests, 823

Index 1023

hello [CS:APP] C hello program, 2,
10–12

help command, 255
Hennessy, John, 342, 448
heterogeneous data structures, 241

data alignment, 248–251
structures, 241–244
unions, 244–248
x86-64, 290–291

hexadecimal (hex) notation, 34,
34–37

hierarchies
domain name, 895
storage devices, 13, 13–14, 591,

591–595
high-level design performance

strategies, 539
hit rates, 614
hit times, 614
hits

cache, 593, 614
write, 612

hlt [IA32/x86-64] halt instruction,
339

HLT [Y86] status code indicating halt
instruction, 344

hoinkies, 878
holding mutexes, 964
Horner, William, 508
Horner’s method, 508
host bus adapters, 577
host bus interfaces, 577
host entry structures, 896
host information program command,

894
hostent [Unix] DNS host entry

structure, 896
hostinfo [CS:APP] get DNS host

entry, 897
hostname command, 894
hosts

client-server model, 887
network, 889
number of, 898

htest script, 443
HTML (Hypertext Markup

Language), 911, 911–912
htonl [Unix] convert host-to-

network long, 893
htons [Unix] convert host-to-

network short, 893
HTTP. See Hypertext Transfer

Protocol (HTTP)

hubs, 888
hyperlinks, 911
Hypertext Markup Language

(HTML), 911, 911–912
Hypertext Transfer Protocol

(HTTP), 911
dynamic content, 916–919
requests, 914, 914–915
responses, 915, 915–916
transactions, 914

hyperthreading, 22, 158
HyperTransport interconnect, 568

i-caches (instruction caches), 498,
612, 613

.i files, 5, 655
i386 Intel microprocessors, 157,

269
i486 Intel microprocessors, 157
IA32 (Intel Architecture 32-bit)

array access, 233
condition codes, 185
conditional move instructions,

207–209
data alignment, 249
exceptions, 708–711
extended-precision floating point,

116
machine language, 155–156
microprocessors, 44, 158
registers, 168, 168–169

data movement, 171–177
operand specifiers, 169–170

vs. Y86, 342, 345–346
IA32-EM64T microprocessors, 269
IA64 Itanium instruction set, 269
iaddl [Y86] immediate add, 452
IBM

out-of-order processing, 500
processor family, 334
RISC design, 342–343

ICALL [Y86] instruction code for
call instruction, 384

ICANN (Internet Corporation
for Assigned Names and
Numbers), 896

icode (Y86 instruction code), 364,
383

ICUs (instruction control units),
497–498

idivl [IA32/x86-64] signed divide,
182, 183

idivq [x86-64] signed divide, 279

IDs (identifiers)
processes, 719–720
register, 339–340

IEEE. See Institute for Electrical and
Electronic Engineers (IEEE)

description, 100
Posix standards, 15

IEEE floating-point representation
denormalized, 105
normalized, 103–104
special values, 105
Standard 754, 99
standards, 99–100

if [C] conditional statement, 194–
196

ifun (Y86 instruction function), 364,
383

IHALT [Y86] instruction code for
halt instruction, 384

IIRMOVL [Y86] instruction code for
irmovl instruction, 384

ijk matrix multiplication, 626, 626–
628

IJXX [Y86] instruction code for jump
instructions, 384

ikj matrix multiplication, 626, 626–
628

illegal instruction exception, 384
imem_error signal, 384
immediate add instruction (iaddl),

452
immediate coalescing, 824
immediate offset, 170
immediate operands, 169
immediate to register move

instruction (irmovl), 337
implicit dynamic memory allocators,

813–814
implicit free lists, 820–822, 822
implicit thread termination, 950
implicitly reentrant functions, 981
implied leading 1 representation, 104
IMRMOVL [Y86] instruction code for

mrmovl instruction, 384
imul [IA32/x86-64] multiply, 178
imull [IA32/x86-64] signed multiply,

182
imulq [x86-64] signed multiply, 279
in [HCL] set membership test,

360–361
in_addr [Unix] IP address structure,

893
inc [IA32/x86-64] increment, 178

1024 Index

incl [IA32/x86-64] increment, 179
include files, 669
#include preprocessor directive,

160
increment instruction (inc), 178–179
indefinite integer values, 116
index.html file, 912–913
index registers, 170
indexes for direct-mapped caches,

605–606
indirect jumps, 190, 216
inefficiencies in loops, 486–490
inet_aton [Unix] convert

application-to-network, 894
inet_ntoa [Unix] convert network-

to-application, 894, 982–983
infinite precision, 80
infinity

constants, 115
representation, 104–105

info frame command, 255
info registers command, 255
information, 2–3
information access

IA32 registers, 168–169
data movement, 171–177
operand specifiers, 169–170

x86-64 registers, 273–277
information storage, 33

addressing and byte ordering,
39–46

bit-level operations, 51–53
Boolean algebra, 48–51
code, 47
data sizes, 38–39
disks. See disks
floating-point representation. See

floating-point representation
and programs

hexadecimal, 34–37
integers. See integers
locality. See locality
memory. See memory
segregated, 836
shift operations, 54–56
strings, 46–47
summary, 629–630
words, 38

init function, 723
init_pool [CS:APP] initialize client

pool, 943, 945
initialize nonlocal handler jump

function, 759

initialize nonlocal jump functions,
759

initialize read buffer function, 868,
870

initialize semaphore function, 963
initialize thread function, 952
initializing threads, 952
inline assembly, 267
inline substitution, 254, 479
inlining, 254, 479
INOP [Y86] instruction code for nop

instruction, 384
input events, 942
input/output. See I/O (input/output)
insert item in bounded buffer

function, 968
install portable handler function, 752
installing signal handlers, 744
Institute for Electrical and Electronic

Engineers (IEEE)
description, 100
floating-point representation

denormalized, 105
normalized, 103–104
special values, 105
standards, 99–100

Posix standards, 15
instr_regids signal, 383
instr_valC signal, 383
instr_valid signal, 383–384
instruction caches (i-caches), 498,

612, 613
instruction code (icode), 364, 383
instruction control units (ICUs),

497–498
instruction function (ifun), 364, 383
instruction-level parallelism, 23–24,

475, 496–497, 539
instruction memory in SEQ timing,

380
instruction set architectures (ISAs),

9, 24, 160, 334
instruction set simulators, 348
instructions

classes, 171
decoding, 498
excepting, 421
fetch locality, 588–589
issuing, 406–407
jump, 10, 189–193
load, 10
low-level. See machine-level

programming

move, 206–213, 527, 529–530
pipelining, 446–447, 527
privileged, 715
sequential Y86 implementation.

See sequential Y86 implemen-
tation

store, 10
update, 10
Y86. See Y86 instruction set

architecture
instructions per cycle (IPC), 449
int data types

integral, 58
x86-64 processors, 270

int [HCL] integer signal, 356
INT_MAX constant, 62
INT_MIN constant, 62
integer arithmetic, 79, 178

division by powers of two, 95–98
multiplication by constants, 92–95
overview, 98–99
two’s-complement addition, 83–87
two’s-complement multiplication,

89–92
two’s-complement negation, 87–88
unsigned addition, 79–83

integer bits in floating-point
representation, 128

integer expressions in HCL, 355–360
integer indefinite values, 116
integer operation instructions, 384
integer registers

IA32, 168–169
x86-64, 273–275
Y86, 336–337

integers, 30, 56–57
arithmetic operations. See integer

arithmetic
bit-level operations, 51–53
bit representation expansion,

71–75
byte order, 41
data types, 57–58
shift operations, 54–56
signed and unsigned conversions,

65–71
signed vs. unsigned guidelines,

76–79
truncating, 75–76
two’s-complement representation,

60–65
unsigned encoding, 58–60

integral data types, 57, 57–58

Index 1025

integration of caches and VM, 791
Intel assembly-code format

vs. ATT, 166–167
gcc, 294

Intel microprocessors
8086, 24, 157, 267
conditional move instructions,

207–209
coprocessors, 292
Core i7. See Core i7 microproces-

sors
data alignment, 249
evolution, 157–158
floating-point representation, 128
i386, 157, 269
IA32. See IA32 (Intel Architecture

32-bit)
northbridge and southbridge

chipsets, 568
out-of-order processing, 500
x86-64. See x86-64 microprocessors

interconnected networks (internets),
888, 889–890

interfaces
bus, 568
host bus, 577

interlocks, load, 420
internal exceptions in pipelining, 420
internal fragmentation, 819
internal read function, 871
International Standards Organiza-

tion (ISO), 4, 32
Internet, 889

connections, 899–900
domain names, 895–899
IP addresses, 893–895
organization, 891–893
origins, 900

Internet addresses, 890
Internet Corporation for Assigned

Names and Numbers (ICANN),
896

Internet domain names, 892
Internet Domain Survey, 898
Internet hosts, number of, 898
Internet Protocol (IP), 892
Internet Software Consortium, 898
Internet worm, 260
internets (interconnected networks),

888, 889–890
interpretation of bit patterns, 30
interprocess communication (IPC),

937

interrupt handlers, 706
interruptions, 745
interrupts, 706, 706–707
interval counting schemes, 541–542
INTN_MAX [C] maximum value of

N -bit signed data type, 63
INTN_MIN [C] minimum value of

N-bit signed data type, 63
intN_t [C] N -bit signed integer data

type, 63
invalid address status code, 344
invalid memory reference exceptions,

435
invariants, semaphore, 963
I/O (input/output), 8, 862

memory-mapped, 578
ports, 579
redirection, 877, 877–879
system-level. See system-level I/O
Unix, 19, 862, 862–863

I/O bridges, 568
I/O buses, 576
I/O devices, 8–9

addressing, 579
connecting, 576–578

I/O multiplexing, 935
concurrent programming with,

939–947
event-driven servers based on,

942–947
pros and cons, 947–948

IOPL [Y86] instruction code for
integer operation instructions,
384

IP (Internet Protocol), 892
IP address structure, 893, 894
IP addresses, 892, 893–895
IPC (instructions per cycle), 449
IPC (interprocess communication),

937
IPOPL [Y86] instruction code for

popl instruction, 384
IPUSHL [Y86] instruction code for

pushl instruction, 384
IRET [Y86] instruction code for ret

instruction, 384
IRMMOVL [Y86] instruction code for

rmmovl instruction, 384
irmovl [Y86] immediate to register

move, 337
constant words for, 340
instruction code for, 384
processing steps, 367–368

IRRMOVL [Y86] instruction code for
rrmovl instruction, 384

ISA (instruction set architecture), 9,
24, 160, 334

ISO (International Standards
Organization), 4, 32

ISO C90 C standard, 32
ISO C99 C standard, 32, 39, 58
isPtr function, 842
issue time for arithmetic operations,

501, 502
issuing instructions, 406–407
Itanium instruction set, 269
iteration, 256
iterative servers, 908
iterative sorting routines, 544

ja [IA32/x86-64] jump if unsigned
greater, 190

jae [IA32/x86-64] jump if unsigned
greater or equal, 190

Java language, 661
byte code, 293
linker symbols, 663–664
numeric ranges, 63
objects in, 241–242
software exceptions, 703–704, 760

Java monitors, 970
Java Native Interface (JNI), 685
jb [IA32/x86-64] jump if unsigned

less, 190
jbe [IA32/x86-64] jump if unsigned

less or equal, 190
je [IA32/x86-64/Y86] jump when

equal, 190, 338–339, 373
jg [IA32/x86-64/Y86] jump if greater,

190, 338–339
jge [IA32/x86-64/Y86] jump if

greater or equal, 190, 338–339
jik matrix multiplication, 626, 626–

628
jki matrix multiplication, 626, 626–

628
jl [IA32/x86-64/Y86] jump if less,

190, 338–339
jle [IA32/x86-64/Y86] jump if less

or equal, 190, 338–339
jmp [IA32/x86-64/Y86] jump

unconditionally, 190, 338–339
jna [IA32/x86-64] jump if not

unsigned greater, 190
jnae [IA32/x86-64] jump if not

unsigned greater or equal, 190

1026 Index

jnb [IA32/x86-64] jump if not
unsigned less, 190

jnbe [IA32/x86-64] jump if not
unsigned less or equal, 190

jne [IA32/x86-64/Y86] jump if not
equal, 190, 338–339

jng [IA32/x86-64] jump if not
greater, 190

jnge [IA32/x86-64] jump if not
greater or equal, 190

JNI (Java Native Interface), 685
jnl [IA32/x86-64] jump if not less,

190
jnle [IA32/x86-64] jump if not less

or equal, 190
jns [IA32/x86-64] jump if

nonnegative, 190
jnz [IA32/x86-64] jump if not zero,

190
jobs, 740
joinable threads, 951
js [IA32/x86-64] jump if negative,

190
jtest script, 443
jump if greater instruction (jg), 190,

338–339
jump if greater or equal instruction

(jge), 190, 338–339
jump if less instruction (jl), 190,

338–339
jump if less or equal instruction

(jle), 190, 338–339
jump if negative instruction (js), 190
jump if nonnegative instruction

(jns), 190
jump if not equal instruction (jne),

190, 338–339
jump if not greater instruction (jng),

190
jump if not greater or equal

instruction (jnge), 190
jump if not less instruction (jnl), 190
jump if not less or equal instruction

(jnle), 190
jump if not unsigned greater

instruction (jna), 190
jump if not unsigned less instruction

(jnb), 190
jump if not unsigned less or equal

instruction (jnbe), 190
jump if not zero instruction (jnz),

190

jump if unsigned greater instruction
(ja), 190

jump if unsigned greater or equal
instruction (jae), 190

jump if unsigned less instruction (jb),
190

jump if unsigned less or equal
instruction (jbe), 190

jump if zero instruction (jz), 190
jump instructions, 10, 189–193

direct, 190
indirect, 190, 216
instruction code for, 384
nonlocal, 703, 759, 759–762
targets, 190

jump tables, 213, 216, 705
jump unconditionally instruction

(jmp), 190, 190, 338–339
jump when equal instruction (je),

338
just-in-time compilation, 266, 294
jz [IA32/x86-64] jump if zero, 190

K&R (C book), 4
Kahan, William, 99–100
Kahn, Robert, 900
kernel mode

exception handlers, 706
processes, 714–716, 715
system calls, 708

kernels, 18, 680
exception numbers, 705
virtual memory, 803–804

Kernighan, Brian, 2, 4, 15, 32, 253,
849, 882

keyboard, signals from, 740–741
kij matrix multiplication, 626, 626–

628
kill.c [CS:APP] kill example, 741
kill command in gdb debugger, 255
kill [Unix] send signal, 741
kji matrix multiplication, 626, 626–

628
Knuth, Donald, 823, 825
ksh [Unix] Unix shell program, 733

l suffix, 168
L1 cache, 13, 596
L2 cache, 13, 596
L3 cache, 596
LANs (local area networks), 888,

889–891

last-in first-out (LIFO)
free list order, 835
stack discipline, 172

latency
arithmetic operations, 501, 502
disks, 574
instruction, 392
load operations, 531–532
pipelining, 391

latency bounds, 496, 502
lazy binding, 688, 689
ld Unix static linker, 657
ld-linux.so linker, 683
ldd tool, 690
LEA [IA32/x86-64] instruction, 93
leaf procedures, 284
leaks, memory, 847, 954
leal [IA32] load effective address,

177, 177–178, 252, 278
leaq [x86-64] load effective address,

277
least-frequently-used (LFU)

replacement policies, 608
least-recently-used (LRU)

replacement policies, 594,
608

least squares fit, 480, 482
leave [IA32/x86-64/Y86] prepare

stack for return, 221–222, 228,
453

left hoinkies (<), 878
length of strings, 77
less than signs (<)

left hoinkies, 878
“put to” operator, 862

levels
optimization, 254, 256, 476
storage, 591

LFU (least-frequently-used)
replacement policies, 608

libc library, 879
libraries

in concurrent programming,
982–983

header files, 77
shared, 18, 681–686, 682
standard I/O, 879–880
static, 667, 667–672

LIFO (last-in first-out)
free list order, 835
stack discipline, 172

limits.h file, 62, 71

Index 1027

line matching
direct-mapped caches, 599–600
fully associative caches, 608
set associative caches, 607–608

line replacement
direct-mapped caches, 600–601
set associative caches, 608

.line section, 659
linear address spaces, 778
link-time errors, 7
linkers and linking, 5, 154, 160

compiler drivers, 655–657
dynamic, 681–683, 682
object files, 657, 657–658

executable, 678–681
loading, 679–681
relocatable, 658–659
tools for, 690

overview, 654–655
position-independent code, 687–

690
relocation, 672–678
shared libraries from applications,

683–686
static, 657
summary, 691
symbol resolution, 663–672
symbol tables, 660–662
virtual memory for, 785

linking phase, 5
Linux operating system, 19–20, 44

code segments, 679–680
data alignment, 249
dynamic linker interfaces, 685
and ELF, 658
exceptions, 708–711
signals, 737
virtual memory, 803–807

Lisp language, 80
listen [Unix] convert active socket

to listening socket, 905
listening descriptors, 907–908
listening sockets, 905
little endian byte ordering, 40
load effective address instruction

(leal, leaq), 177–178, 252
load forwarding, 456
load instructions, 10
load interlocks, 420
load operations, 498–499
load penalty in CPI, 445
load performance of memory,

531–532

load program function, 730
load/store architecture in CISC vs.

RISC, 343
load time for code, 654
load/use data hazards, 418, 418–421
loaders, 657, 679
loading

concepts, 681
executable object files, 679–681
programs, 730–732
shared libraries from applications,

683–686
virtual memory for, 785–786

local area networks (LANs), 888,
889–891

local automatic variables, 956
local registers in loop segments,

504–505
local static variables, 956
local symbols, 660
locality, 13, 560, 586, 586–587

blocking for, 629
caches, 625–629, 784
exploiting, 629
forms, 587, 595
instruction fetches, 588–589
program data references, 587–588
summary, 589–591

localtime function, 982–983
lock-and-copy technique, 980, 981
locking mutexes

lock ordering rule, 987
for semaphores, 964

logic design, 352
combinational circuits, 354–360,

392
logic gates, 353
memory and clocking, 361–363
set membership, 360–361

logic gates, 353
logic synthesis, 336, 353, 444
logical blocks

disks, 575, 575–576
SSDs, 582

logical control flow, 712–713
logical operations, 54, 177

discussion, 180–182
shift, 55, 95, 178–180
unary and binary, 178–179

long [C] integer data type, 39, 57–58,
270

long double [C] extended-precision
floating point, 115, 168 270

long integers with x86-64 processors,
270

long long [C] integer data type, 39,
57–58, 270–271

long words in machine-level data,
168

longjmp [C Stdlib] nonlocal jump,
703, 759, 760

loop registers, 505
loop unrolling, 480, 482, 509

Core i7, 551
overview, 509–513
with reassociation transforma-

tions, 519–521
loopback addresses, 897
loops, 197
do-while, 197–200
for, 203–206
inefficiencies, 486–490
reverse engineering, 199
segments, 504–505
for spatial locality, 625–629
while, 200–203

low-level instructions. See machine-
level programs

low-level optimizations, 539
lowercase conversions, 487–489
LRU (least-recently-used)

replacement policies, 594,
608

lseek [Unix] function, 866–867
lvalues (C) for pointers, 252

machine checks, 709
machine code, 154
machine-level programs

arithmetic. See arithmetic
arrays. See arrays
buffer overflow. See buffer

overflow
control. See control structures
data-flow graphs from, 503–507
data formats, 167–168
data movement instructions,

171–177, 275–277
encodings, 159–167
floating-point programs, 292–293
gdb debugger, 254–256
heterogeneous data structures. See

heterogeneous data structures
historical perspective, 156–159
information access, 168–169
instructions, 4

1028 Index

machine-level programs (continued)
operand specifiers, 169–170
overview, 154–156
pointer principles, 252–253
procedures. See procedures
x86-64. See x86-64 microprocessors

macros for free lists, 829–830
main memory, 9

accessing, 567–570
memory modules, 564

main threads, 948
malloc [C Stdlib] allocate heap

storage, 32, 679, 813, 814
alignment with, 250
dynamic memory allocation,

814–816
man ascii command, 46
mandatory alignment, 249
mangling process, 663, 663–664
many-core processors, 449
map disk object into memory

function, 810
mapping

memory. See memory mapping
variables, 956

maps, zone, 580–581
mark phase in Mark&Sweep, 840
Mark&Sweep algorithm, 839
Mark&Sweep garbage collectors,

840, 840–842
masking operations, 52
matrices

adjacency, 642
multiplying, 625–629

maximum two’s-complement
number, 61

maximum unsigned number, 59
maximum values, constants for, 63
McCarthy, John, 839
McIlroy, Doug, 15
mem_init [CS:APP] heap model, 828
mem_sbrk [CS:APP] sbrk emulator,

828
membership, set, 360–361
memcpy [Unix] copy bytes from one

region of memory to another,
125

memory, 560
accessing, 567–570
aliasing, 477, 478, 494
associative, 607
caches. See caches and cache

memory

copying bytes in, 125
data alignment in, 248–251
data hazards, 413
design, 363
dynamic. See dynamic memory

allocation
hierarchy, 13, 13–14, 591, 591–595
interfacing with processor, 447–

448
leaks, 847, 954
load performance, 531–532
in logic design, 361–363
machine-level programming, 160
main, 9, 564, 567–570
mapping. See memory mapping
nonvolatile, 567
performance, 531–539
protecting, 266, 786–787
RAM. See random-access

memories (RAM)
ROM, 567
threads, 955–956
trends, 583–586
virtual. See virtual memory (VM)
Y86, 337

memory buses, 568
memory controllers, 563, 564
memory management units (MMUs),

778, 780
memory-mapped I/O, 578
memory mapping, 786

areas, 807, 807
execve function, 810
fork function, 809–810
in loading, 681
objects, 807–809
user-level, 810–812

memory mountains, 621, 621–625
memory references

operands, 170
out-of-bounds. See buffer overflow
in performance, 491–496
pipelining exceptions, 435

memory stage
instruction processing, 364, 366,

368–377
PIPE processor, 430–431
SEQ, 389–390
Y86 pipelining, 403

memory system, 560
memory utilization, 818, 818–819
metadata, 873, 873–875
metastable states, 561

methods
HTTP, 915
objects, 242

micro-operations, 498
microarchitecture, 10, 496
microprocessors. See central

processing units (CPUs)
Microsoft Windows operating

system, 44, 249
MIME (Multipurpose Internet Mail

Extensions) types, 912
minimum block size, 822
minimum two’s-complement

number, 61
minimum values

constants, 63
two’s-complement representation,

61
mispredicted branches

canceling, 434
performance penalties, 445, 499,

526–531
misses, caches, 448, 594

kinds, 594–595
penalties, 614, 780
rates, 614

mm_coalesce [CS:APP] allocator:
boundary tag coalescing,
833

mm_free [CS:APP] allocator: free
heap block, 832, 833

mm_ijk [CS:APP] matrix multiply
ijk, 626

mm_ikj [CS:APP] matrix multiply
ikj , 626

mm_init [CS:APP] allocator:
initialize heap, 830, 831

mm_jik [CS:APP] matrix multiply
jik, 626

mm_jki [CS:APP] matrix multiply
jki, 626

mm_kij [CS:APP] matrix multiply
kij , 626

mm_kji [CS:APP] matrix multiply
kji, 626

mm_malloc [CS:APP] allocator:
allocate heap block, 832, 834

mmap [Unix] map disk object into
memory, 810, 810–812

MMUs (memory management units),
778, 780

Mockapetris, Paul, 900
mode bits, 715

Index 1029

modern processor operation, 496–
509

modes
kernel, 706, 708
processes, 714–716, 715
user, 706

modular arithmetic, 80–81
modules

DRAM, 564, 565
object, 657–658

monitors, Java, 970
monotonicity assumption, 819
monotonicity property, 114
Moore, Gordon, 158–159
Moore’s Law, 158, 158–159
mosaic browser, 912
motherboards, 8
Motorola

68020 processor, 268
RISC processors, 343

mov [IA32/x86-64] move data, 171,
276

movabsq [x86-64] move absolute
quad word, 276

movb [IA32/x86-64] move byte,
171–172

Move absolute quad word instruction
(movabsq), 276

move byte instruction (movb), 171
Move data instructions (mov), 171,

171–177, 276
move double word instruction

(movl), 171
move if greater instruction (cmovg),

210, 339
move if greater or equal instruction

(cmovge), 210, 339
move if less instruction (cmovl), 210,

339
move if less or equal instruction

(cmovle), 210, 339
move if negative instruction (cmovs),

210
move if nonnegative instruction

(cmovns), 210
move if not equal instruction

(cmovne), 210, 339
move if not greater instruction

(cmovng), 210
move if not greater or equal

instruction (cmovnge), 210
move if not less instruction (cmovnl),

210

move if not less or equal instruction
(cmovnle), 210

move if not unsigned greater
instruction (cmovna), 210

move if not unsigned less instruction
(cmovnb), 210

move if not unsigned less or equal
instruction (cmovnbe), 210

move if not zero instruction
(cmovnz), 210

move if unsigned greater instruction
(cmova), 210

move if unsigned greater or equal
instruction (cmovae), 210

move if unsigned less instruction
(cmovb), 210

move if unsigned less or equal
instruction (cmovbe), 210

move if zero instruction (cmovz), 210
move instructions, conditional,

206–213
move quad word instruction (movq),

276
move sign-extended byte to double

word instruction (movsbl), 171
move sign-extended byte to quad

word instruction (movsbq), 276
move sign-extended byte to word

instruction (movsbw), 171
move sign-extended double word

to quad word instruction
(movslq), 276

move sign-extended word to double
word instruction (movswl), 171

move sign-extended word to quad
word instruction (movswq), 276

move when equal instruction (move),
339

move with sign extension instructions
(movs), 171, 276

move with zero extension instructions
(movz), 171, 276

move word instruction (movw), 171
move zero-extended byte to double

word instruction (movzbl), 171
move zero-extended byte to quad

word instruction (movzbq), 276
move zero-extended byte to word

instruction (movzbw), 171
move zero-extended word to double

word instruction (movzwl), 171
move zero-extended word to quad

word instruction (movzwq), 276

moves, conditional, 527, 529–530
movl [IA32/x86-64] move double

word, 171
movq [IA32/x86-64] move quad word,

272, 276
movs [IA32/x86-64] move with sign

extension, 171–172, 172, 276
movsbl [IA32/x86-64] move sign-

extended byte to double word,
171–172

movsbq [x86-64] move sign-extended
byte to quad word, 276

movsbw [IA32/x86-64] move sign-
extended byte to word, 171

movslq [x86-64] move sign-extended
double word to quad word, 276,
278

movss floating-point move
instruction, 492

movswl [IA32/x86-64] move sign-
extended word to double word,
171

movswq [x86-64] move sign-extended
word to quad word, 276

movw [IA32/x86-64] move word, 171
movz [IA32/x86-64] move with zero

extension, 171, 172, 276
movzbl [IA32/x86-64] move zero-

extended byte to double word,
171–172

movzbq [x86-64] move zero-extended
byte to quad word, 276

movzbw [IA32/x86-64] move zero-
extended byte to word, 171

movzwl [IA32/x86-64] move zero-
extended word to double word,
171

movzwq [x86-64] move zero-extended
word to quad word, 276

mrmovl [Y86] memory to register
move instruction, 368

mull [IA32/x86-64] unsigned
multiply, 182

mulq [x86-64] unsigned multiply, 279
mulss floating-point multiply

instruction, 492
multi-core processors, 16, 22, 158,

586, 934
multi-level page tables, 792–794
multi-threading, 17, 22
Multics, 15
multicycle instructions, 446–447
multidimensional arrays, 235–236

1030 Index

multimedia applications, 156–157
multiple accumulators in parallelism,

514–518
multiple zone recording, 572
multiplexing, I/O, 935

concurrent programming with,
939–947

event-driven servers based on,
942–947

pros and cons, 947–948
multiplexors, 354, 354–355

HCL with case expression, 357
word-level, 357–358

multiplication
constants, 92–95
floating-point, 113–114
instructions, 182
matrices, 625–629
two’s-complement, 89, 89–92
unsigned, 88, 182, 182, 279

multiply defined global symbols,
664–667

multiply instruction, 178, 182, 279,
492

multiported random-access memory,
362

multiprocessor systems, 22
Multipurpose Internet Mail

Extensions (MIME) types,
912

multitasking, 713
multiway branch statements, 213–219
munmap [Unix] unmap disk object,

812
mutexes

lock ordering rule, 987
Pthreads, 970
for semaphores, 964

mutual exclusion
progress graphs, 962
semaphores for, 964–965

mutually exclusive access, 962

\n (newline character), 3
n-gram statistics, 542–543
names

data types, 43
domain, 892, 895–899
mangling and demangling

processes, 663, 663–664
protocols, 890
Y86 pipelines, 406

naming conventions for Y86 signals,
405–406

NaN (not-a-number)
constants, 115
representation, 104, 105

nanoseconds (ns), 480
National Science Foundation (NSF),

900
neg [IA32/x86-64] negate, 178
negate instruction, 178
negation, two’s-complement, 87,

87–88
negative overflow, 83, 84
Nehalem microarchitecture, 497, 799
nested arrays, 235–236
nested structures, 244
NetBurst microarchitecture, 157
network adapters, 577
network byte order, 893
network clients, 20, 886
Network File System (NFS), 591
network programming, 886

client-server model, 886–887
Internet. See Internet
networks, 887–891
sockets interface. See sockets

interface
summary, 927–928
tiny Web server, 919–927
Web servers, 911–919

network servers, 21, 886
networks, 20–21

acyclic, 354
LANs, 888, 889–891
WANs, 889, 889–890

never taken (NT) branch prediction
strategy, 407

newline character (\n), 3
next fit block placement policy, 822,

823
nexti command in GCB, 255
NFS (Network File System), 591
nm tool, 690
no-execute (NX) memory protection,

266
no operation nop instruction

instruction code for, 384
pipelining, 409–411
rep as, 281
in stack randomization, 262

no-write-allocate approach, 612
nodes, root, 839

nondeterminism, 728
nondeterministic behavior, 728
nonexistent variables, referencing,

846
nonlocal jumps, 703, 759, 759–762
nonuniform partitioning, 395–397
nonvolatile memory, 567
nop instruction

instruction code for, 384
pipelining, 409–411
rep as, 281

nop sleds, 262
norace.c [CS:APP] Pthreads

program without a race, 985
normal operation status code, 344,

384
normalized values, floating-point,

103, 103–104
northbridge chipsets, 568
not-a-number NaN

constants, 115
representation, 104, 105

Not [IA32/x86-64] complement, 178
Not operation

Boolean, 48–49
C operators, 54
logic gates, 353

ns (nanoseconds), 480
NSF (National Science Foundation),

900
NSFNET, 900
ntohl [Unix] convert network-to-

host long, 893
ntohs [Unix] convert network-to-

host short, 893
number systems conversions. See

conversions
numeric limit declarations, 71
numeric ranges

integral types, 57–58
Java standard, 63

NX (no-execute) memory protection,
266

.o files, 5, 163, 655
objdump tool, 163, 254, 674, 690
object files, 160, 163

executable. See executable object
files

forms, 162, 657
relocatable, 5, 655, 657, 658–659
tools, 690

Index 1031

object modules, 657–658
objects

memory-mapped, 807–809
private, 808, 809
program, 33
shared, 682, 807–809, 808
as struct, 241–242

oct words, 279
OF [IA32/x86-64/486] overflow flag

condition code, 185, 337
off-by-one errors, 845
offsets

GOTs, 687, 688–690
memory references, 170
PPOs, 789
structures, 241–242
unions, 245
VPOs, 788

one-operand multiply instructions,
182, 278–279

ones’-complement representation,
63

open [Unix] open file, 863, 863–865
open_clientfd [CS:APP] establish

connection with server, 903,
903–904

open_listenfd [CS:APP] establish
a listening socket, 905, 905–906

open operations for files, 862–863,
863–865

open shared library function, 684
open source operating systems, 78–79
operand specifiers, 169–170
operating systems (OS), 14

files, 19
hardware management, 14–15
kernels, 18
Linux, 19–20, 44
processes, 16–17
threads, 17
Unix, 32
virtual memory, 17–19
Windows, 44, 249

operations
bit-level, 51–53
logical, 54
shift, 54–56

optest script, 443
optimization

address translation, 802
compiler, 160
levels, 254, 256, 476

program performance. See
performance

optimization blockers, 475, 478
OPTIONS method, 915
or [IA32/x86-64] or, 178
Or operation

Boolean, 48–49
C operators, 54
HCL expressions, 354–355
logic gates, 353

order, bytes, 39–46
disassembled code, 193
network, 893
unions, 247

origin servers, 915
OS. See operating systems (OS)
Ossanna, Joe, 15
Ousterhout, John K., 474
out-of-bounds memory references.

See buffer overflow
out-of-core algorithms, 268
out-of-order execution, 497

five-stage pipelines, 449
history, 500

overflow
arithmetic, 81, 125
buffer. See buffer overflow
floating-point values, 116–

117
identifying, 86
infinity representation, 105
multiplication, 93
negative, 83, 84
operations, 30
positive, 84

overflow flag condition code (OF),
185, 337

overloaded functions, 663

P semaphore operation, 963, 964
P [CS:APP] wrapper function for

Posix sem_wait, 963, 964
P6 microarchitecture, 157
PA (physical addresses), 777

vs. virtual, 777–778
packages, processor, 799
packet headers, 890
packets, 890
padding

alignment, 250–251
blocks, 821
Y86, 341

page faults
Linux/IA32 systems, 709, 806–807
memory caches, 448
pipelining caches, 782, 782–783

page frames, 779
page hits in caches, 782
page table base registers (PTBRs),

788
page table entries (PTEs), 781, 782

Core i7, 800–802
TLBs for, 791–794, 797

page table entry addresses (PTEAs),
791

page tables, 716, 797
caches, 780, 780–781
multi-level, 792–794

paged in pages, 783
paged out pages, 783
pages

allocation, 783–784
demand zero, 807
dirty, 801
physical, 779, 779–780
SSDs, 582
virtual, 266, 779, 779–780

paging, 783
parallel execution, 714
parallel flows, 713–714
parallel programs, 974
parallelism, 21–22, 513–514

instruction-level, 23–24, 475,
496–497, 539

multiple accumulators, 514–518
reassociation transformations,

518–523
SIMD, 24–25, 523–524
threads for, 974–978

parent processes, 719–720
parse_uri [CS:APP] Tiny helper

function, 923, 924
parseline [CS:APP] shell helper

routine, 736
partitioning

addresses, 598
nonuniform in pipelining, 395–397

Pascal reference parameters, 226
passing

arguments for x86-64 processors,
283–284

parameters to functions, 226
pointers to structures, 242

Patterson, David, 342, 448

1032 Index

pause [Unix] suspend until signal
arrives, 730

payloads
aggregate, 819
Ethernet, 888
protocol, 890

PC. See program counter (PC)
PC-relative addressing

jumps, 190–193, 191
operands, 275
symbol references, 673, 674–675
Y86, 340

PC selection stage in PIPE processor,
424–425

PC update stage
instruction processing, 364, 366,

368–377
SEQ, 390

PCI (Peripheral Component
Interconnect) bus, 576

PE (Portable Executable) format,
658

peak utilization metric, 818–819, 819
peer threads, 948
pending bit vectors, 739
pending signals, 738
Pentium II microprocessors, 157
Pentium III microprocessors, 157
Pentium 4 microprocessors, 157, 269
Pentium 4E microprocessors, 158,

273
PentiumPro microprocessors, 157

conditional move instructions, 207
out-of-order processing, 500

performance, 6
Amdahl’s law, 545–547
basic strategies, 539
bottlenecks, 540–547
branch prediction and mispredic-

tion penalties, 526–531
caches, 531, 614–615, 620–629
compiler capabilities and

limitations, 476–480
expressing, 480–482
limiting factors, 525–531
loop inefficiencies, 486–490
loop unrolling, 509, 509–513
memory, 531–539
memory references, 491–496
modern processors, 496–509
overview, 474–476
parallelism. See parallelism
procedure calls, 490–491

program example, 482–486
program profiling, 540–545
register spilling, 525–526
relative, 493–494
results summary, 524–525
SEQ, 391
summary, 547–548
Y86 pipelining, 444–446

periods (.) in dotted-decimal
notation, 893

Peripheral Component Interconnect
(PCI) bus, 576

persistent connections in HTTP, 915
physical address spaces, 778
physical addresses (PA), 777

vs. virtual, 777–778
Y86, 337

physical page numbers (PPNs), 788
physical page offset (PPO), 789
physical pages (PPs), 779, 779–780
pi in floating-point representation,

131
PIC (position-independent code),

687
data references, 687–688
function calls, 688–690

picoseconds (ps), 392, 480
PIDs (process IDs), 719
pins, DRAM, 562–563
PIPE– processor, 401, 403, 405–409
PIPE processor stages, 418–419,

423–424
decode and write-back, 426–429
execute, 429–430
memory, 430–431
PC selection and fetch, 424–425

pipelining, 208, 391
computational, 392–393
deep, 397–398
diagram, 392
five-stage, 448–449
functional units, 501–502
instruction, 527
limitations, 394–395
nonuniform partitioning, 395–397
operation, 393–394
registers, 393, 406
store operation, 532–533
systems with feedback, 398–400
Y86. See Y86 pipelined

implementations
pipes, 937
Pisano, Leonardo (Fibonacci), 30

placement
memory blocks, 820, 822–823
policies, 594, 822

platters, disk, 570, 571
PLT (procedure linkage table), 688,

689–690
pmap tool, 762
point-to-point connections, 899
pointers, 33

arithmetic, 233–234, 846
arrays, relationship to, 43, 252
block, 829
creating, 44, 175
declaring, 39
dereferencing, 44, 175–176, 234,

252, 843
examples, 174–176
frame, 219
to functions, 253
machine-level data, 167
principles, 252–253
role, 34
stack, 219
to structures, 242–243
virtual memory, 843–846
void*, 44

pollution, cache, 717
polynomial evaluation, 507, 508,

551–552
pools of peer threads, 948
pop double word instruction (popl),

171, 173, 339
pop instructions in x86 models, 352
pop operations on stack, 172, 172–174
pop quad word instruction (popq),

276
popl instruction

behavior of, 350–351
instruction code for, 384
processing steps, 369, 371
Y86, 339, 340

popl [IA32/Y86] pop double word,
171, 173, 339

popq [x86-64] pop quad word, 276
Portable Executable (PE) format,

658
portable signal handling, 752–753
ports

Ethernet, 888
Internet, 899
I/O, 579
register files, 362

.pos directive, 346

Index 1033

position-independent code (PIC),
687

data references, 687–688
function calls, 688–690

positive overflow, 84
posix_error [CS:APP] reports

Posix-style errors, 1001
Posix standards, 15
Posix-style error handling, 1000, 1001
Posix threads, 948, 948–949
POST method, 915–916, 918
PowerPC

processor family, 334
RISC design, 342–343

powers of two, division by, 95–98
PPNs (physical page numbers), 788
PPO (physical page offset), 789
PPs (physical pages), 779, 779–780
precedence of shift operations, 56
precision

floating-point, 103, 104, 116, 128
infinite, 80

prediction
branch, 208–209
misprediction penalties, 526–531
Y86 pipelining, 403, 406–408

preempted processes, 713
prefetching mechanism, 623
prefix sum, 480, 481, 538, 552
prepare stack for return instruction

function (leave), 221–222453
preprocessors, 5, 160
prethreading, 970, 970–973
principle of locality, 586, 587
print command in GDB, 255
printf [C Stdlib] formatted printing

function
formatted printing, 43
numeric values with, 70

priorities
PIPE processor forwarding

sources, 427–428
write ports, 387

private address space, 714
private areas, 808
private copy-on-write structures, 809
private declarations, 661
private objects, 808, 809
privileged instructions, 715
/proc filesystem, 715, 762–763
procedure call instruction, 339
procedure linkage table (PLT), 688,

689–690

procedure return instruction, 281,
339

procedures, 219
call performance, 490–491
control transfer, 221–223
example, 224–229
recursive, 229–232
register usage conventions, 223–

224
stack frame structure, 219–221
x86-64 processors, 282

process contexts, 16, 716
process graphs, 721, 722
process groups, 739
process IDs, 719
process tables, 716
processes, 16, 712, 718

background, 733
concurrent flow, 712–714, 713
concurrent programming with,

935–939
concurrent servers based on,

936–937
context switches, 716–717
creating and terminating, 719–723
default behavior, 724
error conditions, 725–726
exit status, 725
foreground, 734
IDs, 719–720
loading programs, 681, 730–

732
overview, 16–17
private address space, 714
vs. programs, 732–733
pros and cons, 937
reaping, 723, 723–729
running programs, 730–736
sleeping, 729–730
tools, 762–763
user and kernel modes, 714–715
waitpid function, 726–729

processor-memory gap, 12, 586
processor packages, 799
processor states, 703
processors. See central processing

units (CPUs)
procmask1.c [CS:APP] shell

program with race, 756
procmask2.c [CS:APP] shell

program without race, 757
producer-consumer problem, 966,

966–968

profilers code, 475
profiling, program, 540–545
program counter (PC), 9

data hazards, 412
%eip, 161
in fetch stage, 364
%rip, 275
SEQ timing, 380
Y86 instruction set architecture,

337
Y86 pipelining, 403, 406–408

program data references locality,
587–588

program registers
data hazards, 412
Y86, 336–337

programmable ROMs (PROMs),
567

programmer-visible state, 336,
336–337

programs
code and data, 18
concurrent. See concurrent

programming
forms, 4–5
loading and running, 730–732
machine-level. See machine-level

programming
objects, 33
vs. processes, 732–733
profiling, 540–545
running, 10–12, 733–736
Y86, 345–350

progress graphs, 959, 960–963
deadlock regions, 986, 987
forbidden regions, 964
limitations, 966

prologue blocks, 828
PROMs (programmable ROMs),

567
protection, memory, 786–787
protocol software, 889–890
protocols, 890
proxy caches, 915
proxy chains, 915
ps (picoseconds), 392, 480
ps tool, 762
pseudo-random number generator

functions, 980
psum.c [CS:APP] simple parallel

sum program, 975
PTBRs (page table base registers),

788

1034 Index

PTEAs (page table entry addresses),
791

PTEs (page table entries), 781, 782
Core i7, 800–802
TLBs for, 791–794, 797

pthread_cancel [Unix] terminate
another thread, 951

pthread_create [Unix] create a
thread, 949, 950

pthread_detach [Unix] detach
thread, 951, 952

pthread_exit [Unix] terminate
current thread, 950

pthread_join [Unix] reap a thread,
951

pthread_once [Unix] initialize a
thread, 952, 971

pthread_self [Unix] get thread ID,
950

Pthreads, 948, 948–949, 970
public declarations, 661
Purify product, 692
push double word instruction

(pushl), 171, 173, 339
push instructions in x86 models, 352
push operations on stack, 172,

172–174
push quad word instruction (pushq),

276
pushl [Y86] push, 338–339

instruction code for, 384
processing steps, 369–370

pushl [IA32] push double word, 171,
173

pushq [x86-64] push quad word, 276
PUT method in HTTP, 915
“put to” operator (C++), 862

qsort function, 544
quad words

machine-level data, 167
x86-64 processors, 270, 277

queued signals, 745
QuickPath interconnect, 568, 800
quit command in GDB, 255

R_386_32 relocation type, 673
R_386_PC32 relocation type, 673
%r8 [x86-64] program register, 274
%r8d [x86-64] low-order 32 bits of

register %r8, 274
%r8w [x86-64] low-order 16 bits of

register %r8, 274

%r9 [x86-64] program register, 274
%r9d [x86-64] low-order 32 bits of

register %r9, 274
%r9w [x86-64] low-order 16 bits of

register %r9, 274
%r10 [x86-64] program register, 274
%r10d [x86-64] low-order 32 bits of

register %r10, 274
%r10w [x86-64] low-order 16 bits of

register %r10, 274
%r11 [x86-64] program register, 274
%r11d [x86-64] low-order 32 bits of

register %r11, 274
%r11w [x86-64] low-order 16 bits of

register %r11, 274
%r12 [x86-64] program register, 274
%r12d [x86-64] low-order 32 bits of

register %r12, 274
%r12w [x86-64] low-order 16 bits of

register %r12, 274
%r13 [x86-64] program register, 274
%r13d [x86-64] low-order 32 bits of

register %r13, 274
%r13w [x86-64] low-order 16 bits of

register %r13, 274
%r14 [x86-64] program register, 274
%r14d [x86-64] low-order 32 bits of

register %r14, 274
%r14w [x86-64] low-order 16 bits of

register %r14, 274
%r15 [x86-64] program register, 274
%r15d [x86-64] low-order 32 bits of

register %r15, 274
%r15w [x86-64] low-order 16 bits of

register %r15, 274
race.c [CS:APP] program with a

race, 984
race conditions, 954
races, 755

concurrent programming, 983–985
exposing, 759
signals, 755–759

RAM. See random-access memories
(RAM)

Rambus DRAM (RDRAM), 566
rand [CS:APP] pseudo-random

number generator, 980, 982–
983

rand_r function, 982
random-access memories (RAM),

361, 561
dynamic. See Dynamic RAM

(DRAM)

multiported, 362
processors, 363
SEQ timing, 380
static. See Static RAM (SRAM)

random operations in SSDs, 582–583
random replacement policies, 594
ranges

asymmetric, 61–62, 71
bytes, 34
constants for, 62
integral types, 57–58
Java standard, 63

RAS (Row Access Strobe) requests,
563

%rax [x86-64] program register, 274
%rbp [x86-64] program register, 274
%rbx [x86-64] program register, 274
%rcx [x86-64] program register, 274
%rdi [x86-64] program register, 274
RDRAM (Rambus DRAM), 566
%rdx [x86-64] program register, 274
reachability graphs, 839
reachable nodes, 839
read access, 266
read and echo input lines function,

911
read bandwidth, 621
read environment variable function,

732
read/evaluate steps, 733
read [Unix] read file, 865, 865–866
Read-Only Memory (ROM), 567
read operations

buffered, 868, 870–871
disk sectors, 578–579
file metadata, 873–875
files, 863, 865–866
SSDs, 582
unbuffered, 867–868
uninitialized memory, 843–844

read ports, 362
read_requesthdrs [CS:APP] Tiny

helper function, 923
read sets, 940
read throughput, 621
read transactions, 567, 568–569
read/write heads, 573
readelf tool, 662, 690
readers-writers problem, 969, 969–

970
readline function, 873
readn function, 873
ready read descriptors, 940

Index 1035

ready sets, 940
realloc function, 814–815
reap thread function, 951
reaping

child processes, 723, 723–729
threads, 951

rearranging signals in pipelines,
405–406

reassociation transformations, 511,
518, 518–523, 548

receiving signals, 738, 742, 742–745
recording density, 571
recording zones, 572
recursive procedures, 229–232
red zones in stack, 289
redirection, I/O, 877, 877–879
reduced instruction set computers

(RISC), 291, 342
vs. CISC, 342–344
IA32 extensions, 267
SPARC processors, 448

reentrancy issues, 980–982
reentrant functions, 980
reference, function parameters

passed by, 226
reference bits, 801
reference counts, 875
reference machines, 485
referencing

data in free heap blocks, 847
nonexistent variables, 846

refresh, DRAM, 562
regions, deadlock, 986, 987
register files, 9, 161

contents, 362–363, 499
purpose, 339–340
SEQ timing, 380

register identifiers, 339–340, 384
register operands, 170
register specifier bytes, 340
register to memory move instruction

(rmmovl), 337
register to register move instruction

(rrmovl), 337
registers, 9

clocked, 361
data hazards, 412–413
hardware, 361–362
IA32, 116, 168, 168–169
loop segments, 504–505
pipeline, 393, 406
procedures, 223–224
program, 336–337, 361–363, 412

renaming, 500
saving, 287–290
spilling, 240, 240–241, 525–526
x86-64, 270, 273–275, 287–290
Y86, 340, 401–405

regular files, 807, 874
.rel.data section, 659
.rel.text section, 659
relabeling signals, 405–406
relative performance, 493–494
relative speedup in parallel programs,

977
reliable connections, 899
relocatable object files, 5, 655, 657,

658–659
relocation, 657, 672

algorithm, 673–674, 674
entries, 672–673, 673
PC-relative references, 674–675
practice problems, 676–677

remove item from bounded buffer
function, 968

renaming registers, 500
rep [IA32/x86-64] string repeat

instruction, used as no-op, 281
repeating string instruction, 281
replacement policies, 594
replacing blocks, 594
report shared library error function,

685
reporting errors, 1001
request headers in HTTP, 914
request lines in HTTP, 914
requests

client-server model, 886
HTTP, 914, 914–915

Requests for Comments (RFCs),
928

reset configuration in pipelining, 438
resident sets, 784
resources

client-server model, 886
shared, 966–970

RESP [Y86] register ID for %esp, 384
response bodies in HTTP, 915
response headers in HTTP, 915
response lines in HTTP, 915
responses

client-server model, 886
HTTP, 915, 915–916

restart.c [CS:APP] nonlocal jump
example, 762

restrictions, alignment, 248–251

ret instruction
instruction code for, 384
processing steps, 372, 374–375
Y86 pipelining, 407–408, 432–436,

438–439
ret [IA32/x86-64/Y86] procedure

return, 221–222, 281, 339
retiming circuits, 401
retirement units, 499
return addresses

predicting, 408
procedures, 220

return penalty in CPI, 445
reverse engineering

loops, 199
machine code, 155

Revolutions per minute (RPM), 571
RFCs (Requests for Comments), 928
rfork.c [CS:APP] wrapper that

exposes races, 758
ridges in memory mountains, 621–624
right hoinkies (>), 878
right shift operations, 55, 178
rings, Boolean, 49
rio [CS:APP] robust I/O package,

867
buffered functions, 868–872
origins, 873
unbuffered functions, 867–868

rio_read [CS:APP] internal read
function, 871

rio_readinitb [CS:APP] initialize
read buffer, 868, 870

rio_readlineb [CS:APP] robust
buffered read, 868, 872

rio_readn [CS:APP] robust
unbuffered read, 867, 867–869

rio_readnb [CS:APP] robust
buffered read, 868, 872

rio_t [CS:APP] read buffer, 870
rio_writen [CS:APP] robust

unbuffered write, 867, 867–869
%rip [x86-64] program counter, 275
RISC (reduced instruction set

computers), 291, 342
vs. CISC, 342–344
IA32 extensions, 267
SPARC processors, 448

Ritchie, Dennis, 4, 15, 32, 882
rmmovl [Y86] register to memory

move, 337
instruction code for, 384
processing steps, 368–369

1036 Index

RNONE [Y86] ID for indicating no
register, 384

Roberts, Lawrence, 900
robust buffered read functions, 868,

872
Robust I/O (rio) package, 867

buffered functions, 868–872
origins, 873
unbuffered functions, 867–868

robust unbuffered read function,
867, 867–869

robust unbuffered write function,
867, 867–869

.rodata section, 658
ROM (Read-Only Memory), 567
root nodes, 839
rotating disks term, 571
rotational latency of disks, 574
rotational rate of disks, 570
round-down mode, 111
round-to-even mode, 110, 115
round-to-nearest mode, 110
round-toward-zero mode, 111
round-up mode, 111
rounding

in division, 96–97
floating-point representation,

110–113
rounding modes, 110, 110–111
routers, Ethernet, 888
routines, thread, 949–950
Row Access Strobe (RAS) requests,

563
row-major array order, 235, 588
row-major sum function, 617, 617–

618
RPM (revolutions per minute), 571
rrmovl [Y86] register to register

move, 337, 384
%rsi [x86-64] program register, 274
%rsp [x86-64] stack pointer register,

274, 285
run command in GDB, 255
run concurrency, 713
run time

linking, 654
shared libraries, 682
stack, 161

running
in parallel, 714
processes, 719
programs, 10–12, 730–736

.s assembly-language files, 5, 162–
163, 655

SA [CS:APP] shorthand for struct
sockaddr, 902

SADR [Y86] status code for address
exception, 384

safe optimization, 477
safe trajectories in progress graphs,

962
sal [IA32/x86-64] shift left, 178, 180
salq [IA32/x86-64] instruction, 277
SAOK [Y86] status code for normal

operation, 384
sar [IA32/x86-64] shift arithmetic

right, 178, 180
SATA interfaces, 577
saturating arithmetic, 125
sbrk [C Stdlib] extend the heap, 814,

815
emulator, 828
heap memory, 823

Sbuf [CS:APP] shared bounded
buffer package, 967, 968

sbuf_deinit [CS:APP] free
bounded buffer, 968

sbuf_init [CS:APP] allocate and
initialize bounded buffer, 968

sbuf_insert [CS:APP] insert item
in a bounded buffer, 968

sbuf_remove [CS:APP] remove item
from bounded buffer, 968

sbuf_t [CS:APP] bounded buffer
used by Sbuf package, 967

scalar code performance summary,
524–525

scale factor in memory references,
170

scaling parallel programs, 977–978
scanf function, 843
schedule alarm to self function, 742
schedulers, 716
scheduling, 716

events, 743
shared resources, 966–970

scripts, CGI, 917
SCSI interfaces, 577
SDRAM (synchronous DRAM), 566
second-level domain names, 896
second readers-writers problem, 969
sectors, disks, 571, 575

reading, 578–579
spare, 581

security holes, 7
security monoculture, 261
security vulnerabilities
getpeername function, 78–79
XDR library, 91–92

seeds for pseudo-random number
generators, 980

seek operations, 573, 863
seek time for disks, 573, 574
segment header tables, 678, 678–

679
segmentation faults, 709
segmented addressing, 264
segments

code, 678, 679–680
data, 679
Ethernet, 888, 889
virtual memory, 804

segregated fits, 836, 837
segregated free lists, 836–838
segregated storage, 836
select [Unix] wait for I/O events,

939
self-loops, 942
self-modifying code, 413
sem_init [Unix] initialize

semaphore, 963
sem_post [Unix] V operation, 963
sem_wait [Unix] P operation, 963
semaphores, 963, 963–964

concurrent server example, 970–
973

for mutual exclusion, 964–965
for scheduling shared resources,

966–970
sending signals, 738, 739–742
separate compilation, 654
SEQ+ Y86 processor design, 400,

400–401
SEQ Y86 processor design. See

sequential Y86 implementation
sequential circuits, 361
sequential execution, 185
sequential operations in SSDs,

582–583
sequential reference patterns, 588
sequential Y86 implementation, 364

decode and write-back stage,
385–387

execute stage, 387–389
fetch stage, 383–385
hardware structure, 375–379

Index 1037

instruction processing stages,
364–375

memory stage, 389–390
PC update stage, 390
performance, 391
timing, 379–383

serve_dynamic [CS:APP] Tiny
helper function, 926, 926–927

serve_static [CS:APP] Tiny helper
function, 924–926, 925

servers, 21
client-server model, 886
concurrent. See concurrent servers
network, 21
Web. See Web servers

services in client-server model, 886
serving

dynamic content, 916–919
Web content, 912

set associative caches, 606
line matching and word selection,

607–608
line replacement, 608
set selection, 607

set index bits, 598
set on equal instruction (sete), 187
set on greater instruction (setg), 187
set on greater or equal instruction

(setge), 187
set on less instruction (setl), 187
set on less or equal instruction

(setle), 187
set on negative instruction (sets),

187
set on nonnegative instruction

(setns), 187
set on not equal instruction (setne),

187
set on not greater instruction

(setng), 187
set on not greater or equal instruction

(setnge), 187
set on not less instruction (setnl),

187
set on not less or equal instruction

(setnle), 187
set on not zero instruction (setnz),

187
set on unsigned greater instruction

(seta), 187
set on unsigned greater or equal

instruction (setae), 187

set on unsigned less instruction
(setb), 187

set on unsigned less or equal
instruction (setge), 187

set on unsigned not greater
instruction (setna), 187

set on unsigned not less instruction
(setnb), 187

set on unsigned not less or equal
instruction (setnbe), 187

set on zero instruction (setz), 187
set process group ID function, 739
set selection

direct-mapped caches, 599
fully associative caches, 608
set associative caches, 607

seta [IA32/x86-64] set on unsigned
greater, 187

setae [IA32/x86-64] set on unsigned
greater or equal, 187

setb [IA32/x86-64] set on unsigned
less, 187

setbe [IA32/x86-64] set on unsigned
less or equal, 187

sete [IA32/x86-64] set on equal, 187
setenv [Unix] create/change

environment variable, 732
setg [IA32/x86-64] set on greater,

187
setge [IA32/x86-64] set on greater

or equal, 187
setjmp [C Stdlib] initialzie nonlocal

jump, 703, 759, 760
setjmp.c [CS:APP] nonlocal jump

example, 761
setl [IA32/x86-64] set on less, 187
setle [IA32/x86-64] set on less or

equal, 187
setna [IA32/x86-64] set on unsigned

not greater, 187
setnae [IA32/x86-64] set on

unsigned not less or equal,
187

setnb [IA32/x86-64] set on unsigned
not less, 187

setnbe [IA32/x86-64] set on
unsigned not less or equal,
187

setne [IA32/x86-64] set on not equal,
187

setng [IA32/x86-64] set on not
greater, 187

setnge [IA32/x86-64] set on not
greater or equal, 187

setnl [IA32/x86-64] set on not less,
187

setnle [IA32/x86-64] set on not less
or equal, 187

setns [IA32/x86-64] set on
nonnegative, 187

setnz [IA32/x86-64] set on not zero,
187

setpgid [Unix] set process group
ID, 739

sets
vs. cache lines, 615
membership, 360–361

sets [IA32/x86-64] set on negative,
187

setz [IA32/x86-64] set on zero,
187

SF [IA32/x86-64/Y86] sign flag
condition code, 185, 337

sh [Unix] Unix shell program, 733
Shannon, Claude, 48
shared areas, 808
shared libraries, 18, 682

dynamic linking with, 681–683
loading and linking from

applications, 683–686
shared object files, 657
shared objects, 682, 807–809, 808
shared resources, scheduling, 966–

970
shared variables, 954, 954–957
sharing

files, 875–877
virtual memory for, 786

sharing.c [CS:APP] sharing in
Pthreads programs, 955

shellex.c [CS:APP] shell main
routine, 734

shells, 7, 733
shift operations, 54–56

for division, 95–98
machine language, 179–180
for multiplication, 92–95
shift arithmetic right instruction,

178
shift left instruction, 178
shift logical right instruction, 178

shl [IA32/x86-64] shift left, 178, 180
SHLT [Y86] status code for halt, 384
short counts, 866

1038 Index

short [C] integer data types, 39
ranges, 57
with x86-64 processors, 270

shr [IA32/x86-64] shift logical right,
178, 180

%si [x86-64] low-order 16 bits of
register %rsi, 274

side effects, 479
sigaction [Unix] install portable

handler, 752
sigaddset [Unix] add signal to

signal set, 753
sigdelset [Unix] delete signal from

signal set, 753
sigemptyset [Unix] clear a signal

set, 753
sigfillset [Unix] add every signal

to signal set, 753
SIGINT signal, 745
sigint1.c [CS:APP] catches

SIGINT signal, 745
sigismember [Unix] test signal set

membership, 753
siglongjmp [Unix] initialize

nonlocal jump, 759, 760
sign bits

floating-point representation, 128
two’s-complement representation,

60
sign extension, 72, 72–73
sign flag condition code (SF), 185,

337
sign-magnitude representation, 63
signal function, 743
Signal [CS:APP] portable version

of signal, 752
signal handlers, 744

installing, 742
signal1.c [CS:APP] flawed signal

handler, 747–748
signal2.c [CS:APP] flawed signal

handler, 749–750
signal3.c [CS:APP] flawed signal

handler, 751
signal4.c [CS:APP] portable signal

handling example, 754
signals, 702, 736–737, 736–738

blocking and unblocking, 753–754
enabling and disabling, 50
flow synchronizing, 755–759
handling issues, 745–751
portable handling, 752–753
processes, 719

receiving, 742, 742–745
sending, 738, 739–742
terminology, 738–739
Y86 pipelined implementations,

405–406
signed divide instruction, 182, 183,

279
signed integers, 30, 58

alternate representations, 63
shift operations, 55
two’s-complement encoding,

60–65
unsigned conversions, 65–71

signed multiply instruction, 182, 182,
279

signed representations programming
advice, 76–79

signed size type, 866
significands in floating-point

representation, 103
signs for floating-point representa-

tion, 103
SIGPIPE signal, 927
sigprocmask [Unix] block and

unblock signals, 753, 757
sigsetjmp [Unix] initialize nonlocal

handler jump, 759, 760
%sil [x86-64] bits 0–7 of register

%rsi, 274
SimAquarium game, 619
SIMD (single-instruction, multiple-

data) parallelism, 24–25,
523–524

SIMM (Single Inline Memory
Module), 564

simple segregated storage, 836,
836–837

simplicity in instruction processing,
365

simultaneous multi-threading, 22
single-bit data connections, 377
Single Inline Memory Module

(SIMM), 564
single-instruction, multiple-data

(SIMD) parallelism, 24–25,
523–524

single-precision floating-point
representation

IEEE, 103, 104
machine-level data, 168
support for, 39

SINS [Y86] status code for illegal
instruction exception, 384

size
blocks, 822
caches, 614
data, 38–39
word, 8, 38

size classes, 836
size_t [Unix] unsigned size type,

77–78, 92, 866
size tool, 690
sizeof [C] compute size of object,

44, 120–122, 125
sleep [Unix] suspend process, 729
slow system calls, 745
.so files, 682
sockaddr [Unix] generic socket

address structure, 902
sockaddr_in [Unix] Internet-

style socket address structure,
901–902

socket addresses, 899
socket descriptors, 880, 902
socket function, 902–903
socket pairs, 899
sockets, 874, 899
sockets interface, 900, 900–901
accept function, 907–908
address structures, 901–902
bind function, 904–905
connect function, 903
example, 908–911
listen function, 905
open_clientfd function, 903–904
open_listenfd function, 905–

906
socket function, 902–903

Software Engineering Institute, 92
software exceptions

C++ and Java, 760
ECF for, 703–704
vs. hardware, 704

Solaris, 15
and ELF, 658
Sun Microsystems operating

system, 44
solid-state disks (SSDs), 571, 581

benefits, 567
operation, 581–583

sorting performance, 544
source files, 3
source hosts, 889
source programs, 3
southbridge chipsets, 568
Soviet Union, 900

Index 1039

%sp [x86-64] low-order 16 bits of
stack pointer register %rsp, 274

SPARC
64-bit version, 268
five-stage pipelines, 448–449
RISC processors, 343
Sun Microsystems processor, 44

spare cylinders, 576, 581
spare sectors, 581
spatial locality, 587

caches, 625–629
exploiting, 595

special arithmetic operations, 182–
185, 278–279

special control conditions in Y86
pipelining

detecting, 436–437
handling, 432–436

specifiers, operand, 169–170
speculative execution, 498, 499, 527
speedup of parallel programs, 977,

978
spilling, register, 240, 240–241,

525–526
spindles, disks, 570
%spl [x86-64] bits 0–7 of stack pointer

register %rsp, 274
splitting

free blocks, 823
memory blocks, 820

sprintf [C Stdlib] function, 43, 259
Sputnik, 900
squashing mispredicted branch

handling, 434
SRAM (Static RAM), 13, 561,

561–562
cache. See caches and cache

memory
vs. DRAM, 562
trends, 584–585

SRAM cells, 561
srand [CS:APP] pseudo-random

number generator seed, 980
SSDs (solid-state disks), 571, 581

benefits, 567
operation, 581–583

SSE (Streaming SIMD Extensions)
instructions, 156–157

data alignment exceptions, 249
parallelism, 523–524

SSE2 (Streaming SIMD Extensions,
version 2), 292–293

ssize_t [Unix] signed size type, 866

stack corruption detection, 263–265
stack frames, 219, 219–221

alignment on, 249
x86-64 processors, 284–287

stack pointers, 219, 289
stack protectors, 263
stack randomization, 261–262
stacks, 18, 172, 172–174

buffer overflow, 844
byte alignment, 226
with execve function, 731–732
machine-level programs, 161
overflow. See buffer overflow
recursive procedures, 229–232
Y86 pipelining, 408

stages, SEQ, 364–375
decode and write-back, 385–387
execute, 387–389
fetch, 383–385
memory stage, 389–390
PC update, 390

stalling, pipeline, 413–415, 437–438
Stallman, Richard, 6, 15
standard C library, 4, 4–5
standard error files, 863
standard I/O library, 879, 879–880
standard input files, 863
standard output files, 863
startup code, 680
starvation in readers-writers

problem, 969
stat [Unix] fetch file metadata, 873
state machines, 942
states

bistable memory, 561
deadlock, 986
processor, 703
programmer-visible, 336, 336–337
in progress graphs, 961
state machines, 942

static libraries, 667, 667–672
static linkers, 657
static linking, 657
Static RAM (SRAM), 13, 561,

561–562
cache. See caches and cache

memory
vs. DRAM, 562
trends, 584–585

static [C] variable and function
attribute, 660, 661, 956

static Web content, 912
status code registers, 413

status codes
HTTP, 916
Y86, 344–345, 345

status messages in HTTP, 916
STDERR_FILENO [Unix] constant for

standard error descriptor, 863
stderr stream, 879
STDIN_FILENO [Unix] constant for

standard input descriptor, 863
stdin stream, 879
stdint.h file, 63
stdio.h [Unix] standard I/O library

header file, 77–78
stdlib, 4, 4–5
STDOUT_FILENO [Unix] constant for

standard output descriptor, 863
stdout stream, 879
stepi command in GDB, 255
Stevens, W. Richard, 873, 882, 928,

999
stopped processes, 719
storage. See information storage
storage classes for variables, 956
storage device hierarchy, 13–14
store buffers, 534–535
store instructions, 10
store operations, 499
store performance of memory,

532–537
strace tool, 762
straight-line code, 185
strcat function, 259
strcpy function, 259
Streaming SIMD Extensions (SSE)

instructions, 156–157
data alignment exceptions, 249
parallelism, 523–524

Streaming SIMD Extensions, version
2 (SSE2), 292–293

streams, 879
buffers, 879–880
full duplex, 880

strerror function, 718
stride-1 reference patterns, 588
stride-k reference patterns, 588
string repeat instruction (rep), 281
strings

in buffer overflow, 256–259
length, 77
lowercase conversions, 487–489
representing, 46–47

strings tool, 690
strip tool, 690

1040 Index

strlen function, 77, 487–489
strong scaling, 977
strong symbols, 664
.strtab section, 659
strtok function, 982–983
struct [C] structure data type, 241
structures

address, 901–902
heterogeneous. See heterogeneous

data structures
machine-level programs, 161
x86-64 processors, 290–291

sub [IA32/x86-64] subtract, 178
subdomains, 896
subl [Y86] subtract, 338, 367
substitution, inline, 479
subtract instruction (sub), 178, 338
subtract operation in execute stage,

387
sumarraycols [CS:APP] column-

major sum, 617
sumarrayrows [CS:APP] row-major

sum, 617, 617–618
sumvec [CS:APP] vector sum, 616,

616–617
Sun Microsystems, 44

five-stage pipelines, 448–449
RISC processors, 343
security vulnerability, 91–92
SPARC architecture, 268
workstations, 268

supercells, 562, 563–564
superscalar processors, 24, 448–449,

497
supervisor mode, 715
surfaces, disks, 570, 575
suspend process function, 729
suspend until signal arrives function,

730
suspended processes, 719
swap areas, 807
swap files, 807
swap space, 807
swapped in pages, 783
swapped out pages, 783
swapping pages, 783
sweep phase in Mark&Sweep

garbage collectors, 840
Swift, Jonathan, 40–41
switch [C] multiway branch

statement, 213–219
switches, context, 716–717

symbol resolution, 657, 663–664
multiply defined global symbols,

664–667
static libraries, 667–672

symbol tables, 659, 660–662
symbolic methods, 443
symbols

address translation, 788
caches, 598
relocation, 672–678
strong and weak, 664

.symtab section, 659
synchronization

flow, 755–759
Java threads, 970
progress graphs, 962
threads, 957–960

progress graphs, 960–963
with semaphores. See
semaphores

synchronization errors, 957
synchronous DRAM (SDRAM), 566
/sys filesystem, 716
syscall function, 710
system bus, 568
system calls, 17, 707, 707–708

error-handling, 717–718
Linux/IA32 systems, 710–711
slow, 745

system-level functions, 710
system-level I/O

closing files, 865
file metadata, 873–875
I/O redirection, 877–879
opening files, 863–865
packages summary, 880–881
reading files, 865–866
rio package, 867–873
sharing files, 875–877
standard, 879–880
summary, 881–882
Unix I/O, 862–863
writing files, 866–867

System V Unix, 15
and ELF, 658
semaphores, 937
shared memory, 937

T2B (two’s complement to binary
conversion), 66

T2U (two’s complement to unsigned
conversion), 66, 66–69

tables
descriptor, 875–876, 878
exception, 704, 705
GOTs, 687, 688–690
hash, 544–545
header, 658, 678, 678–679
jump, 213, 216, 705
page, 716, 780, 780–781, 792–794,

797
segment header, 678, 678–679
symbol, 659, 660–662

tag bits, 596–597, 598
tags, boundary, 824–826, 825, 833
targets, jump, 190, 190–193
TCP (Transmission Control

Protocol), 892
TCP/IP (Transmission Control

Protocol/Internet Protocol),
892

tcsh [Unix] Unix shell program, 733
telnet remote login program, 914
temporal locality, 587

blocking for, 629
exploiting, 595

terabytes, 271
terminate another thread function,

951
terminate current thread function,

950
terminate process function, 719
terminated processes, 719
terminating

processes, 719–723
threads, 950–951

test [IA32/x86-64] test, 186, 280
test byte instruction (testb), 186
test double word instruction (testl),

186
test instructions, 186, 280
test quad word instruction (testq),

280
test signal set membership function,

753
test word instruction (testw), 186
testb [IA32/x86-64] test byte, 186
testing Y86 pipeline design, 442–443
testl [IA32/x86-64] test double

word, 186
testq [IA32/x86-64] test quad word,

280
testw [IA32/x86-64] test word, 186
text files, 3, 870

Index 1041

text lines, 868
text representation

ASCII, 46
Unicode, 47

.text section, 658
Thompson, Ken, 15
thrashing

direct-mapped caches, 604
pages, 784

thread contexts, 947, 955
thread IDs (TIDs), 947
thread-level concurrency, 22–23
thread-level parallelism, 23
thread routines, 949–950
thread-safe functions, 979, 979–981
thread-unsafe functions, 979, 979–

980
threads, 17, 935, 947, 947–948

concurrent server based on,
952–954

creating, 950
detaching, 951–952
execution model, 948
initializing, 952
library functions for, 982–983
mapping variables in, 956
memory models, 955–956
for parallelism, 974–978
Posix, 948–949
races, 983–985
reaping, 951
safety issues, 979–980
shared variables with, 954, 954–

957
synchronizing, 957–960

progress graphs, 960–963
with semaphores. See
semaphores

terminating, 950–951
throughput, 501

dynamic memory allocators, 818
pipelining for. See pipelining
read, 621

throughput bounds, 497, 502
TIDs (thread IDs), 947
time slicing, 713
timing, SEQ, 379–383
tiny [CS:APP] Web server, 919,

919–927
TLB index (TLBI), 791
TLB tags (TLBT), 791, 797
TLBI (TLB index), 791

TLBs (translation lookaside buffers),
448, 791, 791–797

TLBT (TLB tags), 791, 797
TMax (maximum two’s-complement

number), 61, 62
TMin (minimum two’s-complement

number), 61, 62, 71
top of stack, 172, 173
top tool, 762
Torvalds, Linus, 19
touching pages, 807
TRACE method, 915
tracing execution, 367, 369–370,

373–375, 382
track density of disks, 571
tracks, disks, 571, 575
trajectories in progress graphs, 961,

962
transactions

bus, 567, 568–570
client-server model, 886
client-server vs. database, 887
HTTP, 914–916

transfer time for disks, 574
transfer units, 593
transferring control, 221–223
transformations, reassociation, 511,

518, 518–523, 548
transistors in Moore’s Law, 158–159
transitions

progress graphs, 961
state machines, 942

translating programs, 4–5
translation

address. See address translation
binary, 691–692
switch statements, 213

translation lookaside buffers (TLBs),
448, 791, 791–797

Transmission Control Protocol
(TCP), 892

Transmission Control Proto-
col/Internet Protocol (TCP/IP),
892

trap exception class, 706
traps, 707, 707–708
tree height reduction, 548
tree structure, 245–246
truncating numbers, 75–76
two-operand multiply instructions,

182
two-way parallelism, 514–515

two’s-complement representation
addition, 83, 83–87
asymmetric range, 61–62, 71
bit-level representation, 88
encodings, 30
maximum value, 61
minimum value, 61
multiplication, 89, 89–92
negation, 87, 87–88
signed and unsigned conversions,

65–69
signed numbers, 60, 60–65

typedef [C] type definition, 42, 43
types

conversions. See conversions
floating point, 114–117
IA32, 167–168
integral, 57, 57–58
machine-level, 161, 167–168
MIME, 912
naming, 43
pointers, 33–34, 252
x86-64 processors, 270–271

U2B (unsigned to binary conversion),
66, 68

U2T (unsigned to two’s-complement
conversion), 66, 69, 76

UDP (Unreliable Datagram
Protocol), 892

UINTN_MAX [C] maximum value of
N -bit unsigned data type, 62

uintN_t [C] N -bit unsigned integer
data type, 63

umask function, 864–865
UMax (maximum unsigned number),

59, 61–62
unallocated pages, 779
unary operations, 178–179
unblocking signals, 753–754
unbuffered input and output, 867–868
uncached pages, 780
underflow, gradual, 105
Unicode characters, 47
unified caches, 612
Uniform Resource Identifiers

(URIs), 915
uninitialized memory, reading,

843–844
unions, 244–248
uniprocessor systems, 16, 22
United States, ARPA creation in, 900

1042 Index

Universal Resource Locators
(URLs), 913

Universal Serial Bus (USB), 577
Unix 4.xBSD, 15, 901
unix_error [CS:APP] reports

Unix-style errors, 718, 1001
Unix IPC, 937
Unix operating systems, 15, 32

constants, 725
error-handling, 1000, 1001
I/O, 19, 862, 862–863
static libraries, 668

Unix signals, 736
unlocking mutexes, 964
unmap disk object function, 812
Unreliable Datagram Protocol

(UDP), 892
unrolling loops, 480, 482, 509,

509–513, 551
unsafe regions in progress graphs,

962
unsafe trajectories in progress graphs,

962
unsetenv [Unix] delete environment

variable, 732
unsigned data types, 57
unsigned representations, 76–79

addition, 79–83, 82
conversions, 65–71
divide instruction, 182, 184, 279
encodings, 30, 58–60, 59
multiplication, 88, 182, 182, 279

unsigned size type, 866
update instructions, 10
URIs (Uniform Resource

Identifiers), 915
URLs (Universal Resource

Locators), 913
USB (Universal Serial Bus), 577
user-level memory mapping, 810–

812
user mode, 706

processes, 714–716, 715
regular functions in, 708

user stack, 18
UTF-8 characters, 47

v-node tables, 875
V semaphore operation, 963, 964
V [CS:APP] wrapper function for

Posix sem_post, 963, 964
VA. See virtual addresses (VA)
valgrind program, 548

valid bit
cache lines, 596, 597
page tables, 781

values
function parameters passed by,

226
pointers, 34, 252

variable-sized arrays, 238–241
variables

mapping, 956
nonexistent, 846
shared, 954, 954–957
on stack, 226–228
storage classes, 956

VAX computer, 53
vector data types, 24, 482–485
vector dot product function, 603
vector sum function, 616, 616–617
vectors, bit, 48, 49–50
verification in pipelining, 443–444
Verilog hardware description

language
for logic design, 353
Y86 pipelining implementation,

444
vertical bars || for or operation, 353
Very Large Instruction Word

(VLIW) format, 269
VHDL hardware description

language, 353
victim blocks, 594
Video RAM (VRAM), 566
virtual address spaces, 17, 33, 778
virtual addresses (VA)

machine-level programming,
160–161

vs. physical, 777–778
Y86, 337

virtual machines
as abstraction, 25
Java byte code, 293

virtual memory (VM), 17, 33, 776
as abstraction, 25
address spaces, 778–779
address translation. See address

translation
bugs, 843–847
for caching, 779–784
characteristics, 776–777
Core i7, 799–803
dynamic memory allocation. See

dynamic memory allocation
garbage collection, 838–842

Linux, 803–807
in loading, 681
mapping. See memory mapping
for memory management, 785–786
for memory protection, 786–787
overview, 17–19
physical vs. virtual addresses,

777–778
summary, 848

virtual page numbers (VPNs), 788
virtual page offset (VPO), 788
virtual pages (VPs), 266, 779, 779–780
viruses, 261–262
VLIW (Very Large Instruction

Word) format, 269
VM. See virtual memory (VM)
void* [C] untyped pointers, 44
VP (virtual pages), 266, 779, 779–780
VPNs (virtual page numbers), 788
VPO (virtual page offset), 788
VRAM (Video RAM), 566
vtune program, 548, 692
vulnerabilities, security, 78–79

wait [Unix] wait for child process,
726

wait for child process functions, 724,
726, 726–729

wait for client connection request
function, 907, 907–908

wait for I/O events function, 939
wait.h file, 725
wait sets, 724, 724
waitpid [Unix] wait for child

process, 724, 726–729
waitpid1 [CS:APP] waitpid

example, 727
waitpid2 [CS:APP] waitpid

example, 728
WANs (wide area networks), 889,

889–890
warming up caches, 594
weak scaling, 978
weak symbols, 664
wear leveling logic, 583
Web clients, 911, 912
Web servers, 684, 911

basics, 911–912
dynamic content, 916–919
HTTP transactions, 914–916
tiny example, 919–927
Web content, 912–914

well-known ports, 899

Index 1043

while [C] loop statement, 200–203
wide area networks (WANs), 889,

889–890
WIFEXITED constant, 725
WIFEXITSTATUS constant, 725
WIFSIGNALED constant, 725
WIFSTOPPED constant, 725
Windows operating system, 44, 249
wire names in hardware diagrams,

377
WNOHANG constant, 724–725
word-level combinational circuits,

355–360
word selection

direct-mapped caches, 600
fully associative caches, 608
set associative caches, 607–608

word size, 8, 38
words, 8

machine-level data, 167
x86-64 processors, 270, 277

working sets, 595, 784
world-wide data connections in

hardware diagrams, 377
World Wide Web, 912
worm programs, 260–262
wrappers, error-handling, 718, 999,

1001–1003
write [Unix] write file, 865, 866–867
write access, 266
write-allocate approach, 612
write-back approach, 612
write-back stage

instruction processing, 364, 366,
368–377

PIPE processor, 426–429
SEQ, 385–387

write hits, 612
write issues for caches, 611–612
write-only registers, 504
write operations for files, 863,

866–867

write ports
priorities, 387
register files, 362

write/read dependencies, 534–536
write strategies for caches, 615
write-through approach, 612
write transactions, 567, 569–570
writen function, 873
writers in readers-writers problem,

969–970
writing operations, SSDs, 582–583
WSTOPSIG constant, 725
WTERMSIG constant, 725
WUNTRACED constant, 724–725

x86 microprocessor line, 156
x86-64 microprocessors, 44, 156, 158,

267
argument passing, 283–284
arithmetic instructions, 277–279
assembly-code example, 271–273
control instructions, 279–282
data structures, 290–291
data types, 270–271
floating-point code, 492
history and motivation, 268–269
information access, 273–277
machine language, 155–156
overview, 267–268, 270
procedures, 282
register saving conventions,

287–290
registers, 273–275
stack frames, 284–287
summary, 291

x87 floating-point architecture,
156–157, 292

XDR library, 91–92
Xeon microprocessors, 269
XMM registers, 492
Xor [IA32/x86-64] exclusive-or, 178
xorl [Y86] exclusive-or, 338

Y86 instruction set architecture,
335–336

CISC vs. RISC, 342–344
details, 350–352
exception handling, 344–345
vs. IA32, 342
instruction encoding, 339–342
instruction set, 337–339
programmer-visible state, 336–337
programs, 345–350
sequential implementation. See

sequential Y86 implementation
Y86 pipelined implementations, 400

computation stages, 400–401
control logic. See control logic in

pipelining
exception handling, 420–423
hazards. See hazards in pipelining
memory system interfacing,

447–448
multicycle instructions, 446–447
performance analysis, 444–446
predicted values, 406–408
signals, 405–406
stages. See PIPE processor stages
testing, 442–443
verification, 443–444
Verilog, 444

yas Y86 assembler, 348–349
yis Y86 instruction set simulator, 348

zero extension, 72
zero flag condition code (ZF), 185,

337
ZF [IA32/x86-64/Y86] zero flag

condition code, 185, 337
zombie processes, 723, 723–724, 746
zones

maps, 580–581
recording, 572

	Cover������������
	Title Page
	Copyright
	Contents
	Preface
	About the Authors
	1 A Tour of Computer Systems
	1.1 Information Is Bits + Context
	1.2 Programs Are Translated by Other Programs into Different Forms
	1.3 It Pays to Understand How Compilation Systems Work
	1.4 Processors Read and Interpret Instructions Stored in Memory
	1.4.1 Hardware Organization of a System
	1.4.2 Running the hello Program

	1.5 Caches Matter
	1.6 Storage Devices Form a Hierarchy
	1.7 The Operating System Manages the Hardware
	1.7.1 Processes
	1.7.2 Threads
	1.7.3 Virtual Memory
	1.7.4 Files

	1.8 Systems Communicate with Other Systems Using Networks
	1.9 Important Themes
	1.9.1 Concurrency and Parallelism
	1.9.2 The Importance of Abstractions in Computer Systems

	1.10 Summary
	Bibliographic Notes

	Part I: Program Structure and Execution
	2 Representing and Manipulating Information
	2.1 Information Storage
	2.2 Integer Representations
	2.3 Integer Arithmetic
	2.4 Floating Point
	2.5 Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	3 Machine-Level Representation of Programs
	3.1 A Historical Perspective
	3.2 Program Encodings
	3.3 Data Formats
	3.4 Accessing Information
	3.5 Arithmetic and Logical Operations
	3.6 Control
	3.7 Procedures
	3.8 Array Allocation and Access
	3.9 Heterogeneous Data Structures
	3.10 Putting It Together: Understanding Pointers
	3.11 Life in the Real World: Using the GDB Debugger
	3.12 Out-of-Bounds Memory References and Buffer Overflow
	3.13 x86-64: Extending IA32 to 64 Bits
	3.14 Machine-Level Representations of Floating-Point Programs
	3.15 Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	4 Processor Architecture
	4.1 The Y86 Instruction Set Architecture
	4.2 Logic Design and the Hardware Control Language HCL
	4.3 Sequential Y86 Implementations
	4.4 General Principles of Pipelining
	4.5 Pipelined Y86 Implementations
	4.6 Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	5 Optimizing Program Performance
	5.1 Capabilities and Limitations of Optimizing Compilers
	5.2 Expressing Program Performance
	5.3 Program Example
	5.4 Eliminating Loop Inefficiencies
	5.5 Reducing Procedure Calls
	5.6 Eliminating Unneeded Memory References
	5.7 Understanding Modern Processors
	5.8 Loop Unrolling
	5.9 Enhancing Parallelism
	5.10 Summary of Results for Optimizing Combining Code
	5.11 Some Limiting Factors
	5.12 Understanding Memory Performance
	5.13 Life in the Real World: Performance Improvement Techniques
	5.14 Identifying and Eliminating Performance Bottlenecks
	5.15 Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	6 The Memory Hierarchy
	6.1 Storage Technologies
	6.2 Locality
	6.3 The Memory Hierarchy
	6.4 Cache Memories
	6.5 Writing Cache-friendly Code
	6.6 Putting It Together: The Impact of Caches on Program Performance
	6.7 Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	Part II: Running Programs on a System
	7 Linking
	7.1 Compiler Drivers
	7.2 Static Linking
	7.3 Object Files
	7.4 Relocatable Object Files
	7.5 Symbols and Symbol Tables
	7.6 Symbol Resolution
	7.7 Relocation
	7.8 Executable Object Files
	7.9 Loading Executable Object Files
	7.10 Dynamic Linking with Shared Libraries
	7.11 Loading and Linking Shared Libraries from Applications
	7.12 Position-Independent Code (PIC)
	7.13 Tools for Manipulating Object Files
	7.14 Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	8 Exceptional Control Flow
	8.1 Exceptions
	8.2 Processes
	8.3 System Call Error Handling
	8.4 Process Control
	8.5 Signals
	8.6 Nonlocal Jumps
	8.7 Tools for Manipulating Processes
	8.8 Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	9 Virtual Memory
	9.1 Physical and Virtual Addressing
	9.2 Address Spaces
	9.3 VM as a Tool for Caching
	9.4 VM as a Tool for Memory Management
	9.5 VM as a Tool for Memory Protection
	9.6 Address Translation
	9.7 Case Study: The Intel Core i7/Linux Memory System
	9.8 Memory Mapping
	9.9 Dynamic Memory Allocation
	9.10 Garbage Collection
	9.11 Common Memory-Related Bugs in C Programs
	9.12 Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	Part III: Interaction and Communication Between Programs
	10 System-Level I/O
	10.1 Unix I/O
	10.2 Opening and Closing Files
	10.3 Reading and Writing Files
	10.4 Robust Reading and Writing with the Rio Package
	10.5 Reading File Metadata
	10.6 Sharing Files
	10.7 I/O Redirection
	10.8 Standard I/O
	10.9 Putting It Together: Which I/O Functions Should I Use?
	10.10 Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	11 Network Programming
	11.1 The Client-Server Programming Model
	11.2 Networks
	11.3 The Global IP Internet
	11.4 The Sockets Interface
	11.5 Web Servers
	11.6 Putting It Together: The TINY Web Server
	11.7 Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	12 Concurrent Programming
	12.1 Concurrent Programming with Processes
	12.2 Concurrent Programming with I/O Multiplexing
	12.3 Concurrent Programming with Threads
	12.4 Shared Variables in Threaded Programs
	12.5 Synchronizing Threads with Semaphores
	12.6 Using Threads for Parallelism
	12.7 Other Concurrency Issues
	12.8 Summary
	Bibliographic Notes
	Homework Problems
	Solutions to Practice Problems

	A: Error Handling
	A.1 Error Handling in Unix Systems
	A.2 Error-Handling Wrappers

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

